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Abstract This paper presents some results concerning the existence of the Lagrange
multipliers for vector optimization problems in the case where the ordering cone
in the codomain has an empty interior. The main tool for deriving our assertions is
a scalarization by means of a functional introduced by Hiriart-Urruty (Math. Oper.
Res. 4:79–97, 1979) (the so-called oriented distance function). Moreover, we ex-
plain some applications of our results to a vector equilibrium problem, to a vector
control-approximation problem and to an unconstrainted vector fractional program-
ming problem.

Keywords Lagrange multipliers · Mordukhovich subdifferential ·
Proximal subdifferential · Constrained and unconstrained vector optimization

1 Introduction

Vector optimization is at present one of the most interesting areas of optimization the-
ory from the theoretical as well as from the computational point of view. Recently,
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there are some monographs on this subject. For example, the reader can look at the
monographs of Luc [2], Göpfert, Riahi, Tammer and Zălinescu [3] and Jahn [4].
Though from the application point of view one may like to concentrate on finite di-
mensional vector optimization problem it has been shown for example in Jahn [4]
how vector optimization problems in infinite dimensions arise in a natural way in
many applications. Thus it is important from a theoretical viewpoint to study vector
optimization in infinite dimensional spaces. However, keeping in mind the practi-
cal applications the best setting for studying vector optimization problems in infinite
dimensions is that of Banach spaces. In this paper we study vector optimization prob-
lems in such a setting. It is well known that there are two main solution concepts in
vector optimization namely the Pareto solution and the weak Pareto solution. It is
important to note that in order to define a weak Pareto solution one needs to have
an ordering cone with a nonempty interior. The aim of this paper is to present some
results concerning the existence of Lagrange multipliers for Pareto optimal solutions
of vector optimization problems in the special case where the partial order on the ob-
jective (output) space is given by a closed convex cone with empty interior. Note that
as mentioned above when the ordering cone has an empty interior then one cannot
define the notion of a weak Pareto optimal solution and thus one has to deal only
with Pareto optimal solutions. In the case of a cone with non-empty interior the same
problem as discussed in this paper was considered for weak Pareto solutions in the
recent works of [5] and [6], where a scalarization technique introduced in [7] was
used. Since this separating functional has important continuity properties only un-
der the assumption of non-emptiness of the interior of the underlying cone, a natural
question is to find another function which can be used outside this framework. On
the other hand, it is well known that for many infinite dimensional spaces the usual
ordering cones have empty interiors, hence it is important to have a tool to handle
these situations as well. In this sense, we use the so-called oriented distance function
introduced in [1] in the framework of nonsmooth scalar optimization and which was
also used in [8–10] for vector optimization problems. In the non-convex setting the
price to pay for the missing interiority condition is that we have to consider a concept
of approximate Pareto solutions for the vectorial problems we work on. In the convex
case we can deal with Pareto optimal points directly even if the ordering cone has
an empty interior. However, in the convex case we need some additional regularity
assumptions on the image of the feasible set.

We add here that there has been a huge amount of literature on the optimality
conditions for weak Pareto solutions as compared to that of Pareto solutions though
Pareto solutions seems to be important from the point of view of applications. Further,
to the best of our knowledge there are not many contributions concerning necessary
optimality conditions for the case when the ordering cone has an empty interior. How-
ever, in a recent paper by Bao and Mordukhovich [11] the case of a (possible) empty
interior of the ordering cone is considered as well. In order to stress the fact that we
are dealing with the situation where the ordering cone has an empty interior, we have
used the term nonsolid in the title of the paper.

Further, it is important to provide some motivation and at least some mathematical
justification as to why we need to study vector optimization with an ordering cone
having an empty interior. In vector optimization theory one works with convex order-
ing cones which give order relations on the underlying spaces. The natural framework



198 J Optim Theory Appl (2010) 145: 196–211

of the majority of vector optimization problems are the normed vector spaces and
each of the usual normed vector spaces has a natural ordering cone. Outside the fi-
nite dimensional case there exist only a few examples when the natural ordering cone
has a non-empty interior. Consider for example the space l∞, the space BV of all
functions of bounded variation on R or the space C(�) of all continuous real-valued
functions on the compact Hausdorff space �. On the other hand the natural ordering
cones of the most useful normed vector spaces (for example lp , Lp , 1 ≤ p < ∞)
have empty interior. In fact the natural ordering cone for most of the Asplund spaces
have an empty interior. In support of our statements, we quote the following from
Peressini [12, p. 183]:

“. . . the class of ordered topological vector spaces possessing cones with non-
empty interiors is not very broad.”

Of course, in every normed vector space one can construct a closed convex cone
with non-empty interior. For example, simply take the closed conic hull of a ball
which does not contain the origin. But, for evident purposes, it is much more conve-
nient to have the possibility to work with the natural ordering cones and hence the
above mentioned problem arise. Moreover, in recent papers on the field of mathe-
matical finance coherent risk measures (closely related to scalarizing functionals in
vector optimization) are introduced on the space L2 (compare [13] and [14]). It is
well known that the natural ordering cone in L2 has an empty interior.

Altogether, taking into account these arguments it is very important to go beyond
the often used assumption in vector optimization concerning the non-emptiness of
the interior of the ordering cone.

The plan of the paper is as following: In Sect. 2, we begin by introducing various
notations and also a notion of an ε-Pareto solution slightly different from the usual
notion of an approximate Pareto solution present in the literature. We provide an
interesting relation between a Pareto optimal solution and the notion of an ε-Pareto
solution that we introduce here which justifies the introduction of such a notion. Then
we proceed to introduce the results from nonsmooth analysis that are used for deriv-
ing our main results. Further, in this section we introduce the scalarizing functional
which is a fundamental tool to derive our results. In Sect. 3, we present our main op-
timality conditions. We begin with a smooth constrained convex vector optimization
problem. Then we proceed to present necessary optimality conditions for ε-Pareto
solutions for the constrained case in a Banach space setting when the objective func-
tion is strictly Lipschitzian and for the unconstrained case in the setting of a Hilbert
space when the objective function is just locally Lipschitz. In Sect. 4, we provide
some applications of the results derived in Sect. 3 to the vector equilibrium prob-
lem, the vector control-approximation problem and unconstrained vector fractional
programming problem.

2 Preliminaries

Throughout the paper X,Y are Banach spaces over the real field R. The symbols
UX and SX denote the closed unit ball and the unit sphere in X, where X is a given
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Banach space. For any Banach space X the topological dual of X is denoted by X∗.
For a positive ε and for an element x ∈ X, we denote the open ball of radius ε centered
in x by B(x, ε). As usual, for a set C ⊂ X, we denote by IC the indicator function of
C (IC(x) = 0 if x ∈ C and IC(x) = +∞ if x /∈ C) and by dC the distance function
with respect to C, dC(x) = d(x,C) := infc∈C ‖x−c‖ for every x ∈ X (by convention,
d(x,∅) = +∞). Further, we shall also need the notion of an extended-valued function
in order to present the nonsmooth calculus rules. Essentially we will use functions of
the form ϕ : X → R̄, where R̄ = R ∪ {+∞}. The set of all points of X where ϕ takes
finite values is denoted as Domϕ.

Let us consider a closed convex pointed cone K with empty interior in Y , i.e.,
intK = ∅, which induces a partial order relation on Y denoted by ≤K and given as
y1 ≤K y2 if and only if y2 −y1 ∈ K . We set K∗ := {y∗ ∈ Y ∗ | y∗(y) ≥ 0,∀y ∈ K} for
the dual cone of K . We recall that for a non-empty set A ⊂ Y , a point a ∈ A is called
Pareto minimum of A with respect to K if (A− a)∩ −K = {0}. We denote the set of
Pareto minimum points of A w.r.t. K by Min(A | K). If f : X → Y is a vector-valued
function and S ⊂ X is a non-empty set, a point x ∈ S is said to be Pareto minimizer of
f over S with respect to K if f (x) is a Pareto minimum of f (S) with respect to K .
Let us consider a fixed element e ∈ K with ‖e‖ = 1. For a positive ε, we say that
a ∈ A is an (ε, e)-Pareto minimum of A with respect to K if (A−a)∩(−K −εe) = ∅.
The set of all these minima is denoted by (ε, e)−Min(A | K). As above, for a vector-
valued function f : X → Y and a non-empty set S ⊂ X, a point x ∈ S is said to be
(ε, e)-Pareto minimizer of f over S with respect to K if f (x) is an (ε, e)-Pareto
minimum of f (S) with respect to K .

Remark 2.1 It is clear that the notion of (ε, e)-Pareto optima that we have defined
here is a slightly different version that the standard one found in the literature, i.e.,
(A − a) ∩ ((−K \ {0}) − εe) = ∅. For any a ∈ A with (A − a) ∩ (−K − εe) = ∅
it follows that a is an (ε, e)-Pareto minimum in the standard sense. The reverse is
not true. Notice that if a point a is an (ε, e)-Pareto minimum for A w.r.t. K in the
standard sense, then it is an (ε + δ, e)-Pareto minimum for A w.r.t. K in our sense for
every positive δ (taking into account that K is pointed).

However, we will use our concept of (ε, e)-Pareto minimizers of f over S with
respect to K defined above in order to get nontrivial multipliers y∗ �= 0 using certain
properties of the subdifferential of the distance function (see (1)).

Observe that an interesting part of our definition is the following. Viewing it in a
slightly informal manner it is interesting to observe that we in fact want to refer as
(ε, e)-Pareto minimum to those points which under very small perturbation will leave
the feasible objective set. Points lying very near to the efficient frontier will exhibit
such behavior under small perturbations and thus from the practical point of view we
are indeed talking about solutions that are very close to the efficient frontier and thus
qualify in a better way as an approximate-minimum.

The next proposition justifies the choice we make for the concept of (ε, e)-
solution.
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Proposition 2.1 The following relation holds:

Min(A | K) =
⋂

e∈K∩SY

⋂

ε>0

(ε, e) − Min(A | K).

Proof It is clear that, for every positive ε and for every e ∈ K ∩ SY , the pointedness
of the cone K implies −K − εe ⊂ −K \ {0}. We deduce that

Min(A | K) ⊂
⋂

e∈K∩SY

⋂

ε>0

(ε, e) − Min(A | K).

For the converse inclusion, let us take y ∈ ⋂
e∈K∩SY

⋂
ε>0(ε, e) − Min(A | K) and

suppose that there exists y ∈ A s.t. y − y ∈ −K \ {0}. Then, for an ε > 0 small
enough,

(y − y) − ε‖y − y‖−1(y − y) ∈ −K \ {0}.
Consequently,

y − y ∈ −K − ε‖y − y‖−1(y − y),

whence y /∈ (ε,‖y − y‖−1(y − y)) − Min(A | K). Since we arrive at a contradiction,
the proof is complete. �

In general, for a nonempty set A ⊂ Y , A �= Y , the oriented distance function �A :
Y → R is given as �A(y) = dA(y)−dY\A(y) (cf. Hiriart-Urruty [1]). It is well known
that this function has very good general properties (see [10]) and we list below for
the reader’s convenience the properties that we shall use in the sequel.

Proposition 2.2 ([10, Proposition 3.2])

(i) �A is Lipschitzian of rank 1.
(ii) If A is convex, then �A is convex and, if A is a cone, then �A is positively

homogeneous.
(iii) If A is a closed convex cone and y1, y2 ∈ Y with y1 − y2 ∈ A, then �A(y1) ≤

�A(y2).

Note that the properties described above for the oriented distance function are
similar to those required for risk measures used in mathematical finance [13, 14].

Let us consider the functional �−K that is a convex, positively homogeneous and
a 1-Lipschitzian function following the above proposition. In fact, in our particular
situation, all these facts come from the simpler form of the functional. Indeed, the
emptiness of the interior of K implies that the closure of Y \ (−K) is Y itself, so
the second distance function in the expression of �−K reduces to 0. Hence, in fact
�−K = d−K .

Recall that, for a convex closed subset A of Y , the normal cone at a point a ∈ A is
given as

NA(a) = {y∗ ∈ Y ∗ | y∗(a − a) ≤ 0, ∀a ∈ A}.
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For the convex continuous function dA, the classical Fenchel subdifferential is given
by the following formula (see e.g. [15]):

∂dA(y) =
{

SX∗ ∩ NAy (y), if y /∈ A,

UX∗ ∩ NA(y), if y ∈ A,
(1)

where Ay := A + dA(y)UY .
Furthermore, for the special case of the convex functional �−K it holds for every

y ∈ Y , ∂�−K(y) ⊂ K∗. Indeed, for y∗ ∈ ∂�−K(y), it holds that

y∗(z − y) ≤ �−K(z) − �−K(y), ∀z ∈ Y. (2)

From Proposition 2.2(iii), it follows that �−K(u + y) ≤ �−K(y), for every u ∈ −K ,
and whence y∗(u) ≤ 0 with (2). This implies that, for every y ∈ Y ,

∂�−K(y) ⊂ K∗.

Remark 2.2 In Theorems 3.2, 3.3, 3.4 and in Sect. 4, we consider the case intK = ∅.
In this case, the interior of −K − εe is empty too (being a subset of −K), whence
�−K−εe(y) = d−K−εe(y). In order to show that ∂�−K−εe(y) ⊂ K∗ for every y ∈ Y ,
we take y∗ ∈ ∂�−K−εe(y) = ∂d−K−εe(y) for a fixed y ∈ Y . Then, for every k ∈ K ,
one has

y∗(−k − εe − y) ≤ d−K−εe(−k − εe) − d−K−εe(y)

= −d−K−εe(y) ≤ 0.

This yields y∗(k) ≥ −εy∗(e)−y∗(y). Because y ∈ Y (the reference point) is the same
for every k ∈ K and y∗ ∈ ∂d−K−εe(y) in this relation, we obtain y∗ ∈ K∗ : Indeed,
if there exist k ∈ K s.t. y∗(k) < 0, then y∗(nk) → −∞ as n → ∞ and we get a
contradiction with the above inequality since, obviously, nk ∈ K for every natural n

and −εy∗(e)− y∗(y) is a constant once we have chosen y∗ from ∂d−K−εe(y). So we
get, for every y ∈ Y ,

∂�−K−εe(y) ⊂ K∗.

The basic result linking the concept of Pareto minima with the scalarizing func-
tional is the following.

Theorem 2.1 ([10, Theorem 4.3]) A point y ∈ A ⊂ Y is a Pareto minimum of A

with respect to K if and only if y is the unique global solution of the problem
miny∈A �−K(y − y).

In a similar way, one has the following result corresponding to ε-solutions.
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Theorem 2.2 Assume that ε > 0, e ∈ K , ‖e‖ = 1. If a point y ∈ A ⊂ Y is an (ε, e)-
Pareto minimum of A with respect to K , then y is an ε-solution of the problem

min
y∈A

�−K−εe(y − y).

Proof The proof is based on the obvious inequality d−K−εe(0) ≤ ε, since for every
y ∈ A we have

d−K−εe(0) ≤ ε < d−K−εe(y − y) + ε,

whence y is an ε-solution over A for the scalar problem miny∈A �−K−εe(y − y). �

In order to present our results concerning the existence of Lagrange multipliers,
we work mainly with some concrete subdifferentials, cf. Mordukhovich [16, 17]:
The subdifferential of Mordukhovich (∂M ), which satisfies exact calculus rules on
Asplund spaces and furthermore, the proximal subdifferential (∂P ), which satisfies
fuzzy calculus rules on Hilbert spaces. In this way, under the assumptions that X is
an Asplund space, f1, f2 : X → R, x ∈ Domf1 ∩ Domf2 and f1 is Lipschitz around
x and f2 is l.s.c. around x, it holds that [16, 17, Theorem 2.36]:

∂M(f1 + f2)(x) ⊂ ∂Mf1(x) + ∂Mf2(x).

One says [16, 17, Definition 3.25] that a function f : X → Y is strictly Lipschitzian
at x if it is locally Lipschitzian around this point and there exists a neighborhood
V of the origin in X s.t. the sequence (t−1

k (f (xk + tkv) − f (xk)))k∈N contains a
norm convergent subsequence whenever v ∈ V,xk → x, tk ↓ 0. It is clear that this
notion reduces to local Lipschitz continuity if Y is finite dimensional. For more de-
tails regarding this class of mappings with values in infinite dimensional spaces see
Sect. 3.1.3 in [16, 17]. Now, the following chain rule holds [16, 17, Theorem 3.43]: If
X and Y are Asplund spaces, f : X → Y is strictly Lipschitzian at x and ϕ : Y → R

is Lipschitz around f (x), then

∂M(ϕ ◦ f )(x) ⊂
⋃

y∗∈∂Mϕ(f (x))
∂M(y∗ ◦ f )(x).

For the fuzzy sum rules, we use the following notations:

• u
f→ x means that u → x and f (u) → f (x); note that, if f is continuous, then

u
f→ x is equivalent to u → x.

• x∗ ∈ ‖ · ‖∗ − lim supu→x ∂f (u) means that, for every ε > 0, there exist xε and
x∗
ε such that x∗

ε ∈ ∂f (xε) and ‖xε − x‖ < ε, ‖x∗
ε − x∗‖ < ε; the notation x∗ ∈

‖ · ‖∗ − lim sup
u

f→x
∂f (u) has a similar interpretation and it is equivalent to x∗ ∈

‖ · ‖∗ − lim supu→x∂f (u) provided that f is continuous.

Let X,Y be Hilbert spaces. For the proximal subdifferential, we have (see [18,
Theorems 8.3, 9.1]): If f1, f2 : X → R, x ∈ Domf1 ∩Domf2 s.t. one of the functions
is Lipschitz around x, then

∂P (f1 + f2)(x) ⊂ ‖ ·‖∗ − lim sup

y
f1→x,z

f2→x

(∂P f1(y) + ∂P f2(z)),
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and if f : X → Y is locally Lipschitz and ϕ : Y → R is Lipschitz around f (x), then

∂P (ϕ ◦ f )(x) ⊂ ‖ ·‖∗ − lim sup

u
f→x,v→f (x)

⋃
u∗∈∂P ϕ(v)

∂P (u∗ ◦ f )(u).

As usual, for a closed set S ⊂ X the set ∂∗IS(x) is denoted by N∂∗(S, x) and is
called the set of normal directions to S at x ∈ S with respect to ∂∗, where ∗ ∈ {M,P }.

3 Main Results

In this section, we intend to study the necessary optimality conditions for the min-
imization of a function f : X → Y over a closed set S ⊂ X, where X and Y are
Banach spaces and the closed convex pointed ordering cone K in Y has an empty in-
terior. First, we derive a necessary condition for Pareto minimizers when the function
f is K-convex and S is a closed convex subset of X. Let us recall the definition of a
K-convex function: For any x, y ∈ X and λ ∈ [0,1], it holds that

λf (y) + (1 − λ)f (x) − f (λy + (1 − λ)x) ∈ K.

It is important to note that, even if f is K-convex and the set S is a closed convex set,
the image set f (S) needs not to be convex. However, the set f (S) + K is a convex
set under the convexity hypothesis on f and S. Further, it is not difficult to observe
that

min(f (S)|K) = min(f (S) + K|K). (3)

Theorem 3.1 Let us consider a K-convex function f : X → Y and let S be a closed
convex subset of X. Assume that f is a continuously Frechet differentiable function.
Further, assume that the set f (S) has a nonempty interior. Let x̄ be a Pareto mini-
mizer of f over S with respect to the ordering cone K which has an empty interior.
Then, there exists v ∈ K∗ \ {0} such that

0 ∈ f ′(x̄)∗v + N(S, x̄), (4)

where f ′(x̄) is the Frechet derivative of f at x̄ and f ′(x̄)∗ is the adjoint of the Frechet
derivative of f at x̄ and N(S, x̄) denotes the normal cone to the closed convex set S

at the point x̄.

Proof Since x̄ is a Pareto minimizer of f over S, we have using (3)

(f (S) + K) ∩ (f (x̄) − K) = {f (x̄)}.
Since the interior of f (S) is nonempty, the interior of f (S) + K is also nonempty.
Noting the fact that the Pareto minimum point f (x̄) lies on the boundary of f (S)+K ,
we get

int(f (S) + K) ∩ (f (x̄) − K) = ∅,
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taking into account the above expression.
Thus, by applying a standard separation theorem from convex analysis (see e.g.

Theorem 3.16 in [4]) there exists v ∈ Y ∗ with v �= 0 such that

v(z) ≥ v(w), ∀z ∈ f (S) + K, ∀w ∈ (f (x̄) − K). (5)

Now, for any given arbitrary x ∈ S and k ∈ K , from (5) we have

v(f (x) + k) ≥ v(f (x̄) − k). (6)

By setting k = 0, we see that v(f (x)) ≥ v(f (x̄)) for all x ∈ S. We will now show
that v ∈ K∗. On the contrary assume that there exists k ∈ K such that v(k) < 0. From
(6), we have

v(f (x)) ≥ v(f (x̄)) − v(k), ∀x ∈ S.

However, since K is a cone, the right-hand side of the above expression can be made
arbitrarily large so as to exceed v(f (x)) for any given x ∈ S . This leads to a contra-
diction and thus v ∈ K∗. Thus, we have proved that x̄ is a minimum of the convex
function v(f (x)) over S. Thus, from the well known optimality condition in convex
optimization (see for example Zălinescu [19]), we get

0 ∈ (v ◦ f )′(x̄) + N(S, x̄).

The result now follows by applying the standard chain rule of differentiation. �

Remark 3.1 It is important to note that even in the convex case the above expression is
only a necessary condition for the existence of a Pareto minimum and not a sufficient
condition. Further, observe that the loss of interiority condition of the ordering cone
had to be compensated by the interiority assumption on the image set f (S).

We will now present our results for the nonconvex case. Here we study both the
constrained and the unconstrained case. In the first assertion, we work on Asplund
spaces and with strictly Lipschitzian functions in order to apply the exact calculus
rules of the Mordukhovich subdifferential. In the latter case, we work on Hilbert
spaces with locally Lipschitzian functions such that it is possible to apply the fuzzy
calculus rules for the proximal subdifferential.

Theorem 3.2 Let X, Y be Asplund spaces, let K be a closed convex pointed cone in
Y with empty interior, let S be a closed subset of X and let f : X → Y be a strictly
Lipschitzian function on S. Assume that ε > 0 and e ∈ K , ‖e‖ = 1. If x is an (ε, e)-
Pareto minimizer of f over S with respect to K , then there exist x ∈ B(x,

√
ε) ∩ S

and y∗ ∈ SY ∗ ∩ K∗ s.t.

0 ∈ ∂M(y∗ ◦ f )(x) + √
εUX∗ + N∂M

(S, x).

Proof We consider the function ϕ : X → Y given by ϕ(x) = f (x)−f (x). Following
Theorem 2.2, x is an ε-minimum point over S for the functional z : X → R defined
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by z(x) = (�−K−εe ◦ ϕ)(x). Whence, from the Ekeland variational principle applied
for z on S (as a complete metric space), we get an element x ∈ B(x,

√
ε) ∩ S which

is a minimum point on S for the perturbed function z(·) + √
ε‖ · −x‖. Applying the

exact calculus rules of Mordukhovich subdifferential, we have

0 ∈ ∂M(z(·) + √
ε‖ · −x‖ + IS(·))(x)

⊂ ∂M(�−K−εe ◦ ϕ)(x) + √
εUX∗ + ∂MIS(x)

⊂
⋃

y∗∈∂M�−K−εe(f (x)−f (x))
∂M(y∗ ◦ f )(x) + √

εUX∗ + N∂M
(S, x).

Therefore, we get that there exists y∗ ∈ ∂M�−K−εe(f (x) − f (x)) s.t. 0 ∈ ∂M(y∗ ◦
f )(x) + √

εUX∗ + N∂M
(S, x0). Since �−K−εe = d−K−εe is a convex function (cf.

Proposition 2.2), its subdifferential in the sense of Mordukhovich coincides with the
subdifferential in the sense of convex analysis. Taking into account (1) and the fact
that f (x)−f (x) /∈ −K −εe (from the definition of (ε, e)-minimum), we get together
with Remark 2.2 the assertion y∗ ∈ SY ∗ ∩ K∗. �

Remark 3.2 Under convexity assumptions with respect to f and S, we have shown
in Theorem 3.1 using a standard separation theorem from convex analysis that there
is a nontrivial multiplier v ∈ K∗ \ {0} such that (4) holds for a Pareto minimizer of
f over S. However, in the nonconvex case (even in the case that the ordering cone
has a nonempty interior) we were not successful to show for Pareto minimizers that
the corresponding multiplier is nontrivial, i.e., y∗ �= 0. That leads us to consider in
Theorem 3.2 the notion of an approximate optimal solution for which some necessary
nontrivial optimality conditions could be obtained by using a variational principle for
a perturbed objective function. For the case that K has an empty interior, we get
the property y∗ �= 0 from (1) taking into account f (x)−f (x) /∈ −K − εe. Moreover,
from Remark 2.2, we get y∗ ∈ K∗. However, observe that no assumption on the image
set f (S) is required once we consider approximate solutions.

Theorem 3.3 Let X,Y be Hilbert spaces, let K be a closed convex pointed cone in
Y with empty interior and let f : X → Y be a locally Lipschitzian function. Assume
ε > 0 and e ∈ K , ‖e‖ = 1. If x ∈ X is an (ε, e)-Pareto minimizer of f over X with
respect to K , then there exist x ∈ B(x, 2

3

√
ε) and y∗ ∈ SY ∗ ∩ K∗ s.t.

0 ∈ ∂P (y∗ ◦ f )(x) + 5

3

√
εUX∗ .

Proof As above, x is an unconstrained ε-minimum point for the functional z : X →
R defined by z(x) = (�−K−εe ◦ f )(x). Once again, from the Ekeland variational
principle we get an element x1 ∈ B(x,

√
ε) which is a minimum point on X for the

perturbed function z(·) + √
ε‖ · −x1‖. Whence, applying the fuzzy calculus rules of

the proximal subdifferential, we can find x2 ∈ B(x1,3−1√ε), x3 ∈ B(x1,3−1√ε) s.t.

0 ∈ ∂P z(x2) + ∂P (
√

ε‖ · −x1‖)(x3) + 3−1√εUX∗ .



206 J Optim Theory Appl (2010) 145: 196–211

Since z is a composite function, we can apply the fuzzy calculus for its subdiffer-
ential to get x4 ∈ B(x2,3−1√ε) and y∗ ∈ ∂P �−K−εe(f (x4) − f (x)) with

0 ∈ ∂P (y∗ ◦ f )(x4) + ∂P (
√

ε‖ · −x1‖)(x3) + 2

3

√
εUX∗ .

Since
√

ε‖ · −x1‖ is a convex function, the proximal subdifferential of this function
coincides with the usual subdifferential of a convex function. Further, we also know
that

∂(
√

ε‖ · −x1‖)(x3) ⊂ √
εUX∗,

where ∂ denotes the subdifferential of a convex function. Hence, we conclude that

0 ∈ ∂P (y∗ ◦ f )(x4) + 5

3

√
εUX∗ .

Of course, taking into account the above estimations and the fact that f (x4)−f (x) /∈
−K − εe, one has with (1) and Remark 2.2

‖x4 − x‖ ≤ 2

3

√
ε and y∗ ∈ SY ∗ ∩ K∗.

The proof is complete taking x = x4. �

In order to complete our theoretical tour let us finally consider the set-valued case.
In the sequel of this section we denote by F a set valued map acting between Banach
spaces X and Y . As usual, we make the common assumption that the graph of F ,
denoted by GrF = {(x, y) | y ∈ F(x)}, is closed. We also recall the very useful con-
cept of the Mordukhovich coderivative associated to F at a point (x, y) ∈ GrF as the
set-valued map D∗

MF(x, y) : Y ∗ ⇒ X∗ given by

D∗
MF(x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ NM(GrF, (x, y))}.

We work with the following solution concept: Let ε > 0 and e ∈ K , ‖e‖ = 1. A
point (x, y) ∈ GrF is called an (ε, e)-Pareto minimum of F with respect to K if
y ∈ ( ε, e) − Min(F (X) | K). Using the above notation, we have the following result.

Theorem 3.4 Let X,Y be Asplund spaces, let K be a closed convex pointed cone
in Y with empty interior, ε > 0 and e ∈ K , ‖e‖ = 1. If (x, y) ∈ GrF is an (ε, e)-
Pareto minimum of F with respect to K , then there exist (x, y) ∈ B((x, y),

√
ε) and

y∗ ∈ SY ∗ ∩ K∗ s.t.

0 ∈ D∗
MF(x, y)(y∗ + √

εU∗
Y ) + √

εU∗
X.

Proof Let us consider the function g : X × Y → R given by g(x, y) = �−K−εe(y −
y). Then, (x, y) is an ε-minimum point over GrF for the functional g. Us-
ing the same technique as in Theorem 3.2, we get a pair of elements (x, y) ∈
B((x, y),

√
ε) ∩ GrF which is a minimum point on GrF for the perturbed function
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g(·, ·) + √
ε‖(·, ·) − (x, y)‖. We apply again the exact calculus rules of the Mor-

dukhovich subdifferential and we can write

(0,0) ∈ ∂M(g(·, ·) + √
ε‖(·, ·) − (x, y)‖ + IGrF (·, ·))(x, y)

⊂ {0} × ∂M�−K−εe(y − y) + √
ε(UX∗ × UY ∗) + ∂MIGrF (x, y).

Using the definition of the coderivative and invoking the same arguments as in the
proof of Theorem 3.2, we obtain the conclusion. �

4 Applications

In this section we try to apply the concepts and results to particular vector optimiza-
tion problems where we consider the situation that the natural ordering cone of the
range space has an empty interior.

A first application of our previous results concerns an abstract generalized equi-
librium problem given by means of a (bi)function f : X × X → Y from a Banach
space X into another Banach space Y ordered by a closed convex cone K . If T ⊂ X

is a nonempty set and f (x, x) = 0 for every x ∈ T , the problem (P ) is to find an
element x ∈ T s.t.

f (x, y) /∈ −K \ {0}, ∀y ∈ T .

In the case when intK is nonempty, one can consider the weak form (P W) of this
problem: Find an element x ∈ T s.t.

f (x, y) /∈ − intK, ∀y ∈ T .

For this latter problem there exists a large literature concerning existence conditions
for its solutions [3, Sect. 4.2 and references therein]. In contrast, for the former form
of the problem, to our knowledge, there do not exist many results. On the other hand,
in the settings of this paper, one cannot speak about the weak form. However, it
is clear that x is a solution of the weak problem if and only if 0 is a weak mini-
mum of the set f (x,T ). This observation gives us the idea of defining the concept
of (ε, e)-solution for the general problem (we kept the above notations for e and ε).
So, we shall say that x is an (ε, e)-solution of (P ) if 0 is an (ε, e)-Pareto minimum
of f (x,T ), i.e.,

f (x, y) /∈ −K − εe, ∀y ∈ T .

The next result shows how the equilibrium problem (P ) fits into our context.

Theorem 4.1 Let X,Y be Asplund spaces, let K be a closed convex pointed cone in
Y with empty interior, let T be a closed subset of X and let f : X × X → Y be a
strictly Lipschitzian function at x in the second variable. Assume ε > 0 and e ∈ K ,
‖e‖ = 1. If x is an (ε, e)-Pareto minimizer of (P ), then there exist uε ∈ B(x,

√
ε) and

y∗ ∈ SY ∗ ∩ K∗ s.t.

0 ∈ ∂M(y∗ ◦ f (x, ·))(uε) + √
εUX∗ + N∂M

(T ,uε).
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Proof Let us consider the function g : X → Y , given by g(z) = f (x, z) for every
z ∈ X. It is obvious that x is an (ε, e)-solution of (P ) if and only if x is an (ε, e)-
Pareto minimum for g over T (take into account that f (x, x) = 0). Now, it is enough
to apply Theorem 3.2 to get the conclusion. �

As a second example of studying approximate Pareto optimality under the condi-
tion when the range space of the objective does not have an ordering cone with non-
empty interior, we consider the vector control approximation problem as given in [3].
In order to formulate the control approximation problem, one needs to consider what
is known as a vector-valued norm. Consider the Banach space Z and consider K to
be a closed convex and pointed cone in a Banach space Y .

The function ||| · ||| : Z → K is called a vector-valued norm if, for all z1 and z2 in
Z and λ ∈ R, we have:

(i) |||z||| = 0 if and only if z = 0.
(ii) |||λz||| = |λ||||z|||.

(iii) |||z1 + z2||| ∈ |||z1||| + |||z2||| − K .

It is important to note that the vector norm defined above is a K-convex function.
We shall now introduce the vector control approximation problem as stated in [3]:
Consider the vector valued function f : X → Y defined by

f (x) = f1(x) +
n∑

i=1

αi |||Ai(x) − ai |||,

where X is a Banach space and Y is already given above to be a Banach space. In the
above expression f1 : X → Y is locally Lipschitz and each Ai : X → Z is a linear
map with αi ≥ 0 for all i = 1, . . . , n and ai ∈ Z for each i = 1, . . . , n. In [3], the
function f1 was considered to be a linear map between X and Y , but in general there
is no such need. The vector control approximation problem as stated in [3] is to find
the set of efficient solutions of the set f (X) with respect to the ordering cone K .
Since in our setting the ordering cone K has an empty interior, it is more convenient
to compute the set (ε, e)−Min(f (X) | K). Thus, we will now characterize the (ε, e)-
minimum points with the help of the results derived in Sect. 3. In the sequel, we
will consider a more simplified situation in which all the spaces X, Y , Z are Hilbert
spaces. Borrowing the notation of the subdifferential of a K-convex function from [3]
we mention beforehand that the subdifferential of the vector norm at a point z ∈ Z is
given as ∂≤|||z|||. Further, we denote by A∗

i the adjoint operator associated the linear
mappings Ai .

Now, we have the following necessary optimality condition.

Theorem 4.2 Consider the vector control approximation problem as given above.
Let ε > 0 and e ∈ K , ‖e‖ = 1. Assume that all the associated spaces are Hilbert
spaces and that the closed convex pointed ordering cone K has an empty interior.
Further, suppose that the function f1 is locally Lipschitz and the vector norm is also
locally Lipschitz. Let us consider x̄ ∈ X to be an (ε, e)-Pareto minimizer of f over
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X with respect to K for the vector control approximation problem. Then, there exist
x1, x2 ∈ B(x̄,

√
ε) and y∗ ∈ SY ∗ ∩ K∗ s.t.

0 ∈ ∂P (y∗ ◦ f1)(x1) +
(

n∑

i=1

αi∂(y∗(|||Ai − ai |||))(x2)

)
+ 2

√
εUX∗ . (7)

Proof First of all, for the given ε > 0, by using Theorem 3.3 we conclude that there
exist x ∈ B(x̄, 2

3

√
ε) and y∗ ∈ SY ∗ ∩ K∗ such that

0 ∈ ∂P (y∗ ◦ f )(x) + 5

3

√
εUX∗ .

Now, by applying the fuzzy sum rule, we can show that there exist x1, x2 ∈
B(x, 1

3

√
ε) such that

0 ∈ ∂P (y∗ ◦ f1)(x1) + ∂P

(
n∑

i=1

αiy
∗(|||Ai − ai |||)(x2)

)
+ 5

3

√
εUX∗ + 1

3

√
εUX∗ .

Noting that the function (
∑n

i=1 αiy
∗(|||Ai − ai |||)) is a real-valued convex function

and that

5

3

√
εUX∗ + 1

3

√
εUX∗ = 2

√
εUX∗ ,

we can write the above expression as

0 ∈ ∂P (y∗ ◦ f1)(x1) +
(

n∑

i=1

αi∂(y∗(|||Ai − ai |||))(x2)

)
+ 2

√
εUX∗,

where ∂ represents the subdifferential of a real-valued convex function. Further, it is
simple to observe that x1, x2 ∈ B(x̄,

√
ε). This completes the proof. �

Further, if the cone K has a weakly compact base, then by using a result of Valadier
(see for example Theorem 2.4.8 in [3]) the expression (7) can be reduced to

0 ∈ ∂P (y∗ ◦ f1)(x1) +
n∑

i=1

αiA
∗
i y

∗∂≤||| · |||(Ai(x2) − ai) + 2
√

εUX∗ .

Our third example refers to a mixed fractional programming problem. Let us con-
sider again two Hilbert spaces X and Y as above, let f : X → Y be a vector-valued
function and let g : X → (0,+∞) be a real-valued function with positive values. The
objective function of the fractional program that we envisage is given as h : X → Y ,

h(x) := g−1(x)f (x).

We have the next result.
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Theorem 4.3 Assume that X,Y are Hilbert spaces, K is a closed convex pointed
cone in Y with empty interior and h : X → Y , h(x) := g−1(x)f (x). Let ε > 0 and
e ∈ K , ‖e‖ = 1 and let x̄ ∈ X be an (ε, e)-Pareto minimizer of h over X with respect
to K . If the objective function h is locally Lipschitz, then there exist x1, x2 ∈ B(x,

√
ε)

and y∗ ∈ SY ∗ ∩ K∗ such that

0 ∈ ∂P (y∗ ◦ f )(x1) + ∂P (y∗ ◦ (εe − (g−1(x)f (x))g(·)))(x2) + 2
√

εUX∗ . (8)

Proof First, we observe that, if x̄ ∈ X is an (ε, e)-Pareto minimum for the function h,
then it is an (g(x)ε, e)-Pareto minimum for the function ϕ : X → Y , ϕ(x) = f (x) −
(g−1(x)f (x) − εe)g(x). Now, we can use Theorem 3.3 to obtain that there exist
x ∈ B(x̄, 2

3

√
ε) and y∗ ∈ SY ∗ ∩ K∗ such that

0 ∈ ∂P (y∗ ◦ ϕ)(x) + 5

3

√
εUX∗ .

Now, by applying the fuzzy sum rule, we can show that there exist x1, x2 ∈
B(x, 1

3

√
ε) and hence x1, x2 ∈ B(x̄,

√
ε) such that

0 ∈ ∂P (y∗ ◦ f )(x1) + ∂P (y∗ ◦ (εe − (g−1(x)f (x))g(·)))(x2) + 2
√

εUX∗

and this is the conclusion. �

Note that, if in the above theorem one has y∗(εe − g−1(x)f (x)) > 0, then the
conclusion can be written as [18, Exercise 2.10]

0 ∈ ∂P (y∗ ◦ f )(x1) + y∗(εe − g−1(x)f (x))∂P g(x2) + 2
√

εUX∗ .
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