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Abstract This paper presents a synthesis of an optimal control solution for cooper-
ative collision avoidance strategies for aircraft (ships) with unequal turn capabilities
in a close proximity coplanar encounter. The analytic expressions for the extremals
are presented and their properties are analyzed. Simple algorithms for the synthesis
of optimal control are developed. The structure of the synthesis is analyzed and its
behavior with a change in the nondimensional turn rate ratio is studied. It is shown
that Merz’s solution for identical aircraft (see Merz in Proc. Joint Automatic Control
Conf., Paper 15-3, pp. 449–454, 1973; Navigation 20(2):144–152, 1973; Tarnopol-
skaya and Fulton in J. Optim. Theory Appl. 140(2):355–375, 2009) is a degenerate
case of this more general solution. The results of this paper are useful for bench-
marking and validating automated proximity management and collision avoidance
systems.

Keywords Collision avoidance · Cooperative maneuvers · Optimal control · Mayer
problem · Pontryagin maximum principle · Unequal turn rates · Close proximity

1 Introduction

Both airborne and ground-based systems that provide aircraft proximity management
functions are currently under intensive review. Programs such as Free Flight in the
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USA and Free Route in Europe will require at least some re-design and validation of
these functions. This need is reinforced by an expected increase in the frequency of
aircraft proximity incidents that will result from the growth in demand for air travel,
and the introduction of aerial vehicle operations (without a human pilot) and person-
alized jets. Close proximity situations can occur, for example, in the missed approach,
in the circuit area, and for operations outside controlled (managed) airspace where air
traffic management (ATM) services may be unavailable and where aircraft routinely
fly in closer proximity. Such situations require dependable proximity management
at physical limits well below the more commonly understood ATM separation stan-
dards used in the present managed (controlled) airspace or those presently proposed
for Free Flight airspace. The assurance of both miss distance and available response
time during close proximity situations are important objectives [1, 2]. The maximiza-
tion of terminal miss distance [3–8] remains an important and adequate objective for
many close proximity conflict resolution situations for both aircraft and ships. Such
a performance criterion is assumed in this paper.

Over the past two decades, a considerable advance has been made in the study
of both the optimal resolution of ship conflicts [6, 7, 9] and of aircraft conflicts
[8, 10–27]. While an advance in numerical optimization techniques makes it pos-
sible to study complex scenarios involving many participants, such solutions rely on
complex computational techniques and on the correctness and convergence of calcu-
lations. It is therefore important that such results be validated against analytic or semi-
analytic solutions. Synthesis of optimal control solutions for simplified scenarios are
especially valuable as they allow the validation of an entire family of scenarios. Such
solutions are the focus of this paper.

The coplanar close proximity encounter between two aircraft (ships) was first stud-
ied by Merz [3, 4], who presented the synthesis of the optimal control for identical
aircraft (ships) in the form of 2D diagram. The Merz solution partitions the plane of
the initial relative positions of the aircraft into two half-planes. In one half-plane, the
relative distance is decreasing (converging). For the other half-plane, divergence (in-
crease in relative distance) occurs. The convergence half-plane is further partitioned
into three subplanes each corresponding to the initial conditions of a different optimal
strategy. This diagram establishes the optimal collision avoidance strategy for both
participants based on their initial relative position and orientation.

The rules by which aircraft avoid collisions are embedded in aviation law. These
rules can be found in Annex 2 of [28]. In particular, para. 3.2.2.2 for Approaching
head-on states: “When two aircraft are approaching head-on or approximately so and
there is a danger of collision, each shall alter its heading to the right.” Even a su-
perficial examination of the Merz’s solution [3–5] shows that this requirement will
provide, in a significant number of situations, suboptimal outcomes for the proximity
situation it is intended to govern. Thus, the importance of the synthesis of the op-
timal control solution for coplanar encounter first presented by Merz [3, 4] should
not be under-estimated. To date, such a solution was available only for the case of
aircraft (ships) of identical speed and turn capabilities [3–5]. The motivation behind
this paper was to extend Merz’s solution for the cases of nonidentical aircraft (ships).

This paper extends earlier analyses [3–5] to the case of aircraft with identical lin-
ear speeds but different turn capabilities. In practice, when two aircraft come into
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proximity, their speeds are rarely equal. Nevertheless, there are a significant number
of operational situations in which the aircraft linear speeds may be nearly equal. Such
a confinement can arise from aircraft with similar types of power-plants (e.g., piston,
turbo-propeller, turbo-jet, etc.) performing similar operations (climb, descent, cruis-
ing flight, etc.), or dissimilar aircraft types performing prescribed procedures (e.g.,
missed approach, instrument approaches, speed restrictions, etc.). In these cases,
speed differentials can be very small and the results of this paper will be broadly
applicable. At the same time, the maximum turn rates can be significantly different
(this is discussed in more detail in Sect. 2).

An assumption of a coplanar encounter adopted in this and earlier studies is a nat-
ural one for ship collision avoidance. For aircraft, the coplanar assumption can cover
those situations where both aircraft are maneuvering at the same constant altitude
or when they maneuver with individually small flight-path angles measured with re-
spect to a shared earth tangential plane. In this latter case the solution presented in
this paper can be applied to the projected ground tracks of the aircraft involved.

The aim of this paper is to derive a benchmark (ideal solution) against which prac-
tical solutions as well as automatic collision avoidance systems can be assessed. For
this reason, and for the purpose of this paper, we assume that perfect information
about the relative position and individual velocity vectors of the participants is avail-
able. In practice, state information is inaccurate due to measurement noise and the
overall system performance will be measured by performance metrics such as re-
quired navigation performance (RNP). The resulting system level errors will differ
considerably for each aircraft dependent on the characteristics of the type of navi-
gation system (e.g., GPS, Inertial Navigation System, etc.) fitted to the aircraft. For
example, if the proximity pair is composed of two aircraft each equipped with GPS,
the error in relative position of the participants will be negligible. If one aircraft is
equipped with a GPS and another with an INS, then a differential error can arise.
Thus, the stochastic formulation would need to be specific to the combination of nav-
igation systems used.

Existing airborne collision avoidance systems (ACAS)—e.g., TCAS II—resolve
conflict in the vertical: one aircraft is commanded to climb, the other to descend.
Limiting ACAS systems to only vertical maneuvers can over restrict a pilot’s options
to resolve the conflict and can in some circumstance lead to additional danger (e.g., in
the presence of terrain, if commanded to ascend into a layer of cloud which will form
ice, etc.). For these reasons new collision avoidance systems (e.g., TCAS IV) are
also considering lateral maneuvers. The optimal maneuver in a particular operational
circumstance may be a composite of both vertical and lateral maneuvers. This paper
forms a foundational work required for the verification and validation of the lateral
component of the maneuver.

The analysis in this paper is based on the Pontryagin maximum principle [29–31]
for a Mayer problem. The analytic solutions for the extremals are presented and their
properties are analysed. The synthesis of optimal control is constructed based on the
analysis of the properties of the extremals. The analysis shows that the structure of
the optimal control solution for aircraft (ships) with unequal turn rates is significantly
more complex than in the case of identical aircraft (ships). Thus, Merz’ solution for
identical aircraft (ships) [3–5] represents a degenerate case of this more general solu-
tion.
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In what follows, the terminology common in aviation is used. However, the analy-
sis is equally applicable to ship collision avoidance and robotics.

2 Equations of Motion

Consider two aircraft flying at the same altitude with equal linear speed but different
turn capabilities. One of the aircraft (which we will call the first aircraft for definite-
ness) is placed at the origin of the moving coordinate system in such a way that its
velocity vector coincides with the direction of the y-axis (Fig. 1). The nondimen-
sional equations of motion in the moving polar coordinate system are [3–5]

ṙ∗ = − cosφ + cos(θ − φ),

φ̇ = −σ1 + [sinφ + sin(θ − φ)]/r∗,

θ̇ = −σ1 + ωσ2, (1)

where r∗ = r/R1,min, r is the instantaneous relative position of the aircraft, φ and θ

are the instantaneous angles defining the relative orientation of the aircraft (Fig. 1);
σ1 and σ2 are the nondimensional angular speeds of aircraft σ1 = ω1/|ω1,max|, σ2 =
ω2/|ω2,max|;ω1 and ω2 are the angular speeds, with positive values correspond-
ing to the right turns (a clockwise turn in the earth tangential plane when viewed
from above), and negative values corresponding to the left turns (therefore |σ1| ≤ 1,

|σ2| ≤ 1);ω1,max and ω2,max are maximum turn rates of the first and second aircraft
respectively, while R1,min is the minimum turn radius of the first aircraft; ω is the
nondimensional parameter which represents the ratio of the absolute values of maxi-
mum turn rates ω = |ω2,max|/|ω1,max| > 0. The angle φ is known as a relative bearing
in aircraft navigation and is measured in clockwise direction from the y-axis, while
the angle θ is known as a relative heading (Fig. 1). The dots denote the derivatives
with respect to nondimensional time t∗ = t |ω1,max|. In the Cartesian coordinate sys-

Fig. 1 Schematics of the
coplanar encounter in the
moving coordinate system
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tem, the nondimensional equations of motion are

ẋ∗ = −σ1y
∗ + sin θ, ẏ∗ = −1 + σ1x

∗ + cos θ, θ̇ = −σ1 + ωσ2, (2)

where x∗ = x/R1,min, y∗ = y/R1,min, and x, y are the Cartesian coordinates of the
second aircraft relative to the first one. Note that r∗ = √

x∗2 + y∗2, sinφ = x∗/r∗,
cosφ = y∗/r∗.

For the sake of definiteness, the relative heading and relative bearing are defined
as

0 ≤ θ < 2π, −π ≤ φ < π. (3)

In what follows, we consider the nondimensional quantities only and omit the
superscript stars for simplicity.

The important subclass of the problem for aircraft (ships) of identical speed and
turn capabilities (ω = 1) was first studied by Merz [3, 4], and a rigorous analysis is
presented in [5]. This paper extends the earlier analyses to the case of aircraft with
different turn capabilities (that is, ω > 0). The turn rates for individual aircraft can
vary significantly from zero to over 90 degrees/second. Since it is assumed that the
aircraft have equal speeds, the ratio of maximum turn rates ω falls in the interval
[1/R∗,R∗], where R∗ is the ratio of minimum turn radii. The minimum turn radius
depends on: the aircraft configuration (position of the flaps and the landing gear);
limitations imposed on the angle of bank (e.g., 60 degrees is common) by the design;
and on the true airspeed at the time of banking. Broad consideration of these factors
would suggest that ω will typically fall in the interval (0.1,10).

3 Optimization Problem

In the polar coordinate system, the system of ordinary differential equations (1) can be
considered as a control system with state vector ρT = (r,φ, θ) and control function
uT = (σ1, σ2), u : [0, T ] → U,U ⊆ R2, U = [−1,1] × [−1,1],

ρ̇ = fp(ρ,u)

= [− cosφ + cos(θ − φ), −σ1 + [sinφ + sin(θ − φ)]/r, −σ1 + ωσ2
]T

,

ρ|t=0 = ρ0. (4)

In Cartesian coordinates, the state vector is XT = (x, y, θ) and (2) can be written
as

Ẋ = f (X,u) = [−σ1y + sin θ, −1 + σ1x + cos θ, −σ1 + ωσ2
]T

,

X|t=0 = X0. (5)

The time of the maneuver T (also known as a terminal time) is defined as the time
of closest approach between the two aircraft. It is defined by the conditions

ṙ(T ) = 0, ṙ(t) < 0, t ∈ [0, T ). (6)
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The objective is to maximize the terminal miss distance ψ(T ,u) over all admissible
controls

max
u∈U

[ψ(T ,u)]. (7)

Thus, the performance index is a function of terminal time only. As the terminal time
T is unknown, the problem can be considered as a Mayer problem with free terminal
point [29–31]. In polar coordinates, the performance index is given by ψ(ρ(T ,u)) =
r|t=T ≡ rT , while in Cartesian coordinates it is ψ(X(T ,u)) = √

x2|t=T + y2|t=T .

4 Necessary Conditions for Nonsingular Optimal Control

We define the Hamiltonian function in the polar coordinate system as follows:

H(λ(t), ρ(t), u(t)) = λT
P · fp(ρ,u)

= λr(t)ṙ(t, u) + λφ(t)φ̇(t, u) + λθ (t)θ̇ (t, u)

= λr [− cosφ + cos(θ − φ)]
+ λφ{−σ1 + [sinφ + sin(θ − φ)]/r}
+ λθ (−σ1 + ωσ2), (8)

where the adjoint variables λT
P (t) ≡ (λr(t), λφ(t), λθ (t)) satisfy the equations

λ̇P = −∇H =
[

λφ[sinφ + sin(θ − φ)]/r2

−λr(sinφ + sin(θ − φ)) − λφ[cosφ − cos(θ − φ)]/r

λr sin(θ − φ) + λφ cos(θ − φ)/r

]

,

λP (T ) = ∇ψ(ρ(T )) = [1,0,0]T . (9)

The transversality condition is given by

ψ̇ |t=T ≡ ∂ψ

∂t

∣∣∣∣
t=T

+ ∇ψ · ρ̇|t=T = ṙ|t=T = 0.

The Pontryagin maximum principle [29–31] states that, in order that û(t) and ρ̂(t)

be the optimal control and the optimal trajectory respectively for the Mayer problem
with a free terminal point (4), (7), it is necessary that there exist a nonzero continuous
vector function λP (t) that satisfies (9) so that, for every t ∈ [0, T ], the following
maximality condition holds:

H(λP (t), ρ̂(t), û(t)) = max
u∈U

{H(λP (t), ρ̂(t), u)}. (10)

4.1 Terminal Conditions

Consider now the first of terminal conditions (6) together with the first of (4), which
give

ṙ(T ) = cos(θT − φT ) − cosφT = 2 sin(θT /2) sin(φT − θT /2) = 0. (11)
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Equation (11) yields two possible terminal conditions: (1) θT /2 = πn, n = 0,±1,

±2, . . . ; (2) φT − θT /2 = πk, k = 0,±1,±2. Within the domain defined by condi-
tions (3), these conditions reduce to

θT = 0, (12)

φT = θT /2 − π, φT = θT /2. (13)

4.2 Necessary Conditions for Optimal Control in the Vicinity of Terminal Time

The maximality condition (10) can be rewritten in the form

H(λP (t), ρ̂(t), û(t)) = max
σ1∈[−1,1]

[σ1(−λφ − λθ )] + max
σ2∈[−1,1]

(σ2ωλθ )

+ λr [− cosφ + cos(θ − φ)]
+ λφ{[sinφ + sin(θ − φ)]/r}. (14)

The two switching functions are given by �
(p)

1 = λφ + λθ , �
(p)

2 = ωλθ . In this sec-

tion, we consider the case �
(p)

1 	= 0, �
(p)

2 	= 0. The possibility of singular arcs will
be considered in Sect. 5.6.

It can be shown [5] that the terminal condition (12) together with (9) yields σ1 =
−σ2 = ±1, that is, the aircraft are turning with maximum angular speed in opposite
directions. We will call these strategies right-left (RL) and left-right (LR) strategies.
The terminal condition (13) and (9) result in σ1 = σ2 = ±1, therefore both aircraft
are turning with the maximum angular speed in the same directional sense. Such
strategies will be called right-right (RR) and left-left (LL) strategies.

4.3 Extremals

In this section, the state equations (5) in terms of backward derivatives,

x̊ = σ1y − sin θ, ẙ = 1 − σ1x − cos θ, θ̊ = σ1 − ωσ2 (15)

are solved subject to the boundary conditions x|τ=0 = xT , y|τ=0 = yT , and one of the
two terminal conditions (12), (13). Below, we consider the terminal conditions (12)
and (13) separately.

Case I θ |T = 0, σ1 = −σ2 = ±1. This case corresponds to the RL and LR strate-
gies. In this case, the solution of (15) is given by (taking into account the periodicity
property of the angle θ , that is θ + 2πk = θ , k = 0,±1,±2, . . .)

θ =
{

σ1(1 + ω)τ, σ1 = 1,
2π + σ1(1 + ω)τ, σ1 = −1,

x = rT sin(φT + σ1τ) + σ1[1 + cos[(1 + ω)τ ]/ω − (1 + ω) cos τ/ω],
y = rT cos(φT + σ1τ) + (1 + ω) sin τ/ω − sin[(1 + ω)τ ]/ω. (16)
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For τ = T , (16) give the initial conditions for the state variables

θ0 =
{

σ1(1 + ω)T , σ1 = 1,
2π + σ1(1 + ω)T , σ1 = −1,

x0 = rT sin(φT + σ1T ) + σ1{1 + cos[(1 + ω)T ]/ω − (1 + ω) cosT/ω},
y0 = rT cos(φT + σ1T ) + (1 + ω) sinT/ω − sin[(1 + ω)T ]/ω. (17)

Equations (17) can be rewritten in the following form:

For σ1 = 1:
{
x0 − 1 − cos θ0/ω + (1 + ω) cos[θ0/(1 + ω)]/ω}2

+ {
y0 − (1 + ω) sin[θ0/(1 + ω)]/ω + sin θ0/ω

}2 = r2
T . (18)

For σ1 = −1:
{
x0 + 1 + cos θ0/ω − (1 + ω) cos[(θ0 − 2π)/(1 + ω)]/ω}2

+ {
y0 + (1 + ω) sin[(θ0 − 2π)/(1 + ω)]/ω − sin θ0/ω

}2 = r2
T .

(19)

Case II θT = 2φT + 2π or θT = 2φT ; σ1 = σ2 = ±1. This case corresponds to the
RR and LL strategies. In this case, the solution of (15) takes the form

θ = σ1(1 − ω)τ + θT ,

y = rT cos(φT + σ1τ) + sin τ

−σ1{sin(θT + σ1τ) − sin[θT + σ1(1 − ω)τ ]}/ω,

x = rT sin(φT + σ1τ) + σ1 cos(θT + σ1τ)/ω

+σ1(1 − cos τ) − σ1 cos[θT + σ1(1 − ω)τ ]/ω. (20)

For τ = T , we have θ0 = σ1(1 − ω)T + θT , and the two branches of the initial con-
ditions for the state variables are given by

x0 = rT sin[(θ0 + σ1ωT + σ1T )/2]
+σ1[cos(θ0 + σ1ωT ) − cos θ0]/ω + σ1(1 − cosT ),

y0 = rT cos[(θ0 + σ1ωT + σ1T )/2] + sinT

−σ1 sin(θ0 + σ1ωT )/ω + σ1 sin θ0/ω, (21)

for φT = θT /2, and

x0 = − rT sin[(θ0 + σ1ωT + σ1T )/2]
+σ1[cos(θ0 + σ1ωT ) − cos θ0]/ω + σ1(1 − cosT ),

y0 = − rT cos[(θ0 + σ1ωT + σ1T )/2] + sinT

−σ1 sin(θ0 + σ1ωT )/ω + σ1 sin θ0/ω, (22)

for φT = θT /2 − π .
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Equations (21)–(22) can be also written in the following form:

[x0 − σ1(1 − cos θ0/ω)]2 + (y0 − σ1 sin θ0/ω)2

= r2
T + 2 − 2 cos[θ0 − σ1(1 − ω)T ]/ω
− 2rT σ1(1 + 1/ω) sin[(θ0 − σ1(1 − ω)T )/2], (23)

for φT = θT /2, and

[x0 − σ1(1 − cos θ0/ω)]2 + (y0 − σ1 sin θ0/ω)2

= r2
T + 2 − 2 cos[θ0 − σ1(1 − ω)T ]/ω
+ 2rT σ1(1 + 1/ω) sin[(θ0 − σ1(1 − ω)T )/2], (24)

for φT = θT /2 − π .

5 Optimal Air Collision Avoidance Strategy

This section presents a justification for the optimal collision avoidance strategies and
for the construction of the synthesis of optimal control. We start by establishing sev-
eral properties of the extremals that will be useful for subsequent analysis.

5.1 Properties of Extremals

Property 5.1 The loci of the initial conditions for the RL and LR strategies represent
circles. The centers of the loci of initial conditions for the RL strategy (18) lie on the
line that goes through the origin and forms the angle η1 with the vertical axis so that

tanη1 = {
ω + cos θ0 − (ω + 1) cos[θ0/(1 + ω)]}

/
{
(ω + 1) sin[θ0/(1 + ω)] − sin θ0

}
, (25)

while the centers of the loci of initial conditions for the LR strategy (19) lie on the
line that goes through the origin and forms the angle η2 with the vertical axis,

tanη2 = {−ω − cos θ0 + (ω + 1) cos[(θ0 − 2π)/(1 + ω)]}

/
{−(ω + 1) sin[(θ0 − 2π)/(1 + ω)] + sin θ0

}
. (26)

For ω = 1 (Merz’ solution for identical aircraft [3–5]), the centers of these loci lie on
the same line that goes through the origin and forms the angle η = θ0/2 − π/2 with
the vertical axis.

Proof This follows immediately from (18) and (19). �

Property 5.2 The following properties hold for the loci of the initial positions for the
RL and LR strategies for a given rT :
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(1) The radial coordinates of the centers of loci of the LR strategies are larger than
the radial coordinates of the centers of loci of the RL strategies for 0 < θ0 < π ,
and smaller for π < θ0 < 2π .

(2) For θ0 = π , the loci of the initial positions for the RL and LR strategies are
symmetric about the y-axis, and their radial coordinates coincide.

Proof Indeed, for θ0 = π , we have xc
RL = −xc

LR = 1 − 1/ω − (1 + ω) cos[π/(1 +
ω)]/ω; yc

RL = yc
LR = (1 + ω) sin[π/(1 + ω)]/ω, and therefore the loci are sym-

metric relative to y-axis and Rc
RL = Rc

LR. For the general case 0 ≤ θ0 ≤ 2π , it is
straightforward to show that Rc2

RL − Rc2
LR = A{sin[θ0(1 + ω) − π/(1 + ω)] − sin[θ0 −

θ0(1 + ω) + π/(1 + ω)]/ω}, where A = 4(1 + ω) sin[π/(1 + ω)]/ω > 0. By taking
θ0 = π +ε, where ε is small, and expanding in small parameter ε yields Rc2

RL −Rc2
LR ≈

2Aε/(1 + ω), and therefore Rc
RL > Rc

LR for ε > 0 (θ0 > π) and Rc
RL < Rc

LR for
ε < 0 (θ0 < π). These results hold for any ε, as the function Rc2

RL −Rc2
LR is monotonic.

Indeed, it is straightforward to show that ∂(Rc2
RL − Rc2

LR)/∂θ0 = 2A sin(θ0/2) sin[θ0 −
θ0/(1 + ω) + π/(1 + ω)]/(1 + ω) ≥ 0 for ∀ω > 0, 0 ≤ θ0 ≤ 2π . �

Property 5.3 The loci of the initial conditions for the RR and LL strategies, (21),
(22) (or (23), (24)) for a given θ0 and rT and varying time of encounter, T , represent
spirals with the centers at (σ1(1 − cos θ0/ω),σ1 sin θ0/ω). The following properties
hold:

(1) For ω = 1 (Merz’ solution for identical aircraft [3–5]), the spirals turn into cir-
cles with centers lying on the line passing through the origin and forming the
angle θ0/2 with the vertical axis (counting clockwise from positive direction of
y-axis).

(2) For ω > 1, the spirals are bounded and contained between two concentric circles;
As ω → ∞, the coordinates of the centers of spirals approach the points (σ1,0),
while the radii of the concentric circles bounding the spirals approach the values
Rsmall = r2

T + 2 − 2rT ; Rlarge = r2
T + 2 + 2rT .

(3) For ω < 1, both the centers and the radii of the RR and LL spirals are unbounded
and expanding as ω → 0.

Proof The proof follows immediately from (23), (24). �

The behavior of the spirals with a change in ω is illustrated in Fig. 2.

5.2 Optimal Trajectories

In order to select the optimal trajectories from the set of extremals, one should:

(1) select the trajectories such that the relative distance between the aircraft (called
a range in aviation) decreases on t ∈ [0, T ];

(2) among such trajectories, select those that maximize the terminal miss distance.

Firstly, consider the trajectories along which the relative distance (range) decreases,
that is ṙ = 2 sin(θ/2) sin(φ − θ/2) < 0, t ∈ [0, T ). This inequality yields, for the rela-
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Fig. 2 Transformation of the loci of initial conditions for LL strategies with change in ω; θ0 = 2π/3,
rT = 3; Loci corresponding to branches φT = θT /2 and φT = θT /2 −π are shown with solid and dashed
lines respectively; (a) ω = 1; (b) ω = 10; (c) ω = 0.4; (d) ω = 0.1

tive bearing defined by (3): θ/2 − π < φ < θ/2, t ∈ [0, T ). For t = 0, this inequality
reduces to

θ0/2 − π < φ0 < θ0/2. (27)
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Thus, the straight line

tanφ = tan(θ0/2) (28)

divides the plane of the initial relative positions of the aircraft into the two subplanes
of initial relative positions for the trajectories with positive and negative initial range
rate. We will call this line an initial zero range rate line.

The trajectories that start on the loci of the initial conditions for the RR or LL
strategies (21), (22) end, for a given θ0 and T , on the line

tanφ|t=T = tan{[θ0 − σ1(1 − ω)T ]/2}. (29)

We call this line a terminal zero range rate line. The following Properties follow
immediately from (29):

Property 5.4 The initial and the terminal zero range rate lines for RR and LL strate-
gies coincide for two cases:

(1) ω = 1;
(2) in the limit T → 0.

Property 5.5 For ω > 1, the terminal zero range rate line moves anticlockwise rel-
ative to the initial zero range rate line with increase in the encounter time T for
σ1 = −1 and clockwise for σ1 = 1. For ω < 1, the terminal zero range rate line
moves anticlockwise relative to the initial zero range rate line with increase in the
encounter time T for σ1 = 1 and clockwise for σ1 = −1 (see Fig. 3).

We now consider the part of the loci of initial conditions with T ∈ [0, T ∗], where
the time of encounter T is relatively small for close proximity situations. It is useful
to note that the loci of initial conditions for the RR and LL strategies (23), (24) can
be separated into the two families: the loci with larger and smaller radii. Thus, the
loci (23) with σ1 = −1 and the loci (24) with σ1 = 1 belong to the family of loci with
larger radii. Numerical analysis shows that the loci with smaller radii correspond to
suboptimal strategies. Three situations are possible for such loci:

(1) The point on the loci does not satisfy (27).
(2) The point on the loci satisfies (27), but condition ṙ < 0 on t ∈ [0, T ) is not satis-

fied.
(3) Conditions (27) and ṙ < 0 on t ∈ [0, T ) are satisfied, but the point does not belong

to the internal envelope discussed further in this section.

In what follows, we consider only the family of the RR and LL loci with larger radii.
The properties of such loci can be summarized as follows.

Property 5.6 For loci of initial relative positions for the RR strategy (24) and the
LL strategy (23), the direction of motion of the trajectories that start on such loci is
clockwise toward φT = θT /2 for strategy σ1 = −1 and is anticlockwise toward φT =
θT /2 − π for σ1 = 1. For such trajectories, there exists an interval T ∈ [0, ε], ε > 0,
such that the corresponding trajectories have decreasing relative distance (range).
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The trajectories with decreasing range are illustrated in Fig. 3 for the RR, LL and
RL strategies. The instantaneous zero range rate line continuously changes for all
optimal strategies. For given θ0 and T , the RR and LL trajectories end on the corre-
sponding terminal zero range rate line (see Figs. 3a and 3b). For the RL strategies,
θ decreases towards zero along the trajectory and the trajectories end on the circle
centered at the origin with the radius r = rT , as illustrated in Fig. 3c.

We now consider, for given rT and θ0, the loci of the initial relative posi-
tions with associated strategies that deliver a given terminal miss-distance and en-
sure a decreasing range (relative distance) during the maneuver and denote it by
R(rT , θ0,ω) ≡ {x0, y0, u : r|t=T = rT , θ |t=0 = θ0}. We also define the internal en-
velope �(rT , θ0,ω) of the relative positions with associated strategies R(rT , θ0,ω)

as

�(rT , θ0,ω) ≡
{
(x∗

0 , y∗
0 , u) : (x∗

0 , y∗
0 , u) ∈ R(rT , θ0,ω)

for ∀φ, rφ(x∗
0 , y∗

0 ) = min
(x0,y0)∈R(rT ,θ0,ω)

rφ(x0, y0)
}
.

Consider the loci of initial positions for the trajectories with decreasing range de-
fined above. Denote the point of intersection of the RR loci (24) and the LL loci
(23) in polar coordinates by r(0)(rT , θ0) = (r(0)(rT , θ0),φ

(0)(rT , θ0)). Also denote
the point of intersection of the RR loci (24) and RL (LR) loci by r(1)(rT , θ0) =
(r(1)(rT , θ0),φ

(1)(rT , θ0)). The point of intersection of the LL loci (23) and the RL
(LR) loci is denoted by r(2)(rT , θ0) = (r(2)(rT , θ0),φ

(2)(rT , θ0)). It follows from
Property 5.2 that only the RL loci (18), for 0 < θ0 < π , and only the LR loci (19),
for π < θ0 < 2π , can belong to the internal envelope. Thus, the internal envelope
�(rT , θ0,ω) is given by:

�(rT , θ0,ω)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

if r(0) ≤ r(1), arc of RR loci (24) for θ0/2 − π < φ < φ(0),
arc of LL loci (23) for φ(0) < φ < θ0/2,

if r(0) > r(1), arc of RR loci (24) for θ0/2 − π < φ < φ(1),
arc of RL loci (18) for φ(1) < φ < φ(2),0 < θ0 < π ,
arc of LR loci (19) for φ(1) < φ < φ(2), π < θ0 < 2π ,
arc of LL loci (23) for φ(2) < φ < θ0/2.

(30)

We can now prove the following result.

Lemma 5.1 For each point (x0, y0) on the loci of relative positions with associated
strategies R(rT , θ0,ω) that lies outside the internal envelope �(rT , θ0,ω), there ex-
ists an alternative strategy that delivers a terminal miss distance larger than rT .

Proof This follows from the fact that the radii of the RR, LL and RL loci are contin-
uous increasing functions of rT , while the coordinates of the centers of these loci are
independent of rT and fixed for a given θ0. �

Corollary 5.1 The strategies associated with the points on the loci �(rT , θ0,ω) are
the optimal strategies for given initial relative positions, rT , θ0 and ω.
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Fig. 3 Loci of the initial relative positions and trajectories for θ0 = 2π/3. Figures 3a and 3b show such
loci and trajectories for RR and LL strategies for ω = 2 and ω = 0.5 respectively and rT = 3; the tra-
jectories (1) and (2) correspond to RR and LL strategies respectively; loci of the initial positions and the
terminal zero range rate lines for LL and RR strategies are shown with dashed and dashed-dotted lines
respectively. Dots on the terminal zero range rate lines show the terminal positions rT = 3; (a) the en-
counter time for trajectories (1) and (2) is T = π/5 in Fig. 3a and T = π/3 in Fig. 3b; (c) the loci of
the initial relative positions (circle shown with bold solid line) and trajectories (fine solid lines) for RL
strategy with ω = 1.3, rT = 1. The circle of terminal relative positions is shown with dotted line. The val-
ues of the terminal relative bearing for RL trajectories are: 1: φT = −π ; 2: φT = −π/2; 3: φT = −π/3;
4: φT = −π/8; 5: φT = π/30; 6: φT = −12π/11. The initial positions for the 1st and 5th trajectories
bound the loci of the initial positions for the trajectories with decreasing relative distance, while trajectory
6 starts outside such loci
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We can now define the loci of the initial relative positions �LL(θ0,ω), �RR(θ0,ω),
�RL(θ0,ω) and �LR(θ0,ω) for LL, RR, RL and LR optimal strategies respectively as
follows:

�LL(θ0,ω) ≡
{
(x0, y0, u) : (x0, y0) ∈

⋃

rT

�(rT , θ0,ω),uT = (−1,−1)

}
,

�RR(θ0,ω) ≡
{
(x0, y0, u) : (x0, y0) ∈

⋃

r
T

�(rT , θ0,ω),uT = (1,1)

}
,

�RL(θ0,ω) ≡
{
(x0, y0, u) : (x0, y0) ∈

⋃

rT

�(rT , θ0,ω),uT = (1,−1)

}
,

�LR(θ0,ω) ≡
{
(x0, y0, u) : (x0, y0) ∈

⋃

rT

�(rT , θ0,ω),uT = (−1,1)

}
.

5.3 Triple Point and Its Properties

A triple point is defined as a point on the plane of the initial relative positions of
aircraft such that the three optimal strategies result in the same terminal miss distance.
To find a triple point for 0 < θ0 < π , one needs to find a point of intersection of the
branch of the loci of initial position for the LL strategy (23), the branch of the loci
of initial positions for RR strategy (24) and the loci of initial positions of the RL
strategy (18). Thus, one needs to satisfy the conditions

xLL(T
tp
1 )|φT =θT /2 = xRR(T

tp
2 )|φT =θT /2−π ,

yLL(T
tp
1 )|φT =θT /2 = yRR(T

tp
2 )|φT =θT /2−π ,

xLL(T
tp
1 )|φT =θT /2 = xRL(r

tp
T ,φ

tp
T ),

yLL(T T P
1 )|φT =θT /2 = yRL(r

tp
T ,φ

tp
T ) (31)

where T
tp
1 and T

tp
2 are the times of the encounter for the LL and RR strategies at the

triple point respectively, r
tp
T and φ

tp
T are the terminal miss distance and the terminal

relative bearing at the triple point. Conditions (31) can be written as a system of four
trigonometric equations,

r
tp
T

[
sin((θ0 − ωT

tp
1 − T

tp
1 )/2) + sin((θ0 + ωT

tp
2 + T

tp
2 )/2)

]

+ 2 cos θ0/ω − 2 − [
cos(θ0 − ωT

tp
1 ) + cos(θ0 + ωT

tp
2 )

]
/ω

+ cosT
tp
1 + cosT

tp
2 = 0, (32)

r
tp
T

[
cos((θ0 − ωT

tp
1 − T

tp
1 )/2) + cos((θ0 + ωT

tp
2 + T

tp
2 )/2)

]

− 2 sin θ0/ω + [
sin(θ0 − ωT

tp
1 ) + sin(θ0 + ωT

tp
2 )

]
/ω

+ sinT
tp
1 − sinT

tp
2 = 0, (33)
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r
tp
T

[
sin((θ0 − ωT

tp
1 − T

tp
1 )/2) − sin(φ

tp
f + θ0/(1 + ω))

]

− cos(θ0 − ωT
tp
1 )/ω + (ω + 1) cos(θ0/(1 + ω))/ω

− 2 + cosT
tp
1 = 0, (34)

r
tp
T

[
cos((θ0 − ωT

tp
1 − T

tp
1 )/2) − cos(φtp

f + θ0/(1 + ω))
]

+ sin(θ0 − ωT
tp
1 )/ω − (ω + 1) sin

[
θ0/(1 + ω)

]
/ω

− 2 + sinT
tp
1 = 0, (35)

with the unknowns (T
tp

1 , T
tp
2 , r

tp
T ,φ

tp
T ). The initial guesses for the unknowns can be

obtained from the solution for the triple point for identical aircraft (ω = 1). In this
case, T1 = T2. Simple geometric considerations yield

T1 = T2 = arccos
{
2 sin(θ0/2)/[rT + 2 sin(θ0/2)]}. (36)

Also, for ω = 1 [5],

φT = −π/2, r
tp
T = (1 − cos(θ0/2))2

sin(θ0/2) + cos(θ0/2) − 1
. (37)

The polar coordinates (r tp, φtp) of the triple point are shown in Fig. 4 as functions
of ω for different values of θ0. One can see that the radial coordinate r of the triple

Fig. 4 Polar coordinates r (see (a)) and φ (see (b)) of a triple point as functions of ω for different θ0
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point decreases with increase in ω and asymptotically approaches zero, while the
angular coordinate φ asymptotically approaches a constant value with increase in ω.
Also, the radial coordinate increases as θ0 approaches the value π .

5.4 Dispersal Curves

For a given θ0 and rT , consider the point on the plane of the initial relative positions
(x0, y0) that serves as the initial condition for two different optimal strategies that re-
sult in the same terminal miss distance. Such point is called a dispersal point. A loci
of the dispersal points is called a dispersal curve. Note that the dispersal curves also
represent the switching curves, as crossing them would result in switching to differ-
ent optimal strategy. Firstly, we consider the case θ0 = π and prove the following
property.

Property 5.7 For θ0 = π , the RR-LL dispersal curve coincides with the y-axis.

Proof It is straightforward to show that, for θ0 = π , the loci of initial conditions for
the LL strategies, (23), and the loci of initial conditions for the RR strategies, (24),
are symmetric relative to the y-axis and intersect at x = 0. It follows from (23) and
(24) that, for a given T ,

yLL(T )|φT =θT /2 = yRR(T )|φT =θT /2−π

= rT sin((ωT + T )/2) + sinT + [sin(ωT )]/ω, (38)

xLL(T )|φT =θT /2 = −xRR(T )|φT =θT /2−π

= rT cos((ωT + T )/2) + [cos(ωT ) − 1]/ω − (1 − cosT ). (39)

Therefore, these branches of loci are symmetric relative to the y-axis. Equation (39)
shows that for any rT the condition xLL(T )|φT =θT /2 = xRR(T )|φT =θT /2−π can only
be satisfied if rT cos((ωT + T )/2)+ [cos(ωT )− 1]/ω − (1 − cosT ) = 0. Therefore,
the x-coordinate of the intersection is xLL(T )|φT =θT /2 = xRR(T )|φT =θT /2−π = 0 and
the RR-LL dispersal curve coincides with the y-axis. �

We now consider the RR-LL dispersal curves for any value of θ0. To find the RR-
LL dispersal point, one needs to find a point of intersection of the loci of initial posi-
tion for the LL strategy (23) and of the loci of initial positions for the RR strategy (24).
Thus, for a given rT , one needs to find the times of the encounter T1 and T2 for the LL
and RR strategies so that xLL(T1)|φT =θT /2 = xRR(T2)|φT =θT /2−π , yLL(T1)|φT =θT /2 =
yRR(T2)|φT =θT /2−π . These conditions can be written as two trigonometric equations,

rT
[
sin((θ0 − ωT1 − T1)/2) + sin((θ0 + ωT2 + T2)/2)

]

− [
cos(θ0 − ωT1) + cos(θ0 + ωT2)

]
/ω

+ 2 cos θ0/ω − 2 + cosT1 + cosT2 = 0, (40)

rT
[
cos((θ0 − ωT1 − T1)/2) + cos((θ0 + ωT2 + T2)/2)

]

+ [
sin(θ0 − ωT1) + sin(θ0 + ωT2)

]
/ω

− 2 sin θ0/ω − 2 + sinT1 − sinT2 = 0. (41)
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with unknowns (T1, T2). The initial guesses for T1 and T2 can be obtained from
the solution for identical aircraft (36). To construct a dispersal curve, one needs to
solve (40) and (41) incrementally for the value of rT between 0 and r

tp
T .

Figure 5a shows the RR-LL dispersal curves for θ0 = 2π/3 and for several values
of ω. The dispersal curves are plotted for the values of terminal miss distance between
zero and the terminal miss distance at the triple point. The RR-LL dispersal curve for
the case of identical aircraft is also shown for comparison with dotted line. One can
see that the further the value of ω from unity (both smaller and larger than the unity),
the larger the curvature of the dispersal curve. Also, with an increase in ω (ω > 1),
the dispersal curves move anticlockwise relative to the dispersal curve for identical
aircraft, while with a decrease in ω (ω < 1) the dispersal curves move clockwise with
respect to the dispersal curve for identical aircraft.

Consider now the RL-LL and RL-RR dispersal curves. To find the RL-LL dis-
persal point, one needs to find a point of intersection of the loci of initial positions
for the LL strategy (23) and the loci of initial positions for the RL strategy, that is
xLL(T1)|φT =θT /2 = xRL(rT ,φT ), yLL(T1)|φT =θT /2 = yRL(rT ,φT ). These conditions
can be written as two trigonometric equations,

rT
[
sin((θ0 − ωT1 − T )/2) − sin(φT + θ0/(1 + ω))

] − cos(θ0 − ωT1)/ω

+ (1 + ω) cos[θ0/(1 + ω)]/ω − 2 + cosT1 = 0, (42)

rT
[
cos((θ0 − ωT1 − T1)/2) − cos(φT + θ0/(1 + ω))

] + sin(θ0 − ωT1)/ω

− (1 + ω) sin[θ0/(1 + ω)]/ω + sinT1 = 0, (43)

with the unknowns (T1, φT ).
The RL-RR dispersal curve can be found in a similar way by solving two trigono-

metric equations,

−rT
[
sin((θ0 + ωT2 + T2)/2) + sin(φT + θ0/(1 + ω))

] + cos(θ0 + ωT2)/ω

+ (1 + ω) cos[θ0/(1 + ω)]/ω − 2 cos(θ0)/ω − cosT2 = 0, (44)

−rT
[
cos((θ0 + ωT2 + T2)/2) + cos(φT + θ0/(1 + ω))

] − sin(θ0 + ωT2)/ω

− (1 + ω) sin[θ0/(1 + ω)]/ω + 2 sin(θ0)/ω + sinT2 = 0, (45)

with the unknowns (T2, φT ). The initial guesses for the unknowns (T1, φT ) and
(T2, φT ) can be found from the solution for the triple point for a given θ0 and ω.
To calculate the dispersal curves, (42) and (43) for RL-LL dispersal curve and (44)
and (45) for RL-RR dispersal curve need to be solved incrementally for rT starting
with the value of terminal miss distance at the triple point r

tp
T .

Figures 5b and 5c show the partitioning of the plane of the initial relative positions
of the aircraft into the regions of initial positions for different optimal strategies for
θ0 = 2π/3 and for the values of ω smaller than, and larger than, unity respectively.
The partition for the case of identical aircraft is also shown in both figures for com-
parison with solid lines. Rather interestingly, while the triple point and the RR-LL
dispersal curves change with the change in ω, the corresponding RR-RL and LL-RL
dispersal curves remain nearly parallel with a change in ω.
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Fig. 5 Synthesis of optimal control diagrams for θ0 = 5π/6 and different ω; (a) RR-LL dispersal curves
for rT ∈ [0, r

tp
T

]; 1: ω = 0.1; 2: ω = 0.5; 3: ω = 2; 4: ω = 4; 5: ω = 15; the dispersal curves for ω = 1
are shown with dotted lines; Figs. 5b and 5c show the partition of the plane of initial positions into the
subregions of initial positions for different optimal strategies for different ω; (b) 1: ω = 1; 2: ω = 0.5;
3: ω = 0.1; (c) 1: ω = 1; 2: ω = 2; 3: ω = 4; 4: ω = 15
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5.5 Properties of the Loci of Initial Positions for Different Optimal Strategies

For ω = 1, the relative heading remains constant along the trajectories started on the
loci �LL(θ0) and �RR(θ0), so these loci do not change along the optimal path. How-
ever, for the general case ω 	= 1, the relative heading changes along the optimal trajec-
tories and the loci �LL,�RR become time-dependent, �LL = �LL(θ0(t),ω),�RR =
�RR(θ0(t),ω). The relative heading also changes along the optimal RL and LR tra-
jectories so that �RL = �RL(θ(t),ω),�LR = �LR(θ(t),ω).

It follows from the Properties 5.5 and 5.6 that, for the optimal trajectories started
on the loci �LL(θ0,ω) or �RR(θ0,ω), a point on the trajectory will move towards
the instantaneous zero range rate line. The instantaneous zero range rate line can
move either towards this point or away from it for ω > 1 and ω < 1 respectively. In
the former case, the rate of decrease of the relative distance of the trajectory point
to the instantaneous zero range rate line is larger than the rate of change of the in-
stantaneous zero range rate line. In the latter case, the rate of change of the distance
of the point on the trajectory is larger than the rate of change of the instantaneous
zero range rate line. Thus, the optimal trajectories started on the loci �LL(θ0,ω) and
�RR(θ0,ω) stay within the loci where they started. For the optimal trajectories started
on the loci �LR(θ0(t0),ω) or �RL(θ0(t0),ω), the relative heading decreases towards
zero along the optimal path. Thus, as the time approaches the terminal time, the loci
�LR(θ(t),ω) or �RL(θ(t),ω) expand and approach the half-plane described by con-
dition (27). It can be shown that the optimal trajectory will stay within the expand-
ing loci �LR(θ(t),ω) or �RL(θ(t),ω), if it started within the loci �LR(θ0(t0),ω) or
�RL(θ0(t0),ω).

Thus, the optimal trajectory will never leave the loci of relative positions corre-
sponding to a given optimal strategy. As a result, switching between the nonsingular
controls is not optimal for the trajectory that starts within the loci of initial relative po-
sitions �LL(θ0,ω),�RR(θ0,ω),�RL(θ0,ω) or �LR(θ0,ω) and has a control strategy
associated with the loci where it starts.

5.6 Singular Arcs

The results in the previous sections have been obtained assuming nonsingular con-
trols. This section investigates the existence of singular arcs and the optimality of the
corresponding trajectories.

We now consider the Hamiltonian in the Cartesian coordinate system. The switch
functions are given by �

(c)
1 = −λxy + λyx − λθ ,�

(c)
2 = ωλθ .

Lemma 5.2 The only possible singular arcs are those with the control function equal
to zero (that is, one of aircraft flies a straight path).

Proof The proof is identical to that in [5], as the switch functions and the adjoint
variables are similar (apart from the positive factor ω) for the case of identical aircraft
and the case of aircraft with different turn rate. �

Lemma 5.3 The strategies that include zero control functions are suboptimal.
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Proof The proof is similar to that in [5], however is significantly more cumbersome.
The outline is as follows. Consider a zero control trajectory that starts on the loci of
the initial conditions for the optimal nonsingular strategy for a given rT and θ0, and
calculate a point on the trajectory after the time interval �t (selected so that ω�t

is small). It can be shown, by taking expansions in small ω�t , that after the time
interval �t the point on the zero control trajectory represents the initial relative po-
sition for the optimal nonsingular trajectory with the terminal miss distance smaller
than rT . Therefore zero control trajectory would result in smaller terminal miss dis-
tance compared with the optimal nonsingular trajectory starting at the same initial
relative positions, and switching to the zero control strategy is suboptimal. �

5.7 Algorithms for Optimal Collision Avoidance Strategies

Analytic solutions for the extremals and the loci of the initial conditions developed
in this paper, together with the analysis of the properties of the solutions, make the
construction of the synthesis of optimal control a relatively simple task. To find the
optimal cooperative collision avoidance strategy for a given θ0 and ω, the plane of
the initial relative positions (Fig. 1) needs to be partitioned into the two half-planes
of diverging and converging relative distance. The half-plane of converging relative
distances needs to be further partitioned into three subregions of initial relative po-
sitions for different optimal collision avoidance strategies, as shown in Figs. 5b, 5c.
For 0 < θ0 < π , the three possible optimal strategies are LL, RR and RL strategies;
while for π < θ0 < 2π , the possible optimal strategies are LL, RR and LR strate-
gies. To construct the synthesis of optimal control diagram, one needs to perform the
following steps:

• identify the initial zero range rate line that partitions the plane of the initial relative
position into half-planes of diverging and converging relative distance, using (28);

• calculate the triple point r
tp
T (the algorithm for its determination is presented in

Sect. 5.3);
• construct the LL-RR dispersal curve for rT ∈ [0, r

tp
T ] (the algorithm is presented in

Sect. 5.4);
• construct the dispersal curves for rT > r

tp
T . For 0 < θ0 < π , one needs to construct

the RL-RR and LL-RL curves, while for π < θ0 < 2π the LR-RR and LR-LL
dispersal curves need to be computed (the algorithms are presented in Sect. 5.4).

The algorithms for calculation of the triple point and dispersal curves are based on
numerical solutions of systems of trigonometric equations. Once the synthesis of the
optimal control diagram is constructed, the optimal collision avoidance strategy is
defined by the position of the second aircraft. Figure 6 illustrates this for θ0 = 5π/6,
ω = 2. One can see that in this case the initial position of the second aircraft is in the
region of optimal left-left (LL) strategy, and therefore the optimal collision avoidance
strategy in this case is for both aircraft to turn left with maximum turning capability.

Once the optimal strategy is determined for a given initial relative position and
relative heading, the optimal trajectory can be calculated. The steps involved are as
follows:
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Fig. 6 Construction of the
optimal collision avoidance
strategy for a close proximity
encounter, θ0 = 5π/6, ω = 2:
(1) is the optimal trajectory for
RR strategy with rT = 2.12,
T = 0.62, the initial relative
position of the second aircraft is
x0 = −1.4, y0 = 2.5, r0 = 2.87

RL and LR Strategies

• First, the time of the conflict T and the terminal miss distance rT need to be
found. T can be explicitly determined from the first of (17), while rT is explicitly
given by either (18) or (19), depending on the optimal strategy.

• The terminal relative bearing rT can be determined explicitly by rewriting last
two of (17) in the form

tan(φT + σ1T ) = x0 − σ1{1 + cos[(1 + ω)T ]/ω + (1 + ω) cosT/ω}
y0 − (1 + ω) sinT/ω + sin[(1 + ω)T ]/ω .

The optimal trajectory can be computed using the last two of (16) by incremen-
tally varying backward the time from zero to T .

RR and LL Strategies

• T and rT can be found by numerically solving the system of two trigonometric
equations (21) or (22).

• The terminal relative heading θT (and therefore the terminal relative bearing φT

too) can be determined explicitly as

θT = θ0 − σ1(1 − ω)T .
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• The optimal trajectory can be computed using last two of (20) by incrementally
varying backward time from zero to T .

For RR and LL strategies, it may also be useful to plot the terminal zero range rate
line using (29), as shown in Fig. 6.

The above steps need to be repeated once the updated information about the relative
positions and orientations for the two aircraft becomes available. This type of process
is routine in the architectural design of many flight management systems (FMS).

6 Discussion and Conclusions

The analysis presented in this paper reveals the structure of the synthesis of the op-
timal control solution for close proximity encounters of aircraft (ships) with unequal
turn capabilities. The analysis shows that the optimal strategies are the combinations
of limiting (maximum or minimum) values of control functions denoted by right-
right (RR), right-left (RL), left-left (LL) and left-right (LR) strategies, as in the case
of identical aircraft [3–5]. Also, the synthesis of the optimal control diagram (the par-
titioning of the plane of the initial relative positions into the subregions of the initial
positions for different optimal strategies) has a common structure for any value of
ω, that is characterized by the presence of the triple point and the three subregions
of different optimal strategies for any given initial relative heading θ0. However, the
structure of the solution for ω 	= 1 is significantly more complex. The loci of the ini-
tial conditions for the RR and LL strategies represent spirals, that are bounded and
converging for increasing ω when ω > 1, and are unbounded and diverging for de-
creasing ω when ω < 1. Thus, Merz’ solution for identical aircraft [3–5] represents a
degenerate case when the spirals turn into circles. Compared to the solution for iden-
tical turning rates ω = 1 [3–5], where the loci of initial conditions for the optimal
RR and LL strategies remain unchanged along the optimal path, the regions of initial
conditions for all optimal strategies change with time along the optimal path for the
general case ω 	= 1.

The paper presents simple algorithms for the computation of the synthesis of op-
timal control based on the solutions of the systems of trigonometric equations. The
synthesis of the optimal control solution presented in this paper can be used as a
benchmark (ideal) solution for setting and validating the air traffic rules, and also for
validation of a significant subclass of behavior for more complicated automated air
traffic control systems.
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