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Abstract Optimal control problems with the control variable appearing linearly are
studied. A method for optimization with respect to the switching times of controls
containing both bang-bang and singular arcs is presented. This method is based on
the transformation of the control problem into a finite-dimensional optimization prob-
lem. Therein, first and second-order optimality conditions are thoroughly discussed.
Explicit representations of first and second-order variational derivatives of the state
trajectory with respect to the switching times are given. These formulas are used to
prove that the second-order sufficient conditions can be verified on the basis of only
first-order variational derivatives of the state trajectory. The effectiveness of the pro-
posed method is tested with two numerical examples.

Keywords Bang-bang control · Singular control · Second-order sufficient
conditions · Variational derivatives

1 Introduction

Second-order sufficient conditions (SSC) have extensively been studied for problems
where the control variable enters the system nonlinearly, cf., e.g., Maurer [1], Pick-
enhain [2], Zeidan [3] and many more. In these papers, one basic assumption is that
the strict Legendre-Clebsch condition is satisfied which precludes the direct appli-
cation of these methods to bang-bang and singular controls. Other approaches in-
volve the technique of regular synthesis (cf., Boltyanskii [4] and Piccoli/Sussmann
[5]) and the method of characteristics (cf., Noble/Schättler [6]). Agrachev et al. [7]
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and Osmolovskii/Maurer [8, 9] have developed SSC for bang-bang controls which
involve the so–called induced optimization problem. This approach is based on op-
timization with respect to the switching times of the control, the free initial values
of the states and the free final time. SSC for purely (often called totally) singu-
lar controls have been developed by Dmitruk [10]. Until now, only a few work on
SSC for controls which are a concatenation of bang-bang and singular arcs has been
published, cf., Piccoli/Sussmann [5], Poggiolini/Stefani [11] and Vossen [12]. Such
controls shall be called bang-singular controls. We point out one crucial difference
between bang-bang and bang-singular scalar controls. The sufficient conditions by
Agrachev et al. [7], Osmolovskii/Maurer [8, 9] and Noble/Schättler [6] for bang-
bang controls are restricted to controls where the total time derivative of the cor-
responding switching function is nonzero at the switching times. Contrary to that
situation, we will investigate bang-singular controls. Here, the total time derivative
of the switching function vanishes at the transition points between bang-bang and
singular arc.

The organization of this paper is as follows: In Sect. 2, the statement of the prob-
lem and the known necessary optimality conditions from the Pontryagin minimum
principle [13] are given. Section 3 introduces the induced optimization problem for
bang-singular controls to optimize the (finitely many) control discontinuity points,
the free initial state values and the free final time for a fixed control structure, i.e.,
a fixed sequence of bang-bang and singular arcs in feedback form. This method is
an improvement of the known induced optimization problem for bang-bang con-
trols.

First and second-order optimality conditions for the induced optimization prob-
lem are investigated in Sect. 4. Variational derivatives of the state trajectory and the
Lagrangian function are given explicitly. The main result of this section is that the
verification of second-order sufficient conditions requires the computation of only
first-order variational derivatives of the states, cf., the ideas in Osmolovskii/Maurer
[8, 9] for bang-bang controls. Due to limited space in this article, we refer to Vossen
[14] for detailed proofs of all results in this section.

In Sect. 5, our method will be applied to two numerical examples, the optimal
control of a van der Pol oscillator and the famous Goddard problem, see Bryson/Ho
[15] and Maurer [16]. In both examples, the control structure is obtained via the
software package IPOPT by Wächter/Biegler [17] whereas the induced problem is
implemented using the code NUDOCCCS by Büskens [18]. A comparison with other
methods will also be presented.

Second-order sufficient conditions in the induced problem for bang-bang controls
together with certain regularity conditions imply optimality of the trajectory in the
class of all admissable controls, cf., Agrachev et al. [7] and Osmolovskii/Maurer
[8, 9]. Since no such result is known for controls with singular arcs we can show
sufficient conditions in the class of controls with the same switching structure.

2 Statement of the Problem and Necessary Optimality Conditions

We consider the following class of optimal control problems in Mayer form, where
x(t) ∈ R

n denotes the state variable and u(t) ∈ R
m the control variable in the time
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interval [0, tf ] with the final time tf > 0 being fixed or free:

min g(x(0), x(tf ), tf ), (1)

s.t. ẋ(t) = f (t, x(t), u(t)) = f1(t, x(t)) + f2(t, x(t))u(t) ∀t ∈ [0, tf ], (2)

φ(x(0), x(tf ), tf ) = 0, (3)

u(t) ∈ U ∀t ∈ [0, tf ]. (4)

Here, g : R
n × R

n × R → R is a scalar function, φ : R
n × R

n × R → R
r , 0 ≤ r ≤

2n + 1, and f1 : R × R
n → R

n are column-vector functions, whereas f2 : R × R
n →

R
n,m is a matrix function. The functions f1, f2, g and φ are assumed to be twice

continuously differentiable. For simplicity, we suppose that the control set is the cube

U := [umin
1 , umax

1 ] × · · · × [umin
m ,umax

m ], umin
k < umax

k , k = 1, . . . ,m. (5)

We use the abbreviations

x0 := x(0), xf := x(tf ), xb := (x0, xf ).

A pair of functions T := (x(·), u(·)) is said to be admissible, if x(·) is absolutely
continuous, u(·) is measurable and essentially bounded and the pair of functions T
satisfies the constraints (2)–(4). The component x(·) is called state trajectory.

First-order necessary optimality conditions for problem (1)–(4) are given by the
Pontryagin minimum principle. The Pontryagin or Hamiltonian function is defined
by

H(t, x,u,λ) := λf (t, x,u) = λf1(t, x) + λf2(t, x)u,

where λ ∈ R
n is a row vector and is referred to as the adjoint variable. The factor of

u in the Hamiltonian is called the switching vector

σ(t, x, λ) := (σ1(t, x, λ), . . . , σm(t, x, λ)) := λf2(t, x) ∈ R
m. (6)

We introduce the Lagrangian function for the initial and terminal point, the

l(xb, tf , ρ0, ρ) := ρ0g(xb, tf ) + ρφ(xb, tf ),

with multipliers ρ0 ∈ R and a row vector ρ ∈ R
r . In the sequel, the partial derivatives

of functions will be denoted by subscripts referring to the respective variables. The
following necessary optimality conditions by Pontryagin et al. [13] are well-known.

If T̂ := (x̂(·), û(·)) provides a minimum for the problem (1)–(4), then there exist
an absolutely continuous function λ : [0, tf ] → R

n and multipliers ρ0 ≥ 0 and ρ ∈ R
r

that satisfy the following conditions:

λ̇(t) = −Hx(t, x̂(t), û(t), λ(t)), (7)

λ(0) = −lx0(x̂(0), x̂(t̂f ), t̂f , ρ0, ρ), (8)

λ(t̂f ) = lxf
(x̂(0), x̂(t̂f ), t̂f , ρ0, ρ), (9)
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d

dt
H(t, x̂(t), û(t), λ(t)) = Ht(t, x̂(t), û(t), λ(t)), (10)

H(t̂f , x̂(t̂f ), û(t̂f ), λ(t̂f )) = −ltf (x̂(0), x̂(t̂f ), t̂f , ρ0, ρ), if tf is free, (11)

H(t, x̂(t), û(t), λ(t)) = min
u∈U

H(t, x̂(t), u,λ(t)). (12)

Equation (7) is called adjoint differential equation, conditions (8) and (9) are called
transversality conditions, whereas (12) is called minimum condition. Henceforth, we
use the notations

f (t) = f (t, x(t), u(t)), σ (t) = σ(t, x(t), λ(t)) = (σ1(t), . . . , σm(t)), etc.,

along an admissible trajectory that satisfies the conditions (7)–(12). Evaluating the
minimum condition (12) for the admissible control set U in (5), we get the following
control law for the kth control component:

ûk(t) =

⎧
⎪⎨

⎪⎩

umin
k , if σk(t) > 0,

umax
k , if σk(t) < 0,

undetermined, if σk(t) = 0. (13)

Definition 2.1 (Bang-Bang and Singular Controls, Switching Times) Consider an
optimal trajectory T̂ = (x̂(·), û(·)) and 0 ≤ t1 < t2 ≤ t̂f . The control component
ûk(t), 1 ≤ k ≤ m, is called bang-bang on [t1, t2] if σk(t) has only isolated zeros
on [t1, t2]. In this case, the optimal control component ûk(t) fulfills

ûk(t) ∈ {umin
k , umax

k }, ∀t ∈ [t1, t2].
We denote the control component ûk(t) as singular on [t1, t2] if

σk(t) ≡ 0, ∀t ∈ [t1, t2]
holds. A point t1 ∈ (0, t̂f ) is called switching time if, for some k ∈ {1, . . . ,m},
(i) σk(t)σk(t

′) < 0 for all t ∈ I−
ε , t ′ ∈ I+

ε , or
(ii) σk(t) ≡ 0 on either I−

ε or I+
ε ,

where I−
ε = (t1 − ε, t1) and I+

ε = (t1, t1 + ε), with ε > 0 sufficiently small.

Remark 2.1 In other words, a switching time t1 is a transition point between one
bang-bang arc and another bang-bang (case (i)) or a singular (case (ii)) arc. Clearly,
this definition implies σk(t1) = 0 as σk(t) is continuous.

Switching law (13) implies that the optimal control û may be discontinuous at a
switching time. Note that the set of all discontinuity points of û often exactly coin-
cides with the set of all switching times, cf., Remark 3.1 in Sect. 3.

In this paper, we consider only controls with finitely many discontinuity points,
cf., Assumption 3.1 in Sect. 3 and the discussions afterwards. We use the following
notations for functions with discontinuity points.
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Definition 2.2 Let F : [0, tf ] → R
dim F be continuous on [0, tf ] \ θ where

θ := {t1, . . . , td} is the set of discontinuities of F . We denote the left-hand respec-
tively right-hand limit of F on [0, tf ] as

F (t−) := lim
s↑t

F (s), F (t+) := lim
s↓t

F (s).

On θ , we shall use the notations

F i− := F (t−i ), F i+ := F (t+i ), [F ]i := [F (ti)] := F i+ − F i−

for the left-hand and right-hand limit of F in ti and for the jump of F in ti , i ∈
{1, . . . , d}, respectively.

The following quantities were introduced by Milyutin/Osmolovskii [19].

Definition 2.3 On the set θ = {t̂1, . . . , t̂d} of discontinuity points of the optimal con-
trol û, we define for i = 1, . . . , d

(�iH)(t) := H(t, x̂(t), ûi+, λ(t)) − H(t, x̂(t), ûi−, λ(t)) = σ(t)[û]i ,

Di(H) := − d

dt
(�iH)(t̂i ).

Corollary 2.1 The quantity Di(H) satisfies

Di(H) = −[Ht ]i − [Hx]if i+ + Hi+
x [f ]i = −σ̇ i+[û]i

= −[Ht ]i − [Hx]if i− + Hi−
x [f ]i = −σ̇ i−[û]i ≥ 0. (14)

A proof is given in [19]. Bang-bang controls, where the inequality holds strictly,
are called regular bang-bang controls [8, 9] and arise in many applications. On the
other hand, we now present a condition for bang-singular controls.

Corollary 2.2 Let û be discontinuous at t̂i for exactly one component k̄ ∈ {1, . . . ,m}
and let ûk̄ be singular on [t̂i − ε, t̂i] or [t̂i , t̂i + ε] for some sufficiently small ε > 0.
Then, Di(H) = 0 holds.

Proof We consider k̄ = 1. As u2, . . . , um are continuous at t̂i , (14) yields

Di(H) = −σ̇ i+
1 [û1]i = −σ̇ i−

1 [û1]i .

The last equality implies σ̇ i+
1 = σ̇ i−

1 since û1 is discontinuous at t̂i . Since furthermore
û1 is singular on [t̂i − ε, t̂i] or [t̂i , t̂i + ε], we have σ̇ i−

1 = 0 or σ̇ i+
1 = 0, which means

σ̇ i−
1 = σ̇ i+

1 = 0 and Di(H) = 0. �
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3 Induced Optimization Problem

Assuming that the optimal control structure is known, we are going to formulate a
new finite-dimensional optimization problem involving the initial states, the switch-
ing times and the final time tf as optimization variables. In applications one can often
obtain the control structure by using a direct method, i.e., discretizing the problem
and solving the high-dimensional nonlinear optimization problem. Another idea is to
guess a possible control structure and start with some additional bang-bang and sin-
gular arcs. The optimization approach will then lead to a solution where the lengths
of all redundant arcs will be optimized to zero. Alternatively, the direct monotone
structural evolution method by Szymkat/Korytowski [20] additionally takes advan-
tage of the minimum principle optimality conditions to obtain the correct control
structure. While this paper was under review, Szymkat and Korytowski were work-
ing on further improvements of their method using first- and second-order variational
derivatives with respect to the switching times.

3.1 Basic Assumptions

The induced optimization problem is formulated under the following three assump-
tions for the optimal trajectory T̂ = (x̂(·), û(·)), which hold in many applications.

Assumption 3.1 The optimal control û has finitely many switching times

0 =: t0 < t̂1 < · · · < t̂d < t̂d+1 := t̂f .

Here and in the following, d < ∞ denotes the number of switching times.

Assumption 3.2 If ûk is singular on [t̂i−1, t̂i], then umin
k < ûk(t) < umax

k holds for all
t ∈ [t̂i−1, t̂i]. In other words, the control takes boundary values of the control set only
on the bang-bang arcs and is in particular discontinuous at all switching times.

Assumption 3.3 In each interval (t̂i−1, t̂i ), i = 1, . . . , d +1, the control u can be ob-
tained in feedback form, i.e., there exists a twice continuously differentiable function
ui(t, x), such that the control is given by

û(t) = ui(t, x̂(t)), ∀t ∈ (t̂i−1, t̂i ). (15)

Remark 3.1 Assumption 3.3 in particular implies that û(t) is continuous on each
interval (t̂i−1, t̂i ). Hence, Assumption 3.2 ensures that the discontinuity points of û

coincide exactly with the switching times.

It is easy to verify Assumptions 3.1 and 3.2 for a given control u(t). However, for
Assumption 3.3 we will now present a method which, in many cases, provides the
feedback form (15). At the end of this section, we furthermore present some ideas on
how to deal with problems where Assumption 3.3 does not hold.

If the component ûk , 1 ≤ k ≤ m, is bang-bang along [t̂i−1, t̂i], then either
ui

k(t, x) ≡ umin
k or ui

k(t, x) ≡ umax
k yields the feedback expression (15). For a sin-

gular control component, the following method can be used. If the control is scalar,



J Optim Theory Appl (2010) 144: 409–429 415

i.e. m = 1, the control variable often appears in a certain, say pth, time derivative of
the switching function in the following form:

dp

dtp
σ (t, x̂(t), λ(t)) = A(t, x̂(t), λ(t)) + B(t, x̂(t), λ(t))û(t) ≡ 0, (16)

with a coefficient B(t, x̂(t), λ(t)) �= 0 for all t ∈ [t̂i−1, t̂i], where p is an even number
with p = 2q and q is called the order of the singular control, see Kelley/Kopp/Moyer
[21], Bell/Jacobson [22] or Fraser-Andrews [23]. Solving (16) for u leads to a func-
tion u(t, x, λ) where the component λ can often be eliminated due to

dj

dtj
σ (t, x̂(t), λ(t)) ≡ 0, j = 0, . . . , p − 1.

Note that the classical junction theorem by McDanell/Powers [24] excludes the case
that q is even, since Assumptions 3.1 and 3.2 cannot be fulfilled simultaneously. For
vector-valued controls, the order of the singular control can be defined in the same
way. The order qk of a singular control component ûk is given by 2qk = pk . Here,
pk is the lowest order time derivative of σk where uk occurs with a coefficient not
identically zero. Krener [25] has shown that pk is even and hence qk ∈ N. Note that
other control components ul , l �= k, can occur in the time derivatives of the switching
function σk . However, the coefficients of certain singular components ul vanish along
an optimal trajectory due to the first generalized Legendre-Clebsch condition [25],

∂

∂ul

(
dj

dtj
σk(t, x̂(t), λ(t))

)

≡ 0, (17)

for all j = 0, . . . , (pk + pl)/2 − 1, 1 ≤ k, l ≤ m, whereas bang-bang components
ul can be substituted by umin

l and umax
l respectively. We point out that (17) often

gives additional conditions to eliminate the adjoints from the singular control. For
further details, we refer e.g. to Krener [25] or the examples in Vossen/Maurer [26]
and Chyba/Sussmann/Maurer/Vossen [27].

3.2 Transformation to a Finite-Dimensional Problem

We are going to formulate an optimization problem involving the optimization vector

z := (xT
0 , t1, . . . , td , td+1)

T ∈ R
n+d+1, 0 = t0 < t1 < · · · < td < td+1 = tf ,

and use the following notations:

Ji := [ti−1, ti], i = 1, . . . , d + 1, θ := {t1, . . . , td}.

Along the optimal trajectory T̂ , we use the notations ẑ, Ĵi and θ̂ , respectively. The
functions ui(t, x) in (15) piecewisely define a new function,

u(t, x) := ui(t, x), t ∈ Ji, i = 1, . . . , d + 1. (18)
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Let x(·, z) be the absolutely continuous solution of the initial value problem (IVP)

x(0) = x0, ẋ(t) = f (t, x(t), u(t, x(t))) = h(t, x(t)), t ∈ [0, tf ], (19)

where h is piecewise defined as h(t, x) := hi(t, x) on each interval Ji with

hi(t, x) := f (t, x,ui(t, x)), i = 1, . . . , d + 1. (20)

The initial value x0 is taken from the optimization vector z. Obviously, we obtain
x(t, ẑ) = x̂(t). Under Assumptions 3.1–3.3, the optimal control problem can be re-
formulated as the following (n+d +1)-dimensional nonlinear optimization problem,
which will be referred to as the induced optimization problem:

min G(z) := g(x0, x(tf , z), tf ),

s.t. 
(z) := φ(x0, x(tf , z), tf ) = 0. (21)

Remark 3.2 The formulation of the induced problem (21) is based on substituting
u via the function u(t, x). As the function z → u(t, x(t, z)) is continuous for all t ,
Assumption 3.2 ensures that the control constraint (4) is fulfilled in a neighborhood
of ẑ and can hence be omitted in (21).

Remark 3.3 All fixed components of the optimization vector z should be substituted
into the functions g and φ and eliminated from z. Furthermore, all constraints in the
function φ including only the fixed components of z are deleted from (21).

The Lagrangian function for problem (21) is given by

L(z, ρ0, ρ) = ρ0G(z) + ρ
(z), (22)

with a scalar ρ0 ≥ 0 and a row vector ρ ∈ R
r . Obviously,

L(ẑ, ρ0, ρ) = l(x̂b, t̂f , ρ0, ρ). (23)

The following optimality conditions can be found, e.g., in Fiacco/McCormick [28].
First-order necessary optimality conditions for problem (21) are given by

Lz(ẑ, ρ0, ρ) = ρ0Gz(ẑ) + ρ
z(ẑ) = 0. (24)

The optimal vector ẑ is called normal if the matrix 
z(ẑ) has maximal rank r . In
this case, one can set ρ0 = 1 and the multiplier ρ is unique. Second-order sufficient
optimality conditions for problem (21) in the normal case are given by

(a) Lz(ẑ, ρ0, ρ) = 0,

(b) rank(
z(ẑ)) = r,

(c) z̄T Lzz(ẑ, ρ0, ρ)z̄ > 0 ∀z̄ ∈ Ker(
z(ẑ)) \ {0}. (25)
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We note that condition (c) can be verified as described in Fiacco/McCormick [28] and
Büskens [18]. Define the ((n + d + 1 − r) × (n + d + 1 − r))-dimensional reduced
Hessian matrix Hred by

Hred := NT Lzz(ẑ, ρ0, ρ)N (26)

where the columns of the ((n + d + 1) × (n + d + 1 − r))-matrix N span the kernel
of 
z(ẑ). Then, condition (c) in (25) is equivalent to

(c∗) vT Hredv > 0 ∀v ∈ R
n+d+1−r \ {0}. (27)

3.3 Numerical Implementation

Approach (21) is not convenient for numerical computation. We formulate a slightly
different induced optimization problem involving the optimization vector

z̃ := (xT
0 , ζ1, ζ2, . . . , ζd , ζd+1)

∗ ∈ R
n+d+1, (28)

where ζi := ti − ti−1, i = 1, . . . , d + 1, are the arc durations. This transformation
technique was already described by Kaya/Noakes [29] and Maurer et al. [30] for
bang-bang controls. A similar approach was also used by Lee et al. [31]. It is easy to
see that z and z̃ are related through z̃ = Rz with

R =
(

In 0
0 S

)

, S =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 . . . 0

−1 1
. . .

...

. . .
. . . 0

0 −1 1

⎞

⎟
⎟
⎟
⎟
⎠

, (29)

where In denotes the identity matrix of dimension n and S ∈ R
d+1,d+1. We also have

tf = wz̃, where w = (0, . . . ,0,1, . . . ,1,1) ∈ R
n+d+1 is a row vector with n zeros

and d + 1 ones. Therefore, the new induced optimization problem is as follows:

min G̃(z̃) := g(x0, x(wz̃,R−1z̃),wz̃),

s.t. 
̃(z̃) := φ(x0, x(wz̃,R−1z̃),wz̃) = 0. (30)

We denote the Lagrangian for problem (30) by L̃ and obtain


z = 
̃z̃R, Lz = L̃z̃R, Lzz = RT L̃z̃z̃R. (31)

It is clear that necessary and sufficient optimality conditions (24), (25) hold in prob-
lem (21) if and only if the corresponding optimality conditions hold in problem (30).
The approach (30) can conveniently be implemented using the code NUDOCCCS by
Büskens [18], which provides the corresponding trajectory and the adjoints. A de-
tailed description of the computational method for bang-bang controls can be found
in Maurer et al. [30]. This technique can be adopted directly for bang-singular con-
trols.
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3.4 Controls without Feedback Representation

If contrary to Assumption 3.3 the control can only be determined as a function
ui(t, x, λ), i.e. depending also on λ, a modified approach is used for switching time
optimization. Detailed information can be found in the internal report [14] by the au-
thor or in Vossen/Rehbock/Siburian [32]. For controls which cannot be determined
as a function ui(t, x, λ), see also [14] or Büskens et al. [33].

4 Variational Derivatives in the Induced Problem

The verification of the optimality conditions (24), respectively, (25) and hence, the
calculation of variational derivatives of the Lagrangian function with respect to the
optimization vector z requires the calculation of the variational derivatives of the state
x(·, z) with respect to z. All variational derivatives are presented in this section. Due
to lack of space in this article, detailed proofs are given in an internal report by the
author [14].

4.1 Variational Derivatives of the States

4.1.1 First-Order Variational Derivatives

Definition 4.1 The first-order variational derivatives of the states are defined as

vi(t, z) : = ∂x

∂(x0)i
(t, z), 1 ≤ i ≤ n, (32)

yi(t, z) : = ∂x

∂ti
(t, z), 1 ≤ i ≤ d, (33)

yf (t, z) : = ∂x

∂tf
(t, z). (34)

Proposition 4.1 The function vi(t, z), 1 ≤ i ≤ n, is the solution of the IVP

vi(0, z) = ei, v̇i(t, z) = hx(t, x(t, z))vi(t, z), (35)

where ei is the ith unit vector. The function yi(t, z), 1 ≤ i ≤ d , satisfies yi(t, z) ≡ 0
on [0, ti[ and, for t ≥ ti , it is the solution of the IVP

yi(ti , z) = −[ẋ]i = −[h]i , ẏi (t, z) = hx(t, x(t, z))yi(t, z), t ≥ ti . (36)

The function yf satisfies yf (t, z) ≡ 0 on [0, tf [ and, for t = tf , we obtain

yf (tf , z) = ẋ(tf , z) = h(tf , x(tf , z)). (37)
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Proof Variation of a switching time ti changes the solution of the IVP (19) only in
the interval [ti , tf ]. Hence, we have yi(t, z) ≡ 0 on [0, ti[. Furthermore,

x(t, z) = x(t−i , z) +
∫ t

t+i
h(s, x(s, z))ds, t ≥ ti .

is a solution of IVP (19). Differentiating this equation with respect to ti , we obtain

yi(t, z) = ẋ(t−i , z) − ẋ(t+i , z) +
∫ t

t+i
hx(s, x(s, z))yi(s, z) ds (38)

which yields (36). Further details are given in [14]. �

4.1.2 Second-Order Variational Derivatives

Definition 4.2 The second-order variational derivatives of the states are

vij (t, z) : = ∂2x

∂(x0)j ∂(x0)i
(t, z) = ∂vi

∂(x0)j
(t, z), 1 ≤ i ≤ j ≤ d, (39)

wij (t, z) : = ∂2x

∂tj ∂(x0)i
(t, z) = ∂vi

∂tj
(t, z), 1 ≤ i ≤ n, 1 ≤ j ≤ d, (40)

vif (t, z) : = ∂2x

∂tf ∂(x0)i
(t, z) = ∂vi

∂tf
(t, z), 1 ≤ i ≤ n, (41)

yij (t, z) : = ∂2x

∂tj ∂ti
(t, z) = ∂yi

∂tj
(t, z), 1 ≤ i ≤ j ≤ d, (42)

yif (t, z) : = ∂2x

∂tf ∂ti
(t, z) = ∂yi

∂tf
(t, z), 1 ≤ i ≤ d, (43)

yff (t, z) : = ∂2x

∂tf ∂tf
(t, z) = ∂yf

∂tf
(t, z). (44)

Note that we calculate only the entries ∂2x/(∂zj ∂zi) for i ≤ j as the matrices
∂2(xl)/∂z2 are symmetric for l = 1, . . . , n. Also, the second-order variational deriv-
atives can be computed via certain IVPs. For notational convenience, we omit all
arguments of the variations in the ODEs.

Proposition 4.2 The second-order variational derivatives satisfy

1 ≤ i ≤ j ≤ d : vij (0, z) = 0, v̇ij = hxv
ij + (vi)T hxxv

j (45)

1 ≤ i ≤ n, 1 ≤ j ≤ d : wij (tj , z) = −[hx]j vi(tj , z),

ẇij = hxw
ij + (vi)T hxxy

j (46)
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1 ≤ i ≤ n : vif (tf , z) = v̇i (tf , z) = hx(tf , x(tf , z))vi(tf , z) (47)

1 ≤ i ≤ d : yii(ti , z) = −[ht ]i − [hx]ihi− − hi+
x yi(ti , z)

ẏii = hxy
ii + (yi)T hxxy

i (48)

1 ≤ i < j ≤ d : yij (tj , z) = −[hx]j yi(tj , z),

ẏij = hxy
ij + (yi)T hxxy

j (49)

1 ≤ i ≤ d : yif (tf , z) = hx(tf , x(tf , z))yi(tf , z) (50)

Here, μT hxxν is a column vector with components μT (hk)xxν, k = 1, . . . , n. Fur-
thermore, we obtain

yff (tf , z) = ḣ(tf , x(tf , z)) = ht (tf , x(tf , z)) + hx(tf , x(tf , z))h(tf , x(tf , z)).

(51)

4.2 Variational Derivatives of the Lagrangian

Consider a trajectory T̂ = (x̂, û) which satisfies the necessary optimality condi-
tions (7)–(12) of the minimum principle. We use the abbreviations v̂i (t) := vi(t, ẑ),
ŷi (t) := yi(t, ẑ) and so on.

4.2.1 First-Order Variational Derivatives

We now calculate explicit representations for the first-order variational derivatives of
the Lagrangian with respect to the optimization vector z. A proof for (52) is given.
All other proofs can be found in [14].

Proposition 4.3 The following holds:

∂

∂(x0)i
L(ẑ, ρ0, ρ) = 0, i = 1, . . . , n, (52)

∂

∂ti
L(ẑ, ρ0, ρ) = 0, i = 1, . . . , d. (53)

If the final time tf is free, we have

∂

∂tf
L(ẑ, ρ0, ρ) = 0. (54)

Proof Applying the chain rule and using (23) as well as the transversality conditions
(8) and (9), the first-order variational derivatives of the Lagrangian with respect to
the free initial values (x0)i of the states are given by

∂

∂(x0)i
L(ẑ, ρ0, ρ) = l(x0)i (x̂b, t̂f , ρ0, ρ) + lxf

(x̂b, t̂f , ρ0, ρ)v̂i(t̂f )

= −λi(0) + λ(t̂f )v̂i (t̂f ). (55)
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Together with (35), the last term can be written as

λi(0) +
∫ t̂f

0

d

dt
(λv̂i) dt. (56)

Let us transform the integrand. We first observe that

λhx = λ(fx + fuux) = (λf )x + (λf )uux = Hx + Huux = Hx

where Huux = 0 holds since for each component 1 ≤ k ≤ n, Huk
= 0 on singular arcs

and (uk)x = 0 on bang-bang arcs [14]. In view of (7) and (35), we obtain

d

dt
(λv̂i) = λ̇v̂i + λ ˙̂vi = (−Hx + λhx)v̂

i = 0. (57)

Substituting (56) and (57) into (55) yields (52). �

Lemma 4.1 Let T̂ = (x̂, û) be a trajectory which satisfies the necessary conditions
(7)–(12) of the minimum principle. Then, the first-order variational derivatives of the
Lagrangian vanish, i.e.,

∂

∂z
L(ẑ, ρ0, ρ) = 0.

Corollary 4.1 Let T̂ = (x̂, û) be a trajectory which satisfies the necessary conditions
(7)–(12) of the minimum principle. Then, the necessary conditions (24) in the induced
optimization problem (21) are fulfilled.

4.2.2 Second-Order Variational Derivatives

We now present explicit representations for the second-order variational derivatives
of the Lagrangian with respect to the optimization vector z. Due to the symmetry
of the matrix Lzz, we investigate only the derivatives Lzizj

for i ≤ j . For notational
convenience, we drop all arguments in the endpoint Lagrangian l and its partial deriv-
atives which are evaluated at (x̂b, t̂f , ρ0, ρ) as well as the argument (ẑ, ρ0, ρ) of the
function L. Proofs are given in [14].

Proposition 4.4 For 1 ≤ i ≤ j ≤ n, we have

∂2 L
∂(x0)j ∂(x0)i

= l(x0)i (x0)j + l(x0)ixf
v̂j (t̂f ) + (v̂i(t̂f ))T

(
lxf (x0)j + lxf xf

v̂j (t̂f )
)

+
∫ t̂f

0
(v̂i)T (Hxx + Hxuux + (ux)

T Hux)v̂
j dt. (58)

For i = 1, . . . , n and j = 1, . . . , d , the following holds:

∂2 L
∂tj ∂(x0)i

= l(x0)ixf
ŷj (t̂f ) + v̂i (t̂f )lxf xf

ŷj (t̂f )
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+
∫ t̂f

t̂j

(v̂i )T (Hxx + Hxuux + (ux)
T Hux)ŷ

j dt. (59)

For i = 1, . . . , n, we obtain

∂2 L
∂tf ∂(x0)i

= l(x0)i tf + l(x0)ixf
ŷf (t̂f )

+ v̂i (t̂f )T
(
lxf tf + lxf xf

ŷf (t̂f )
) + Hx(t̂f )v̂i(t̂f ). (60)

For i = 1, . . . , d , we have

∂2

∂ti∂ti
L(ẑ, ρ0, ρ) = Di(H) − [Hx]i ŷi (t̂i ) + ŷi (t̂f )T lxf xf

ŷi (t̂f )

+
∫ t̂f

t̂i

(ŷi )T (Hxx + Hxuux + uT
x Hux)ŷ

i dt. (61)

For 1 ≤ i < j ≤ d , we get

∂2

∂tj ∂ti
L(ẑ, ρ0, ρ) = −[Hx]j ŷi(t̂j ) + ŷj (t̂f )T lxf xf

ŷi(t̂f )

+
∫ t̂f

t̂j

(ŷj )T (Hxx + Hxuux + uT
x Hux)ŷ

i dt. (62)

For i = 1, . . . , d , we obtain

∂2

∂tf ∂ti
L(ẑ, ρ0, ρ) = (ŷi(t̂f ))T

(
lxf xf

ŷf (t̂f ) + lxf tf

) + (Hxŷ
i)(t̂f ). (63)

The following holds:

∂2

∂tf ∂tf
L(ẑ, ρ0, ρ) = (ŷf (t̂f ))T

(
lxf xf

ŷf (t̂f ) + lxf tf

)

+ ltf xf
ŷf (t̂f ) + ltf tf + (Ht + Hxf )(t̂f ). (64)

Lemma 4.2 Let T̂ = (x̂, û) be a trajectory which satisfies the necessary conditions
(7)–(12) of the minimum principle. Then, the second-order variational derivatives of
the Lagrangian can be computed on the basis of only first-order variational deriva-
tives of the states.

4.3 Variational Derivatives of the Function 


If the induced problem involves constraints, it is essential to compute the variational
derivatives of the function 
 for the verification of second-order sufficient condi-
tions (25). They can be obtained as

∂

∂(x0)i

(ẑ) = φ(x0)i (x̂b, t̂f ) + φxf

(x̂b, t̂f )v̂i (t̂f ), i = 1, . . . , n,
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∂

∂ti

(ẑ) = φxf

(x̂b, t̂f )ŷi (t̂f ), i = 1, . . . , d,

∂

∂tf

(ẑ) = φxf

(x̂b, t̂f )ŷf (t̂f ) + φtf (x̂b, t̂f ). (65)

4.4 Main Result

Using Lemma 4.2 and formulas (65), we come to our main result in this section.

Theorem 4.1 The second-order sufficient conditions (25) in the induced optimization
problem (21) can be verified on the basis of only first-order variational derivatives of
the state trajectory.

We point out that, due to Theorem 4.1, one can dispense with solving the

1

2
d(d + 1)n + dn2 + 1

2
d(d + 1)n = dn(d + n + 1)

IVPs (45), (46), (48) and (49) for the second-order variational derivatives of the state
trajectory which is a strong simplification and speedup for the numerical verification
of second-order sufficient optimality conditions in the induced problem.

To summarize, the procedure of our method is as follows:

Step 1: Find a control structure (see the beginning of Sect. 3).
Step 2: Solve the induced optimization problem and obtain the corresponding trajec-

tory T̂ = (x̂, û) as well as the adjoint variable λ.
Step 3: Use (35), (36) and (37) to compute ∂x/∂z.
Step 4: Use (58)–(65) to compute Lzz and φz and verify SSC.

5 Numerical Examples

In this section, we illustrate the previously described methods and results with two
numerical examples, a slightly changed model of the optimal control of a van der
Pol oscillator given by James [34] and the Goddard problem, see Bryson/Ho [15] and
Maurer [16]. For convenience, we shall drop all superscripts denoting the optimal
solution in the numerical examples.

Step 1 of the procedure described at the end of the Sect. 4 is accomplished as
follows. We will discretize the differential equations with the method of Heun, which
is of error order 2, see Stoer/Bulirsch [35], and use the code IPOPT to solve the
resulting high-dimensional optimization problem. This reveals the control structure
as well as approximate values of the switching times which we use as an initial guess
for Step 2. For the implementation of Step 2, we choose the code NUDOCCCS. As
the time transformation in the induced problem can produce a stiff dynamical system,
we use a Runge–Kutta method of error order 7 which is already integrated into the
code NUDOCCCS. After the optimization, we use again a Runge–Kutta method of
order 7 for solving the initial-value problems to determine the variational derivatives
in Steps 3 and 4.



424 J Optim Theory Appl (2010) 144: 409–429

5.1 Van der Pol Oscillator

We consider a van der Pol oscillator problem with fixed final time tf = 4. The control
u is scalar.

min x3(tf ),

s.t. ẋ1 = x2,

ẋ2 = −x1 + x2(1 − x2
1) + u,

ẋ3 = 1

2
(x2

1 + x2
2),

x1(0) = 0, x2(0) = 1, x3(0) = 0,

−1 ≤ u(t) ≤ 1 ∀t ∈ [0, tf ]. (66)

The Hamiltonian

H(t, x,λ,u) = λ1x2 + λ2(−x1 + x2(1 − x2
1) + u) + 1

2
λ3(x

2
1 + x2

2)

leads to the adjoint equations

λ̇1 = −x1 + λ2(1 + 2x1x2), λ̇2 = −x2 − λ1 − λ2(1 − x2
1), λ̇3 = 0

and the transversality conditions λ1(tf ) = λ2(tf ) = 0 and λ3(tf ) = 1, which yields
λ3 ≡ 1. The switching function is given by σ(t) = λ2(t).

Using the code IPOPT, we find the following control structure with a singular arc
in the terminal interval:

u(t) =

⎧
⎪⎨

⎪⎩

−1, 0 ≤ t ≤ t1,

1, t1 ≤ t ≤ t2,

using(x(t)), t2 ≤ t ≤ tf = 4.

The singular control on the interval [t2, tf ] can be obtained as follows. Since the
control variable u appears in the second time derivative of the switching function,
σ̈ ≡ 0 reveals an expression u = u(x,λ) along a singular arc. The conditions σ =
σ̇ ≡ 0 can then be used to eliminate λ1 and λ2, which yields a feedback expression
for the singular control of order q = 1:

u = using(x) = 2x1 − x2(1 − x2
1).

In view of this control structure with two switching times t1, t2, the induced optimiza-
tion problem (21) merely consists in minimizing x3(tf , z) with respect to the opti-
mization variable z = (t1, t2) ∈ R

2 respectively, z̃ = (ξ1, ξ2)
T , ξ1 = t1, ξ2 = t2 − t1.

The length of the singular arc is then given by tf − ξ1 − ξ2. Note that this is an un-
constrained optimization problem as all terminal state values are free. We obtain the
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Fig. 1 Optimal states x1, x2, adjoints λ1, λ2 and optimal control u for the Van der Pol Oscillator

Fig. 2 First-order variational
derivatives y1, y2 for the Van
der Pol Oscillator

representations

hi(x) =
⎛

⎜
⎝

x2

−x1 + x2(1 − x2
1) + (−1)i

1
2 (x2

1 + x2
2)

⎞

⎟
⎠ , i = 1,2, h3(x) =

⎛

⎜
⎝

x2

x1
1
2 (x2

1 + x2
2)

⎞

⎟
⎠

and NUDOOCCCS computes the following solution depicted in Fig. 1 with optimal
values t1 = 1.366733, t2 = 2.460831 and x3(tf ) = 0.7576179.

Let us now verify the second-order sufficient conditions (25). In a first step, we
calculate the variational derivatives. Due to (36), the first-order derivatives can be
derived via the IVPs

y1(t1) = (0,−[u]1,0)T , ẏ1 =
{

h2
xy

1, t ∈ J2,

h3
xy

1, t ∈ J3,

y2(t2) = (0,−[u]2,0)T , ẏ2 = h3
xy

2, t ∈ J3. (67)

Here, the data [u]1 = 2 and [u]2 = −0.3233521 are taken from the solution depicted
in Fig. 1. The solution of the IVP (67) is shown in Fig. 2.

Together with (61) and (62), we can now derive the matrix Lzz as

Lzz(z, ρ0, ρ,p0) =
(

215.1022 −10.5035
−10.5035 0.5623

)

. (68)

This matrix is positive definite with eigenvalues 215.615 and 0.0492936 which, in
view of the SSC (25), implies that the switching times are optimal since z is normal.

A second method for verifying the SSC is to calculate the values of the Lagrangian
function for slightly different values of the switching times and then obtaining the
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Fig. 3 Second-order variational derivatives y11, y12, y22 for the Van der Pol Oscillator

matrix Lzz by numerical differentiation. The code NUDOCCCS accomplishes this
method automatically. We note that the Hessian is provided with respect to the op-
timization vector z̃. However, the matrix Lzz can be computed via formula (31) and
we obtain

L̃z̃z̃ =
(

194.9295 −9.9704
−9.9704 0.5643

)

, Lzz =
(

215.4346 −10.5347
−10.5347 0.5643

)

, (69)

with eigenvalues 215.95 and 0.0490384 which is very similar to the result in (68).
The maximal relative error of the matrix entries in (69) versus those in (68) is 0.36%;
the maximal relative error of the eigenvalues is 0.52%.

In this particular problem, it is also possible to verify the SSC by calculating the
second-order variational derivatives yij as the cost functional is given by x3(tf ) and
there are no constraints in the induced problem. Hence, we have

Lzz =
(

y11
3 (tf ) y12

3 (tf )

y12
3 (tf ) y22

3 (tf )

)

.

Formulas (46) yield the following variational derivatives yij , which are shown
in Fig. 3. From these data, we extract the matrix Lzz with nearly the same values
as in (68). Again, the relative errors are smaller than 1%.

Note that Fig. 2 also illustrates that the first-order necessary conditions in the
induced problem are fulfilled since Lt1 = y1

3(tf ) and Lt2 = y2
3(tf ) vanish.

5.2 Goddard Problem

We present results of switching time optimization for the Goddard problem. This
model was introduced in Bryson/Ho [15] and numerically solved with shooting tech-
niques by Maurer [16]. The state variables are the height h, velocity v and mass m.
The scalar control is denoted by u and the free final time is tf . We note that we have
taken over the notations from the references as the notations therein are suitable to
the meaning of the occuring functions and parameters.

max h(tf ),

s.t. ḣ = v, v̇ = 1

m
(cu − D(v,h)) − g(h), ṁ = −u,
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h(0) = h0, v(0) = v0, m(0) = m0, m(tf ) = mf ,

0 ≤ u(t) ≤ umax ∀t ∈ [0, tf ]. (70)

The drag function D(v,h), the gravity function g(h) and further data can be found
in Maurer [16]. Using the solver IPOPT, we obtain the following optimal control
structure:

u(t) =

⎧
⎪⎨

⎪⎩

umax, 0 ≤ t ≤ t1,

using(x(t)), t1 ≤ t ≤ t2,

0, t2 ≤ t ≤ tf ,

where, as it is shown in Maurer [16], the singular control of order q = 1 can be
obtained in feedback form. Hence, the induced optimization problem involving the
optimization vector z = (t1, t2, tf )T , respectively, z̃ = (ζ1, ζ2, ζ3)

T is given by

min h(tf , z),

s.t. m(tf , z) − mf = 0.

NUDOCCCS provides a solution with switching times t1 = 4.11526, t2 = 46.04061
and the final time tf = 212.90299, which is consistent with the results in [16]. Finally,
we verify the SSC for this solution z. First-order variational derivatives of the states
satisfy IVP (36) and (37). The Hessian matrix of the Lagrangian can be computed in
view of (61)–(64). Using (65), the reduced Hessian matrix defined in (26) is obtained
as

Hred = NT LzzN =
(

74.082672 −7.378291
−7.378291 9.331096

)

,

and hence is positive definite on R
2 with eigenvalues 74.9128 and 8.500999. There-

fore, the switching times and the final time are optimal due to the SSC (25) and (27).
We conclude with the remark that NUDOCCCS provides the matrices L̃z̃z̃ and 
̃z̃,

which lead to similar matrices Lzz and 
z by using the formulas (31). The reduced
Hessian is obtained as

Hred =
(

73.2412 −7.39793
−7.39793 9.32778

)

with eigenvalues 74.0863 and 8.48265. In comparison to our method, the maximal
relative difference of the matrix entries is 1.14%, the maximal relative difference of
the eigenvalues is 1.10%. We note that a detailed discussion of these results is given
in the report [14].

6 Conclusions

In this paper, optimal control problems with the control variable appearing linearly
have been studied. The induced optimization problem, a method for directly optimiz-
ing the switching times of bang-singular controls, the free initial states and the free
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final time, was presented. This method can be used for the verification of a certain
suboptimality of a trajectory, namely, optimality in the class of all trajectories with
the same control structure if the control has finitely many switching times and can be
obtained in feedback form along each switching interval.

For the investigation of the first and second-order optimality conditions in the
finite–dimensional induced problem, it was essential to derive first and second-order
variational derivatives of the state trajectory. It is shown that these derivatives are
solutions of certain initial value problems. Corollary 4.1 shows that first-order nec-
essary conditions in the induced problem are fulfilled if the corresponding trajectory
satisfies the conditions of the minimum principle. Furthermore, Theorem 4.1 states
that the second-order derivatives of the Lagrangian can be computed on the basis of
only first-order variational derivatives of the states. This result significantly simpli-
fies the numerical verification of the sufficient optimality conditions in the induced
problem. We emphasize that in our method all variational derivatives are computed
by using only the data of the reference trajectory and no calculation of any compar-
ison trajectory is necessary. All formal derivatives of the Hamiltonian and endpoint
Lagrangian function can be computed a priori.

Our theoretical results have been illustrated with two numerical examples. The
induced optimization problem can conveniently be implemented into the routine
NUDOCCCS. A comparison of the derivatives computed by our new method to those
computed by NUDOCCCS yields similar results with relative differences of 1%.

Although the induced problem for bang-singular controls treats only the optimality
of the switching times, the initial states and the final time, it is on the one hand a very
useful and fast tool for solving control problems where the control variable appears
linearly and on the other hand may be a first step for finding more general optimality
conditions similar to those for purely bang-bang controls. Further investigations of
the sufficient conditions in the class of all admissable controls are in progress by
A. Dmitruk, L. Poggiolini, G. Stefani and the author.
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