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Abstract Under the safety-first principle (Roy in Econometrica 20:431–449, 1952),
one investment goal in asset-liability (AL) management is to minimize an upper
bound of the ruin probability which measures the likelihood of the final surplus be-
ing less than a given target level. We derive solutions to the safety-first AL man-
agement problem under both continuous-time and multiperiod-time settings via in-
vestigating the relationship between the safety-first AL management problem and
the mean-variance AL management problem, and offer geometric interpretations. We
classify investors under the safety-first principle as safety-first greedy and nongreedy
investors and discuss corresponding optimal strategies for them.

Keywords Portfolio selection · Asset-liability management · Safety-first · Efficient
frontier

1 Introduction

Based on a recognition that investors are often primarily concerned with avoiding
loss of a significant magnitude, Roy [1] proposes the safety-first principle for portfo-
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lio selection. Under the safety-first principle, a safety-first investor specifies a thresh-
old level of the final wealth below which the outcome is regarded as a disaster and
minimizes the ruin probability or the chance of disaster. Based on the Bienaymé-
Tchebycheff inequality, Roy considers a surrogate problem that minimizes an upper
bound of the ruin probability, subject to a constraint that the expected final wealth is
higher than the threshold.

The Roy’s safety-first principle has many far-reaching consequences. This pio-
neering idea initiates the investigation of shortfall constraints and downside risk, and
leads to the concept of Value at Risk (VaR) in the modern risk management practice,
see Jorion [2] for reference. The safety-first approach is an important complement to
the Markowitz’s mean-variance formulation [3–5] for portfolio selection. Moreover,
shortfall constraints have been also taken into the consideration under some mean-
variance portfolio selection formulations, see Korn and Trautmann [6], Korn [7], Bi-
elecki et al. [8]. Levy and Sarnat [9] find that, when the disaster level is equal to the
risk-free return, the safety-first and mean-variance criteria merge together to gener-
ate the same optimal solution in a single-period model. Arzac and Bawa [10] show
that the capital asset pricing model is robust to safety-first investors under traditional
distribution assumptions and a single-period setting.

Extensions of the safety-first approach are abound in the literature. For instance,
Telser [11] considers a hedging problem with the safety-first criterion. Kataoka [12]
develops a stochastic programming model for a portfolio selection problem under the
safety-first principle. Li et al. [13] employ the embedding technique of Li and Ng [14]
to build up a mathematical foundation to solve the multiperiod safety-first formula-
tion. Specifically, the analytical trading strategy which is of a form of feedback con-
trol is derived under the condition that the disaster level is less than the return of the
minimum variance portfolio. Milevsky [15] considers a market that consists of one
risk-free asset and two risky assets evolving as geometric Brownian motion (GBM)
with constant parameters and obtains an analytic constant-rebalanced portfolio policy
for a safety-first investor. However, Milevsky’s model ignores the constraint that the
expected return should be larger than the disaster level as imposed by Roy [1]. This
simplification essentially changes the nature of the problem under investigation from
“safety-first principle” to “target reaching principle” as shown in Chiu et al. [16].
Although the literature has witnessed many works on the target reaching problems
or ruin probability minimization problems, see, for example, Browne [17–19], this
paper remains to consider the Roy safety-first principle with the mean constraint.

A possible excuse of removing the “mean constraint” in some extensions of the
safety-first principle in the literature could be that Roy [1] does not explicitly impose
any constraint on the expected final wealth. However, he actually does, although im-
plicitly. In Roy [1, p. 434], he clearly states the following:

“. . . If in default of minimizing P(ξ ≤ d), we operate on σ 2

(m−d)2 , this is equiv-

alent to maximizing m−d
σ

. . .”,

where, in terms of Roy’s notation, ξ is the final wealth, σ 2 is the variance of ξ , m

is the expected value of ξ , and d is the preselected disaster level. Mathematically,

as σ is positive, minimizing σ 2

(m−d)2 is equivalent to maximizing m−d
σ

if and only
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if m > d . Thus, the quoted statement indicates that the mean constraint (m > d)
has served as an indispensable element of the original Roy’s safety-first principle.
Empirical analysis on the safety-first formulation includes Harlow [20] and Jansen et
al. [21].

Sharpe and Tint [22] recognize that a company should make investment decisions
by taking into account its liabilities. They suggest that it would be more beneficial
to replace the final wealth by the final surplus in portfolio selection problems. This,
however, presents a challenging asset-liability (AL) management problem to pension
funds, banks, insurance companies, and academics, due to that the uncontrollable
liability complicates the analysis and often requires additional technical skills. In
addition, Keel and Müller [23] show that liabilities do affect the efficient frontier.
Adopting the mean-variance formulation, Leippold et al. [24] derive an analytical
optimal policy and obtain the efficient frontier for the multiperiod AL management
problem by utilizing the embedding technique of Li and Ng [14]. Chiu and Li [25]
further generalize the problem to a continuous-time setting, derive the analytical op-
timal trading strategy and obtain the optimal initial funding ratio. However, all these
works are limited to the mean-variance criterion, and little is known about an optimal
policy for the safety-first AL management. As the disaster probability of the surplus
is closely related to the default probability of a company, it is both interesting and
indispensable to consider the safety-first AL management problem.

This paper undertakes a comprehensive analysis of the Roy’s safety-first AL man-
agement problem under both continuous time and multiperiod settings. In particular,
we study the implications of the safety-first AL management on optimal portfolio
policies, investigate its connection to the mean-variance criterion, and study differ-
ent optimal behaviors associated with a safety-first company, a safety-first individual,
a mean-variance company and a mean-variance individual. Our analysis nests the
problem of Li et al. [13] as a special case by setting the level of liabilities to zero.
To the best of our knowledge, ours is the first attempt to directly embed safety-first
objectives into a dynamic AL management problem.

The rest of the paper is organized as follows. In Sect. 2, we formulate the
continuous-time and discrete-time AL models under the safety-first criterion. Sec-
tion 3 derives an optimal trading strategy and classify investors into two classes:
greedy and non-greedy investors. The geometric interpretation is given in Sect. 4. We
conclude the paper in Sect. 5.

2 Model

In this section, we formulate the safety-first AL management problem under two set-
tings: continuous-time and multiperiod. The former considers the situation in which
investors can rebalance their portfolios continuously and asset returns are driven
by Brownian motions. Although continuous-rebalance is unrealistic in practice even
when transaction costs are not considered, the continuous-time model offers the limit
case in AL management as a utopian reference point. While the assumption of Brown-
ian motions in the continuous-time model imposes a distributional assumption to the
asset returns, the multiperiod model allows more flexibility. The multiperiod model



458 J Optim Theory Appl (2009) 143: 455–478

only requires knowledge of the first two moments for asset returns, while it permits
investors to rebalance their portfolios only at discrete time instants.

In a later section, safety-first AL problem under both models will be solved under
a unified framework, which makes use of the results from the mean-variance AL
problem. To pave the way for the later analysis, we summarize first the results in the
mean-variance AL problem in this section.

2.1 Continuous-Time Model

Consider a financial market in which n1 +1 assets are traded continuously in the time
horizon [0, T ]. Of n1 + 1 assets, the asset labelled by i = 0 is the risk-free asset and
the remaining assets, labelled by i = 1,2, . . . , n1, are risky assets. The process of the
risk-free asset P0(t) satisfies the following differential equation:

dP0 = P0(t)r(t)dt,

P0(0) = p0 > 0,

where r(t) is the risk-free rate. The price processes P1(t), . . . ,Pn1(t) of the n1 risky
assets satisfy the following stochastic differential equations (SDEs):

dPi(t) = Pi(t)

{
αi(t)dt +

n∑
j=1

(
σA(t)

)
ij
dWj (t)

}
, t ∈ [0, T ],

Pi(0) = pi > 0, i = 1,2, . . . , n1,

where Wt = (W 1
t ,W 2

t ,W 3
t , . . . ,Wn

t )′ is a standard Ft≥0-adapted n-dimensional
Wiener process which is defined on a fixed filtered complete probability space
(�, F , P , Ft≥0) with n ≥ n1, Wi

t and W
j
t are mutually independent for all i �= j ,

L2
FT

(�,R
d) represents the set of all R

d -valued, FT -measurable stochastic processes

f (t), such that E[∫ T

0 |f (t)|2dt] < +∞ , αi(t) is the appreciation rate of asset i, and
σA(t) = (σA(t))ij is the variance-covariance matrix of assets, which belongs to the
Banach space of R

n1×n-valued continuous function on [0, T ]. As widely adopted in
the literature, we assume that the non-degeneracy condition of σA(t)σA(t)′ ≥ δAIn1

holds for all t ∈ [0, T ] and for some δA > 0. Besides, we assume that all the functions
are measurable and uniformly bounded in [0, T ].

Consider that an investor with an initial wealth x0 invests in the financial market
and is subject to liabilities with an initial value l0. The liability value process follows,

dl(t) = l(t)β(t)dt + l(t)σL(t)dW(t),

l(0) = l0, (1)

where β(t) is the appreciation rate of the value of liabilities and σL(t) is the volatility,
which belongs to C([0, T ];R

n×1), a Banach space of R
n×1-valued continuous func-

tion on [0, T ], and satisfies the nondegeneracy condition. The investor is allowed to
continuously trade the assets over the time period [0, T ].
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Remark 2.1 For asset-liability management problems, the incompleteness of the mar-
ket is usually induced by the nontradable liability, which may involve external risky
factors which do not contribute to the risky assets. However, we will show now that
this consideration is indeed nested in our model setting. To see this, consider the
following liability value process:

dl(t) = l(t)β(t)dt +
n+k∑
j=1

(
σL(t)

)
j
dWj (t),

l(0) = l0,

where (W 1
t , . . . ,Wn

t ) spans the market, while (Wn+1
t , . . . ,Wn+k

t ) unspans the mar-
ket. Therefore (Wn+1

t , . . . ,Wn+k
t ) are specific risky factors behind the liability. In

such a situation, define

W̃t = (W 1
t ,W 2

t , . . . ,Wn
t ,Wn+1

t ,Wn+2
t , . . . ,Wn+k

t )′,

and let the variance-covariance matrix be

σ̃A(t) := (
σA(t) 0n1×k

)
,

where 0n1×k is a zero matrix with n1 rows and k columns. Then, the price process of
asset i becomes

dPi(t) = Pi(t)

{
αi(t)dt +

n+k∑
j=1

(
σ̃A(t)

)
ij
dWj (t)

}
, t ∈ [0, T ],

Pi(0) = pi > 0, i = 1,2, . . . , n1.

Consequently, it can be transformed back to our original setting with the variance-
covariance matrix σ̃A and n + k independent Brownian motions.

Denote S(t) = x(t) − l(t) as the surplus. Then, the objective of the investor is
to determine an optimal investment strategy such that the probability that her final
surplus S(T ) is below a preselected threshold D, P (S(T ) ≤ D), is minimized. The
value D can be viewed as a “disaster” level from the investor’s point of view. As
mentioned in the introduction, Roy [1, p. 434] stated:

“we operate on σ 2

(m−d)2 , this is equivalent to maximizing m−d
σ

”,

which implies that the mean constraint (m > d) is assumed in the Roy’s safety-first
principle. Hence, the requirement that the nonnegative value of D be smaller than
the expected final surplus E[S(T )] is an indispensable constraint of our problem. Ap-
plying the Bienaymé-Tchebycheff inequality, we have P (S(T ) ≤ D) ≤ Var[S(T )]

(E[S(T )]−D)2 .
Thus, minimizing P (S(T ) ≤ D) can be achieved by minimizing its upper bound

Var[S(T )]
(E[S(T )]−D)2 .

In this paper, we consider liabilities to be uncontrollable, meaning that the dynam-
ics of the value of liabilities are not affected by the trading strategy of the investor.
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This consideration agrees with Sharpe and Tint [22], Keel and Müller [23], Leippold
et al. [24] and Chiu and Li [25]. We also assume that the price processes for both
assets and liabilities follow geometric Brownian motions (GBM) in the continuous-
time setting. The use of GBM in modeling the asset price process is common in the
financial market. For liabilities, Norberg [26], Josa-Fombellida and Rincón-Zapatero
[27] and others have used GBM to model the liability price process.

Remark 2.2 As we work in a Brownian filtration, a Brownian stochastic exponential
would be a natural choice for modeling a strictly positive liability. Other models, such
as random coefficient, would introduce some major technical complications, without
changing the solution methodology (completion of squares) and without adding sub-
stantial additional insights. This is why the choice of GBM appears to be justified.

Let ui(t) be the amount invested in the asset i and Ni(t) be units of asset i.
Then, the aggregated asset x(t) takes the form x(t) = ∑n1

i=0 ui(t), where ui(t) =
Ni(t)Pi(t). By Itô’s lemma, the SDE underlying the dynamics of x(t) is given by

dx(t) = [
r(t)x(t) + α̃(t)′u(t)

]
dt + u(t)′σA(t)dW(t), (2)

where α̃(t) = (α1(t) − r(t), α2(t) − r(t), . . . , αn1(t) − r(t))′ is a column vector of
benchmark-asset-appreciation rates. Furthermore, the investment strategy or portfolio
policy is defined by u(t) = (u1(t), u2(t), . . . , un1(t))

′. By subtracting (1) from (2),
the SDE for the surplus can be derived as

dS(t) = [
r(t)S(t) + (r(t) − β(t))l(t) + α̃(t)′u(t)

]
dt

+ [
u(t)′σA(t) − σL(t)l(t)

]
dW(t),

S(0) = x0 − l0,

dl(t) = β(t)l(t)dt + σL(t)l(t)dW(t),

l(0) = l0. (3)

Hence, the safety-first AL management is formulated as

(Pc
1(D)) min

u(·)
Var[S(T )]

(E[S(T )] − D)2
,

s.t. E[S(T )] > D,

u(·) ∈ L F
2(0, T ;R

n1),

(3),

where L F
2(0, T ;R

n1) denotes the set of all R
n1 -valued, measurable stochastic

processes f (t) adapted to Ft≥0 such that E
∫ T

0 |f (t)|2dt < +∞.
The safety-first AL management is closely related to the mean-variance AL man-

agement. Hence, we define the notion of the mean-variance efficient as follows.
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Definition 2.1 The surplus process S̃(t) satisfying (3) is mean-variance effi-
cient if there exists no other surplus S(t) satisfying (3) such that E[S(T )] ≥
E[S̃(T )] and Var[S(T )] ≤ Var[S̃(T )] with at least one strict inequality. Such a point
(E[S̃(T )],Var[S̃(T )]) is called a mean-variance efficient point. The set of all efficient
points forms the mean-variance efficient frontier.

The mean-variance portfolio optimization problem (Pc
2(ε)) can be posted as fol-

lows:

(Pc
2(ε)) min

u(·) Var[S(T )],

s.t. E[S(T )] ≥ ε,

u(·) ∈ L F
2(0, T ;R

n1),

(3).

According to Chiu and Li [25], the mean-variance efficient frontier of the final surplus
for (PC

2 (ε)) is given by

Var[S(T )] = A
c
(
E[S(T )] − B

c
)2 + C

c, (4)

where

A
c = e− ∫ T

0 (α̃′(σAσA
′)−1α̃)(t)dt

1 − e− ∫ T
0 (α̃′(σAσA

′)−1α̃)(t)dt
,

B
c = x0e

∫ T
0 r(t)dt − l0e

∫ T
0 (β−α̃′(σAσA

′)−1σAσL
′)(t)dt ,

C
c = l2

0

{
e
∫ T

0 (σLσL
′+2β)(t)dt − e

∫ T
0 (σLσL

′)(t)dt	

− e
∫ T

0 (2β−2α̃′(σAσA
′)−1(α̃+σAσL

′))(t)dt

e− ∫ T
0 (α̃′(σAσA

′)−1α̃)(t)dt

}
,

	 =
∫ T

0
(α̃ + σA

′σL)′(σAσA
′)−1(α̃ + σAσL

′)

× e− ∫ T
t (α̃+σAσL

′)′(σAσA
′)−1(α̃+σAσL

′)dτ

× e
∫ t

0 σLσL
′dτ+∫ T

t σLσA
′(σAσA

′)−1σAσL
′dτ dt.

The corresponding investment strategy u∗(t, S, l) is of the following feedback form:

u∗(t, S, l) = −[
(σAσA

′)(t)
]−1

{
α̃(t)S − λ

2ω
α̃(t)e

∫ T
t −r(τ )dτ

+ [
α̃(t)

(
1 − e

∫ T
t (−r+β−(

σAσL
′)′(σAσA

′)−1α̃)(τ )dτ
)

− (σAσL
′)(t)

(
e
∫ T
t (−r+β−(σAσL

′)′(σAσA
′)−1α̃(τ )dτ

)]
l

}
, (5)
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where there is a relationship between the risk-averse coefficient λ
2ω

and the expected
surplus,

E[S(T )] = e− ∫ T
0 (α̃′(σAσA

′)−1α̃)(t)dt
(
x0e

∫ T
0 r(t)dt − l0e

∫ T
0 (β−α̃′(σAσA

′)−1σAσL
′)(t)dt

)
+ λ

2ω

(
1 − e− ∫ T

0 (α̃′(σAσA
′)−1α̃)(t)dt

)
. (6)

The above results are derived from the following auxiliary problem in Chiu and
Li [25]:

min
u(·) E[ωS(T )2 − λS(T )],

s.t. u(·) ∈ L2
FT

([0, T ],R
n1),

(3).

Note that the optimal policy u∗(t, S, l) is actually a feedback control of both the
surplus S and the liability value l. In other words, the investor adjusts her portfolio
based on observed values of surplus and liability. However, the investor sometimes
may like to make her decision based on wealth x and liability value l. To facilitate
this possibility, the optimal feedback control can be alternatively written in terms of
x and l as

ũ(t, x, l) = −[
σA(t)σA(t)′

]−1{
α̃(t)x − α̃(t)e

∫ T
t −α0(τ )dτ

− e
∫ T
t (−α0+β−(σAσL)′(σAσA

′)−1α̃)(τ )dτ (α̃(t) + σA(t)σL(t)′)l
}
. (7)

In (4), the values of Ac, Bc and Cc are nonnegative and Cc

l20
= 0 if and only if n =

n1, which corresponds to the situation that the number of risk factors equals to the
number of risky assets. The proof can be found in Chiu and Li [25]. Therefore, when
n = n1, Var[S(T )] becomes a perfect square function of E[S(T )] and the value of

1√
Ac

is called the price of risk. At the same time, n = n1 represents a complete market.

The value of Bc represents the return of the minimum variance portfolio, i.e., the
risk-free return minus the return of the hedged liability. When the investor optimally
hedges the liabilities by using risky assets, the appreciation rate after hedging is the
original appreciation rate, β , less the project rate α̃′(σAσA

′)−1σAσL
′, corresponding

to the hedging strategy.

2.2 Multiperiod Model

In the multiperiod setting, we assume that there are n1 risky assets traded in the
market with random rates of returns. We label these risky assets by i = 1,2, . . . , n1.
Let αi,t be the return of risky asset i on time t and βt be the appreciation of liabilities.
Denote rt to be the risk-free rate, which is deterministic at the time t . The rates
of return of the risky assets at the time period t within the planning horizon are
denoted by a vector αt = (α1,t , α2,t , . . . , αn,t )

′. It is assumed that the returns αt and βt
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have known means E[αt ] = (E[α1,t ], . . . ,E[αn,t ])′ and E[βt ], and known covariances
covt

(( αt

βt

))
. Also, we assume that the matrices

E

[(
αt

βt

)
(α′

t βt )

]
= covt

[(
αt

βt

)]
+ Et

[(
αt

βt

)]
Et [(α′

t βt )]

of conditional second moments at all time t are positive definite. The investor is
allowed to trade the assets over T consecutive transaction periods at dates 0,1, . . . ,

T − 1. At t = 0, she is equipped with an initial wealth x0 and possesses an initial
liability l0. The wealth xt can be reinvested at the beginning of each time period,
but the liabilities lt are uncontrollable. The objective of the investor is to determine
an optimal investment strategy such that the probability that the final surplus ST :=
xT − lT goes below a preselected threshold D, P (ST ≤ D), is minimized, where the
nonnegative “disaster” level D is smaller than the expected final surplus E[S(T )]. As
we witnessed in the continuous-time setting, minimizing P (ST ≤ D) can be achieved
by minimizing the upper bound Var[ST ]

(E[ST ]−D)2 as proposed by Roy [1].
Let πit be the amount invested in the asset i at time t . Then the AL dynamics can

be written as

xt+1 = rtxt + α̃′
tπt ,

lt+1 = βt lt , (8)

where α̃t = (α1,t − rt , α2,t − rt , . . . , αn1,t − rt )
′ is the vector of benchmark-asset-

appreciation rate, and πt = (π1t , π2t , . . . , πn1t )
′ is investment strategy or portfolio

policy at time t in a periodic trading market. Hence, the safety-first and mean-variance
AL problems in multiperiod setting are formulated as

(Pd
1(D)) min

π

Var[ST ]
(E[ST ] − D)2

,

s.t. E[ST ] > D,

(8),

and

(Pd
2(ε)) min

π
Var[ST ],

s.t. E[ST ] ≥ ε,

(8),

respectively. According to Leippold et al. [24], the mean-variance efficient frontier of
the final surplus takes the following form:

Var[S(T )] = A
d
(
E[S(T )] − B

d
)2 + C

d, (9)

where

A
d = 1

E[ST,e] − 1; B
d = E[ST,0]

1 − E[ST,e] ; C
d = E[S2

T ,0] − E[ST,0]2

1 − E[ST,e] ,
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E[ST,e] =
T −1∑
i=0

E[α̃′
i+1ai+2]E[α̃i+1ai+2α̃

′
i+1ai+2]−1E[α̃i+1ai+2],

E[ST,0] = x0
{
E[r0a1] − E[α̃′

0a1]E[α̃0a1α̃
′
0a1]−1E[α̃0a1r0a1]

}
− l0

{
E[β0b1] − E[α̃′

0a1]E[α̃0a1α̃
′
0a1]−1E[α̃0β0b1]

}
,

aT = bT = 1,

aT −k = rT −kaT −k+1

− α̃′
T −kaT −k+1E[α̃T −kaT −k+1α̃

′
T −kaT −k+1]−1

×E[α̃T −kaT −k+1rT −kaT −k+1], k = 1,2, . . . , T ,

bT −k = βT −kbT −k+1

− α̃′
T −kaT −k+1E[α̃T −kaT −k+1α̃

′
T −kaT −k+1]−1

×E[α̃T −kaT −k+1βT −kbT −k+1], k = 1,2, . . . , T . (10)

The corresponding optimal trading strategy is

π∗
T −k = −E[α̃T −kaT −k+1α̃

′
T −kaT −k+1]−1

{
xT −kE[α̃T −kaT −k+1rT −kaT −k+1]

− lT −kE[α̃T −kaT −k+1βT −kbT −k+1] − λ

2ω
E[α̃T −kaT −k+1]

}
, (11)

where there is a relationship between the risk-averse coefficient λ
2ω

and the expected
surplus,

E[ST ] = E[ST,0] + λ

2ω
E[ST,e]. (12)

Note that there is an essential difference between the discrete-time and continuous-
time settings when deriving an optimal trading strategy. Under the continuous-time
setting, the optimal policy can be expressed analytically, while, in the case of a
discrete-time setting, analytical solution always can be expressed in an iterative for-
mula, see (10) and (11). However, when returns are independent with deterministic
coefficients, the closed-form solution can be obtained. Note that Cd ≥ 0 in (9). In
the next section, we will link up the safety-first criterion and the mean-variance cri-
terion. Using the quadratic forms of the mean-variance efficient frontier, (4) and (9),
we can show that both the optimal trading strategies of (Pc

1(D)) and (Pd
1(D)) are

mean-variance efficient.

3 Solution to the Safety-First AL Management

Under both the discrete-time and continuous-time settings, the mean-variance effi-
cient frontiers take the following form:

Var[ST ] = A
c,d

(
E[ST ] − B

c,d
)2 + C

c,d , (13)
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where the choice of superscript, c or d , depends on whether the model is continu-
ous or discrete. In (13) Bc,d is the return of the minimum risk portfolio, Cc,d is the
minimum variance, and 1√

Ac,d
provides a rough information how much the expected

return of a portfolio increases when the standard deviation increases by one unit.
If Cc,d equals zero, then 1√

Ac,d
is termed the price of risk. The mean-variance AL

problem can be presented in a general form as follows,

(P2(ε)) min
u(·) Var[ST ],
s.t. E[ST ] ≥ ε,

W,

where W in (P2(ε)) represents, in the continuous-time setting, the constraints

u(·) ∈ L F
2(0, T ;R

n1),

(3), (14)

or represents, in the discrete-time setting, the set of constraints

xt+1 = rtxt + α̃′
t ut , t = 0,1, . . . , T − 1,

lt+1 = βt lt , t = 0,1, . . . , T − 1. (15)

In this section, we derive the solution to the safety-first AL problem without attaching
it to a specific market structure (being continuous or discrete). Using the expression
of the mean-variance efficient frontier (MV-EF) in the form (13), the safety-first AL
problem can be posted as follows:

(P1(D)) min
u

Var[ST ]
(E[ST ] − D)2

,

s.t. E[ST ] > D,

W,

where the W represents the set of constraints (14) or (15). Then, we have the follow-
ing theorem.

Theorem 3.1 The optimal solution of (P1(D)) with a given nonnegative D is an
optimal solution of (P2(ε)) for some ε ≥ 0.

Proof Define �P to be the set of optimal solutions of problem (P). Hence,

�P1(D) = {u | u is a minimizer of P1(D)},
�P2(ε) = {u | u is a minimizer of P2(ε)}.

Suppose that �P1(D) �
⋃

ε≥0 �P2(ε). It implies that there exists u ∈ �P1(D) such that
u /∈ �P2(ε) for all ε ≥ 0. Let V = Var[S(T )]|u and E = E[S(T )]|u.
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Case 1: D ≥ Bc,d . In this case, E > Bc,d . Due to the continuity of the efficient
frontier, there exists u∗ ∈ ⋃

ε≥0 �P2(ε) such that E[S(T )]|u∗ = E and Var[S(T )]|u∗ <

V , as u is not mean-variance efficient. Consider

Var[S(T )]|u∗

(E[S(T )]|u∗ − D)2
= Var[S(T )]|u∗

(E − D)2
<

V

(E − D)2
,

which contradicts the optimality of u in problem (P1(D)). Therefore, u ∈⋃
ε≥0 �P2(ε).
Case 2: D < Bc,d . If E ≥ Bc,d , then the proof is similar to Case 1. Other-

wise, if E < Bc,d , let u∗ ∈ ⋃
ε≥0 �P2(ε) such that E[S(T )]|u∗ = Bc,d > E. Then,

Var[S(T )]|u∗ must be the minimum variance of the final surplus. Since D < E <

Bc,d , we have

(E − D)2 < (Bc,d − D)2,

which leads to

V

(E − D)2
>

V

(Bc,d − D)2
>

Var[S(T )]|u∗

(E[S(T )]|u∗ − D)2
,

which contradicts the optimality of u. Hence, u ∈ ⋃
ε≥0 �P2(ε).

We can finally conclude that �P1(D) ⊆ ⋃
ε≥0 �P2(ε). �

Theorem 3.1 asserts that the optimal solution to (P1(D)) can be found from among
the points on the mean-variance efficient frontier. Thus, it remains to identify the
efficient solution which solves the safety-first AL problem. To do this, we have to
consider several different cases.

Li et al. [13] confine their study in the case where the disaster level is less than
the expected return of the minimum variance portfolio. In Milevsky [15], although
the mean constraint is absent in the analysis, the disaster level is set at the maximum
possible risk-free return, x0e

α0T . Hence, it may be more interesting to focus on this
situation first.

Let E∗ be the expected final surplus under the optimal strategy for (P1(D)), if it
exists. Then, we have the following result.

Theorem 3.2 If D < Bc,d , then Bc,d < E∗ = Bc,d + Cc,d

Ac,d (Bc,d−D)
< ∞, and the

optimal trading rule for (P1(D)) can be obtained by substituting E∗ into (6) and
(5) for the continuous-time model, and substituting E∗ into (12) and (11) for the
discrete-time model. More specifically, we have the following explicit forms of the
optimal trading rule for (P1(D)):

u∗(t, S, l) = −[
(σAσA

′)(t)
]−1

×
{
α̃(t)′S + [

α̃(t)′
(
1 − e

∫ T
t (−r+β−(σAσL)′(σAσA

′)−1α̃)(τ )dτ
)

− (σAσL)(t)
(
e
∫ T
t (−r+β−(σAσL)′(σAσA

′)−1α̃)(τ )dτ
)]

l
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−
(

B
c + Cc

(Bc − D)e− ∫ T
0 (α̃′(σAσA

′)−1α̃)(t)dt

)
α̃(t)′e

∫ T
t −r(τ )dτ

}
(16)

for the continuous-time setting and

π∗
T −k = −E[α̃T −kaT −k+1α̃

′
T −kaT −k+1]−1

×
{
xT −kE[α̃T −kaT −k+1rT −kaT −k+1]

− lT −kE[α̃T −kaT −k+1βT −kbT −k+1]

−
(

B
d + Cd

(Bd − D)(1 − E[ST,e])
)

E[α̃T −kaT −k+1]
}

(17)

for the discrete-time setting, respectively. Moreover, in the complete market, the opti-
mal trading strategies in continuous-time and discrete-time setting become

u∗(t, S, l) = −[
(σAσA

′)(t)
]−1

{
α̃(t)′S − B

cα̃(t)′e
∫ T
t −r(τ )dτ

+
[
α̃(t)′

(
1 − e

∫ T
t (−r+β−(σAσL)′(σAσA

′)−1α̃)(τ )dτ
)

− (σAσL)(t)
(
e
∫ T
t (−r+β−(σAσL)′(σAσA

′)−1α̃)(τ )dτ
)]

l
}

(18)

and

π∗
T −k = −E[α̃T −kaT −k+1α̃

′
T −kaT −k+1]−1

×{
xT −kE[α̃T −kaT −k+1rT −kaT −k+1]

− lT −kE[α̃T −kaT −k+1βT −kbT −k+1] − B
dE[α̃T −kaT −k+1]

}
, (19)

respectively.

Proof From (13), we can attack the problem (P1(D)) by solving the following opti-
mization problem:

(P3(D)) min U(E) = Ac,d (E − Bc,d )2 + Cc,d

(E − D)2

= A
c,d

(
1 − Bc,d − D

E − D

)2

+ Cc,d

(E − D)2
,

s.t. E > D,

where E is the expected final surplus. By taking derivative of U with respect to E,
we have

dU

dE
= 2A

c,d Bc,d − D

(E − D)2

(
1 − Bc,d − D

E − D

)
− 2

Cc,d

(E − D)3
. (20)
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When Bc,d > D and E > D, E can be smaller than Bc,d , equal to Bc,d or greater
than Bc,d . Let Ẽ be the critical point. Solving

dU

dE

∣∣∣∣
E=Ẽ

= 0

yields the following relation:

2A
c,d(Bc,d − D)

(
1 − Bc,d − D

Ẽ − D

)
− 2Cc,d

Ẽ − D
= 0,

i.e.,

A
c,d (Bc,d − D) = Ac,d (Bc,d − D)2 + Cc,d

Ẽ − D
.

We further have

Ẽ − D = B
c,d − D + Cc,d

Ac,d (Bc,d − D)
,

which gives rise to

Ẽ = B
c,d + Cc,d

Ac,d (Bc,d − D)
> B

c,d > D.

We also have

dU

dE
=

⎧⎨
⎩

< 0, if E < Ẽ,
= 0, if E = Ẽ,
> 0, if E > Ẽ.

Therefore, Ẽ is the minimizer of U(E) and the optimal expected surplus E∗ is equal

to Ẽ. The minimum value of U(E) is U(E∗) = Ac,dCc,d

Cc,d+Ac,d (Bc,d−D)2 . By substituting

E = Bc + Cc

Ac(Bc−D)
into (6), we have

λ

2ω
= −B

c
A

c + Bc + Cc

Ac(Bc−D)

1 − e− ∫ T
0 (α̃′(σAσA

′)−1α̃)(t)dt

= B
c + Cc

Ac(Bc − D)(1 − e− ∫ T
0 (α̃′(σAσA

′)−1α̃)(t)dt )

= B
c + Cc

(Bc − D)e− ∫ T
0 (α̃′(σAσA

′)−1α̃)(t)dt
. (21)

Substituting (21) further into (5) yields the continuous trading strategy in (16). For

the discrete time scenario, substituting E = Bd + Cd

Ad (Bd−D)
into (12) gives rise to

λ

2ω
=

Bd + Cd

Ad (Bd−D)

E[ST,e] − E[ST,0]
E[ST,e]
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= B
d + Cd

(Bd − D)(1 − E[ST,e]) . (22)

Then, substituting (22) further into (11) yields the optimal periodic-trading strategy
in (17). When Cc,d ≡ 0, the market is complete, see Chiu and Li [25]. Even though
the uncontrollable liabilities exists, the investor is able to construct a portfolio to
hedge the liabilities completely. Hence, by substituting Cc,d ≡ 0 into (16) and (17),
the expression of the optimal trading strategy in a complete market becomes (18) for
continuous-time or (19) for discrete-time, respectively. �

Theorem 3.2 reveals that the value of E∗ is finite, when D < Bc,d . In such a sit-
uation, the optimal trading strategy can be uniquely determined by identifying E∗.
This conclusion matches the result of Li et al. [13] and explains why existing papers
only consider the disaster level to be less than the return of the minimum variance
portfolio, Bc,d . Note, however, Roy [1] does not restrict his analysis only to this sit-
uation. Thus, we are now going to investigate the continuous and multiperiod trading
strategies in both complete and incomplete market when the disaster level is not less
than Bc,d .

Theorem 3.3 Assume D ≥ Bc,d . Then:

(i) If D = Bc,d and the market is complete, the optimal solution E∗ of (P3(D)) can
be any value in the interval (D,∞).

(ii) When D > Bc,d , (P3(D)) has no optimal solution.
(iii) Furthermore, when D = Bc,d and E is specified at a value in (D,∞), the op-

timal strategies for continuous and discrete setting of (P1(D)) are given as fol-
lows, respectively:

u∗(t, S, l) = −[
(σAσA

′)(t)
]−1{

α̃(t)S + B
c
A

cα̃(t)e
∫ T
t −r(τ )dτ

+ [
α̃(t)

(
1 − e

∫ T
t (−r+β−(σAσL

′)′(σAσA
′)−1α̃)(τ )dτ

)
− (σAσL

′)(t)
(
e
∫ T
t (−r+β−(σAσL

′)′(σAσA
′)−1α̃)(τ )dτ

)]
l
}

+ Ee
∫ T
t −r(τ )dτ

1 − e− ∫ T
0 (α̃′(σAσA

′)−1α̃)(t)dt
[(σAσA

′)(t)]−1α̃(t) (23)

and

π∗
T −k = −E[α̃T −kaT −k+1α̃

′
T −kaT −k+1]−1

×
{
xT −kE[α̃T −kaT −k+1rT −kaT −k+1]

− lT −kE[α̃T −kaT −k+1βT −kbT −k+1]

+ E[ST,0]
E[ST,e]E[α̃T −kaT −k+1]

}
,

+ E

E[ST,e]E[α̃T −kaT −k+1α̃
′
T −kaT −k+1]−1E[α̃T −kaT −k+1]. (24)



470 J Optim Theory Appl (2009) 143: 455–478

Proof When D > Bc,d , minimizing U(E) = Ac,d (E−Bc,d )2+Cc,d

(E−D)2 over the entire real

space yields an unconstrained global solution Ẽ = Bc,d + Cc,d

Ac,d (Bc,d−D)
. Clearly,

Ẽ < D. By analyzing the function dU
dE

, we conclude that

dU

dE
=

⎧⎨
⎩

= 0, if E = Ẽ,
> 0, if Ẽ < E < D,
< 0, if D < E.

Thus, U(E) is a decreasing function on (D,+∞), which implies that E∗, the optimal
solution of P3(D), is at the infinity and

infU = lim
E→∞U = A

c,d ≥ 0.

When D = Bc,d and Cc,d > 0, U(E) can be simplified to Ac,d + Cc,d

(E−D)2 , which is

also a decreasing function. Similarly, we have E∗ = ∞ and

infU = lim
E→∞U = A

c,d ≥ 0.

From the above analysis, we can conclude that there is no solution for problem
(P3(D)) when D > Bc,d or D = Bc,d in an incomplete market.

When D = Bc,d and Cc,d = 0, then U(E) ≡ Ac,d and any feasible solution
is optimal for problem (P3(D)). This implies that, for any feasible solution E of
(P3(D)) with E > D, the mean-variance efficient portfolios of continuous-time and
discrete-time models given in (23) and (24), respectively, solve the safety-first criteria
(P1(D)). �

Theorem 3.3 asserts that, when D ≥ Bc,d and Cc,d > 0, there is no optimal trad-
ing strategy due to the infinite value of E∗. It may explain why existing papers
which study the Roy’s safety-first model all assume that the disaster level is less than
the return of the minimum variance portfolio. In other words, when D ≥ Bc,d and
Cc,d > 0, the investor under the safety-first principle attempts to get an unlimited ex-
pected final surplus, even though she would face an unlimited risk. We may classify
this type of investors as greedy investors.

3.1 Greedy and Nongreedy Investors

Theorems 3.2 and 3.3 show that the disaster level affects the existence of E∗ and its
corresponding optimal trading strategy. Clearly, Bc,d is a watershed of disaster level.
When D < Bc,d , E∗ is finite and the disaster probability is bounded above by

Ac,dCc,d

Cc,d + Ac,d (Bc,d − D)2
.

We classify these investors who choose the disaster level to be smaller than the return
of the minimum variance portfolio nongreedy investors in this paper. Nongreedy in-
vestors avoid catastrophic loss in their investment by setting D < Bc,d . Accordingly,
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they obtain a finite expected final surplus,

E∗ = B
c,d + Cc,d

Ac,d (Bc,d − D)
,

when they adopt the optimal trading strategy, either (16) or (17). Note that the ex-
pected final surplus E∗ increases as the prescribed disaster level D increases and
vice versa. Meanwhile, they have a corresponding finite variance

Var[ST ]|E=E∗ = (Cc,d )2

Ac,d (Bc,d − D)2
+ C

c,d .

In an incomplete market, if D ≥ Bc,d , the expected final surplus becomes infin-
ity according to Theorem 3.3. Also, the same consequence occurs in the complete
market when D > Bc,d . However, when D = Bc,d and Cc,d = 0, any mean-variance
efficient portfolio is an optimal trading strategy in problem (P1(D)) if the investor
pre-selects her expected final surplus to be greater than D. Even though they choose
a very large value as their expected final surplus/risk averse coefficient, any mean-
variance efficient portfolio is optimal in (P1(D)). Thus, we classify this kind investors
as greedy investors. Although greedy investors adopt the safety-first principle as their
doctrine, they actually target a mean-variance portfolio with an infinity expected sur-
plus.

Note that Theorem 3.3 does not provide the optimal trading strategy in neither
continuous-time setting nor discrete-time setting. We address now the issue of how
an optimal portfolio for the greedy investors can be constructed, besides the situation
where D = Bc,d and Cc,d = 0.

Let us look at (23) and (24). For the continuous-time case, as E goes to positive
infinity, the second term

Ee
∫ T
t −r(τ )dτ

1 − e− ∫ T
0 (α̃′(σAσA

′)−1α̃)(t)dt

[
(σAσA

′)(t)
]−1

α̃(t)

dominates the first term in the trading strategy (23). Because of the positivity of
Ee

∫ T
t −r(τ )dτ

1−e
− ∫ T

0 (α̃′(σAσA
′)−1α̃)(t)dt

, the optimal buy-and-sell trading strategy for the greedy in-

vestor is proportional to the vector[
(σAσA

′)(t)
]−1

α̃(t).

Here (σAσA
′)−1α̃ is related to the Sharpe Ratio, the excess return over variance. The

greedy investor allocates her wealth according to the performance of stocks in terms
of the modified Sharpe ratio, the higher the modified Sharpe ratio of a stock, the more
the wealth allocated to that stock.

For example, if the j th element of [(σAσA
′)(t)]−1α̃(t) is positive, the investor

needs to hold the asset j long; otherwise, she needs to sell the asset j short. For the
discrete-time model, the optimal buy-and-sell trading strategy for the greedy investor
is proportional to the vector

E[α̃T −kaT −k+1α̃
′
T −kaT −k+1]−1E[α̃T −kaT −k+1],
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Fig. 1 When Cc,d = 0 and D < Bc,d , m∗
u = ∞ and E∗ = Bc,d

because the second term

E

E[ST,e]E[α̃T −kaT −k+1α̃
′
T −kaT −k+1]−1E[α̃T −kaT −k+1]

dominates the first term in the trading strategy (24).

4 Geometric Interpretation

We develop a geometric approach to further illustrate Theorems 3.2 and 3.3 in this
section. There are several reasons to adopt a geometric approach. Firstly, the results
derived before can be understood by readers who do not want to go through the te-
dious mathematical process. Secondly, the geometric approach is more intuitive and
provides economic interpretations. Finally, it has been a usual practice to explain eco-
nomic ideas via a graphical help of the mean-variance efficient frontier. Throughout
this section, we take Theorem 3.1 for granted.

Let mu = E[ST ]−D
σST

|u be the excess value over standard deviation for a given trading

strategy u. Rearranging terms yields

E[ST ]|u = muσST
|u + D, (25)
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Fig. 2 When Cc,d > 0 and D < Bc,d , E∗ > Bc,d is the unique tangent point between MV-EF and Lmu

which represents a straight line on the return-standard-deviation plane, with mu being
the slope and D being the intercept on the E[ST ]-axis. We denote Lmu as the set that
contains all points on this straight line.

From the definition of mu, (P1(D)) can be rewritten as

max
u(·)

mu,

s.t. E[ST ] > D,

W,

Lmu : E[ST ]|u = muσST
|u + D. (26)

From Theorem 3.1, the optimal solution to (P1(D)) must be mean-variance efficient.
Thus, we must have

(σST
|u)2 = A

c,d (E[ST ]|u − B
c,d )2 + C

c,d .
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Fig. 3 When Cc,d = 0 and D = Bc,d , mu equals to the slope of MV-EF and Lmu coincides with MV-EF

Thus, problem (P1(D)) should incorporate this constraint into its formulation, result-
ing in the following equivalent form:

(P4(D)) max
u(·)

mu,

s.t. E[ST ] > D,

Lmu : E[ST ]|u = muσST
|u + D,

(σST
)2 = Ac,d (E[ST ] − Bc,d )2 + Cc,d .

It is evident now that the optimal solution locates at the intersection of Lmu and MV-
EF.

We consider the situation in Theorem 3.2 with Bc,d > D. If the market is com-
plete, i.e. Cc,d = 0, then MV-EF is a straight line and (P1(D)) is reduced to

max
u(·)

mu,

s.t. E[ST ] > D,

Lmu : E[ST ]|u = muσST
|u + D,

σST
= √

Ac,d (E[ST ] − Bc,d ).

Hence, mu = ∞ is the maximum slope and the unique intersection point is E = Bc,d ;
see Fig. 1.
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Fig. 4 When Cc,d = 0 and D > Bc,d , mu equals to the slope of MV-EF and Lmu intersects with MV-EF
at infinity

For the incomplete market, i.e. Cc,d > 0, MV-EF is given by

(σST
)2 = A

c,d (E[ST ] − B
c,d )2 + C

c,d ,

which is a bullet-shaped curve. Obviously, the straight line

E[S(T )] = 1√
Ac,d

σS(T ) + B
c,d

is the asymptote of MV-EF for σST →∞.
If D < Bc,d , then E∗, which is larger than Bc,d , is the tangent point between

MV-EF and Lmu ; see Fig. 2.
Figures 1 and 2 can be used to better our understanding of Theorem 3.2. We

briefly summarize out findings again. In a complete market, Cc,d = 0 and Fig. 1
shows that E∗ = Bc,d . In an incomplete market, the unique tangent point E∗ is
shown in Fig. 2. Besides, the value of this tangent point E∗ can be easily computed

as Bc,d + Cc,d

Ac,d (Bc,d−D)
> Bc,d .

Next, we consider the situation in Theorem 3.3 with D ≥ Bc,d . If the market is
complete and D = Bc,d , then the maximum value of mu equals the slope of MV-
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Fig. 5 When Cc,d > 0 and D = Bc,d , mu equals to the slope of the asymptote of MV-EF, Lmu merges
to the asymptote, and Lmu intersects with MV-EF at infinity

EF and Lmu overlaps with MV-EF; see Fig. 3. There are infinitely many intersection
points.

For the following cases, (i) D > Bc,d and (ii) D = Bc,d with Cc,d > 0, the inter-
section point of E∗ MV-EF and Lmu must be infinity; see Figs. 4, 5 and 6.

5 Conclusions

The asset-liability (AL) management problem under the Roy’s safety-first principle
has been studied in this paper. We have shown that the optimal trading policy locates
on the mean-variance efficient frontier. When the preset disaster level is strictly less
than the minimum-variance return, we have given an explicit expression of the opti-
mal trading strategies for both continuous-time and discrete-time models. An investor
who sets the disaster level less than the minimum-variance return is a genuine safety-
first investor. We classify this type of investors as nongreedy investors. However, if
the disaster level is set to be larger than the minimum-variance return, then the in-
vestor tends to seek for an infinite return accompanied by an infinite variance. We
classify this type of investors as greedy investors. We have also provided an explicit
optimal trading strategy for greedy investors. To demonstrate related economic inter-
pretations, we have further illustrated our result by adopting a geometric approach.
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Fig. 6 When Cc,d > 0 and D > Bc,d , mu equals to the slope of the asymptote of MV-EF, Lmu is a
straight line parallel to the asymptote, and Lmu intersects with MV-EF at infinity
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