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Abstract We consider a null controllability problem for the semilinear heat equation
with finite number of constraints on the state. Interpreting each constraint by means
of adjoint state notion, we transform the linearized problem into an equivalent linear
problem of null controllability with constraint on the control. Using inequalities of
observability adapted to the constraint, we solve the equivalent problem. Then, by a
fixed-point method, we prove the main result.

Keywords Systems governed by PDEs · Nonlinear PDEs of parabolic type · Null
controllability · Carleman inequalities · Observability inequality

1 Introduction

Let N, M ∈ N
∗ and let � be a bounded open subset of R

N with boundary � of class
C 2. Let ω ⊂ � be an open nonempty subset. For a time T > 0, we set Q = �×(0, T ),

ωT = ω × (0, T ) and � = � × (0, T ) and we consider the semilinear heat equation

∂y

∂t
− �y + f (y) = vχω, in Q, (1a)

y = 0, on �, (1b)

y(0) = y0, in �, (1c)

where y0 ∈ L2(�), the control v belongs to L2(Q), χω represents the characteristic
function of the control set ω and f is a globally Lipschitz function of class C 1 defined
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on R verifying

f (0) = 0. (2)

The null controllability problem can be stated as follows: Given y0 ∈ L2(�), find
v ∈ L2(Q) such that the solution of (1) satisfies y(T ) = 0 in �.

Such problems have been widely studied. In [1], Russell proved that the linear heat
equation is null controllable in any time T provided the wave equation is exactly con-
trollable for some time T . Later on Lebeau and Robbiano in [2] solved the problem of
null boundary controllability in the case f ≡ 0 using observability inequalities deriv-
ing from Carleman inequalities. The most general result was proved by Imanuvilov
and Fursikov [3] using global Carleman inequalities for the evolution operator with
variable coefficients and nonzero potentials. They extended their method to the case
of some nonlinear heat equations, where they prove that the problem of null bound-
ary controllability holds for sufficiently small initial data. Let us also mention results
in [4, 5], where the methods in [3] have been combined with the variational approach
to controllability in [6] to prove null controllability results for heat equations with
nonlinearities that grow at infinity in a super linear way.

Nakoulima gives in [7] a result of null controllability for the linear heat equa-
tion with constraint on a distributed control. His result is based on an observability
inequality adapted to the constraint.

In this paper we focus on the null controllability problem with a finite number of
constraints on the state that we describe now.

Let E = Span(e1, . . . , eM) be the subspace of L2(Q) generated by the functions
ei ∈ L2(Q), 1 ≤ i ≤ M. Assume that the functions ei, 1 ≤ i ≤ M , are such that

eiχω, 1 ≤ i ≤ M, are linearly independent. (3)

Then the null controllability problem with a finite number of constraints on the
state is as follows: Given ei in L2(Q), 1 ≤ i ≤ M and y0 ∈ L2(�), find a control
v ∈ L2(Q) such that the solution of (1) satisfies

∫ T

0

∫
�

yei dx dt = 0, 1 ≤ i ≤ M, (4)

and

y(T ) = 0, in �. (5)

One may come across with this kind of controllability problem while using Lions’s
sentinels method [8] to identifying parameters in incomplete data problems. It is in
this context, for instance, that the linear case (f (y) = ay) of problem (1), (4) and (5)
was solved by Massengo Mophou and Nakoulima in [9].

In this paper, we extend the results obtained in [9] to the semilinear case. More
precisely, we prove that the null controllability problem with constraints on the state
(1), (4) and (5) has a solution. The proof uses a Carleman inequality adapted to the
constraints (cf. Sect. 2.2) and a fixed-point method.

The main result of the paper is the following theorem.
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Theorem 1.1 Let � be a bounded open subset of R
N with boundary � of class C 2.

Let also f be a real function of class C 1, globally Lipschitz verifying (2). Then, for
every ei ∈ L2(Q), 1 ≤ i ≤ M , verifying (3) and y0 ∈ L2(�), there exists a control
v ∈ L2(Q) such that the solution y = y(v) of (1) satisfies (4) and (5). Moreover, the
control v can be chosen such that

‖v‖L2(Q) ≤ C‖y0‖L2(�), (6)

where C = C(�,ω,K,T ,
∑M

i=1 ‖ei‖L2(Q)) > 0 and K denotes the Lipschitz con-
stant of the function f .

The rest of the paper is organized as follows. Section 2 is devoted to proving the
null controllability problem with constraints on the state for the linearized system. In
Sect. 3, we prove Theorem 1.1.

2 Analysis of the Linearized System

Since we use a fixed-point argument to prove the main result, we need to analyze first
the controllability of the linearized system.

Let the function a be defined by

a(s) =
{

f (s)
s

, if s �= 0,

f ′(0), if s = 0.
(7)

Since f is a real C 1 function, globally Lipschitz, given any z ∈ L2(Q), the function
a is such that

‖a(z)‖L∞(Q) ≤ K, (8)

where K denotes now and in the sequel the Lipschitz constant of the function f .
For every z ∈ L2(Q), we consider the linearized system

∂y

∂t
− �y + a(z)y = vχω, in Q, (9a)

y = 0, on �, (9b)

y(0) = y0, in �. (9c)

Since vχω ∈ L2(Q), a(z) ∈ L∞(Q) and y0 ∈ L2(�), problem (9) has a unique
solution y = y(z) ∈ C(0, T ,L2(�)) ∩ L2(0, T ,H 1

0 (�)).
In the following of this section, we are interested in the controllability problem

with constraints on the state: Given a(z) ∈ L∞(Q), y0 ∈ L2(�) and ei in L2(Q), 1 ≤
i ≤ M, find v = v(z) in L2(Q) such that the solution of (9) satisfies (4) and (5).
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2.1 Equivalence to the Controllability Problem with Constraint on the Control

Proposition 2.1 Assume that the hypotheses of Theorem 1.1 are satisfied. Then, there
exists a positive real weight function θ (a precise definition of θ will be given later on)
such that: for every z ∈ L2(Q), there exist U = U (z) and Uθ = Uθ (z), two subspaces
of L2(ω × (0, T )), of finite dimension and u0 = u0(z) ∈ Uθ such that the null con-
trollability problem with constraint on the state (9), (4), (5) is equivalent to the null
controllability problem with constraint on control: Given a(z) ∈ L∞(Q), u0 ∈ Uθ

and y0 ∈ L2(�), find u = u(z) in L2(ωT ) such that

u ∈ U ⊥ (10)

and, if y = y(x, t, u) is solution of

∂y

∂t
− �y + a(z)y = (u0 + u)χω, in Q, (11a)

y = 0, on �, (11b)

y(0) = y0, in �, (11c)

y satisfies

y(x,T ,u) = 0, in �. (12)

In (10), U ⊥ denotes the orthogonal of U in L2(ωT ).

Proof To obtain the null controllability problem with constraint on the control (10)–
(12), we interpret the relations (4) using the adjoint state. More precisely, for each ei ,
1 ≤ i ≤ M , we consider the adjoint system

−∂pi

∂t
− �pi + a(z)pi = ei, in Q, (13a)

pi = 0, on �, (13b)

pi(T ) = 0, in �. (13c)

Since a(z) ∈ L∞(Q) and ei ∈ L2(Q), problem (13) admits a unique solution pi =
pi(z) in 
1,2(Q) = L2(0, T ,H 2(�) ∩ H 1

0 (�)) ∩ H 1(0, T ;L2(�)) (see [10]).
Multiplying both sides of the differential equation in (9) by pi , which is solution

of (13), and integrating in Q, we have

∫ T

0

∫
ω

v pi dx dt =
∫ T

0

∫
�

y ei dx dt −
∫

�

y0pi(0) dx, 1 ≤ i ≤ M.

Therefore, taking into account the conditions (4), we obtain

∫ T

0

∫
ω

v pi dx dt = −
∫

�

y0 pi(0) dx, 1 ≤ i ≤ M. (14)
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We set

U = Span(p1χω, . . . ,pMχω), (15)

the vector subspace of L2(ωT ) generated by the M functions piχω, 1 ≤ i ≤ M ,
which will be proved to be independent (see Lemma 2.1 below) and we denote by
U ⊥ the orthogonal of U in L2(ωT ). Then, we consider

Uθ = 1

θ
U , (16)

the vector subspace of L2(ωT ) generated by the M functions 1
θ
piχω, 1 ≤ i ≤ M ,

where θ is the positive function precisely defined later on by (25). Clearly, these
functions will also be independent.

Since the matrix (∫ T

0

∫
ω

1

θ
pi pj dx dt

)
i,j

is symmetric positive definite, there exists a unique u0 = u0(z) ∈ Uθ such that

−
∫

�

y0 pi(0) dx =
∫ T

0

∫
ω

u0 pi dx dt, 1 ≤ i ≤ M. (17)

Thus, combining (14) with (17), we deduce that
∫ T

0

∫
ω

(v − u0)pi dx dt = 0, 1 ≤ i ≤ M.

Consequently,

(v − u0)χω ∈ U ⊥.

We set

vχω − u0χω = uχω ∈ U ⊥. (18)

Then,

vχω = (u0 + u)χω. (19)

Therefore, replacing vχω by (u0 + u)χω in (9), we obtain (11).
Conversely, for every z ∈ L2(Q), assume that a(z) ∈ L∞(Q), y0 ∈ L2(�) and

ei ∈ L2(Q), 1 ≤ i ≤ M are given. Assume also that the solution of (11) satisfies
(12). Then, solving (13), we obtain the functions pi, 1 ≤ i ≤ M . Let Uθ and U be
respectively defined as in (16) and (15). Let also U ⊥ be the orthogonal of U in
L2(ω × (0, T )), u = u(z) belongs to U ⊥ and u0 verifies (17). Multiplying both sides
of the differential equation in (11) by pi and integrating by parts in Q, we have

∫ T

0

∫
ω

(u0 + u)pi dx dt =
∫ T

0

∫
�

y ei dx dt −
∫

�

y0 pi(0) dx, 1 ≤ i ≤ M.

Since u = u(z) belongs to U ⊥ and u0 verifies (17), this latter identity is reduced
to (4). �
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Remark 2.1 The function u0 is such that θu0 ∈ L2(ωT ). The choice of u0 in Uθ will
be necessary for the construction of the optimal control for the null controllability
problem with constraint on the control (10)–(12) in Sect. 2.3.

Lemma 2.1 Assume that (3) holds. Then, for every z ∈ L2(Q), the functions
piχω, 1 ≤ i ≤ M , are linearly independent. Moreover, the functions 1

θ
piχω , 1 ≤

i ≤ M , are also linearly independent.

Proof Let z ∈ L2(Q). For γi ∈ R,1 ≤ i ≤ M , let k̃(z) = ∑M
1=1 γipi(z) on �× (0, T )

be such that k̃(z)|ω×(0,T ) = 0. Since pi is solution of (13), we have

−∂k̃(z)

∂t
− �k̃(z) + a(z)k̃(z) =

M∑
i=1

γiei, in � × (0, T ),

k̃ = 0, on �.

Therefore, k̃(z) being identically zero on ω × (0, T ), we deduce that k̃ = 0 in � ×
(0, T ). This means that

∑M
i=1 γiei = 0 in � × (0, T ). Therefore,

M∑
i=1

γiei = 0, in ω × (0, T ),

and assumption (3) allows us to conclude that γi = 0 for 1 ≤ i ≤ M.

The second assertion of the lemma follows immediately. �

2.2 Adapted Carleman Inequalities

To solve the null controllability problem with constraint on the control (10)–(12), we
use Carleman inequalities adapted to the constraint (10), which themselves are conse-
quence of the adapted Carleman inequality. Thus, we consider an auxiliary function
ψ ∈ C2(�) which satisfies the following conditions:

ψ(x) > 0, ∀x ∈ �, (20a)

ψ(x) = 0, ∀x ∈ �, (20b)

|∇ψ(x)| �= 0, ∀x ∈ � − ω. (20c)

Such a function ψ exists according to Fursikov and Imanuvilov [3]. Then, for any
positive parameter value λ, we define the following weight functions:

ϕ(x, t) = eλ(m‖ψ‖L∞(�)+ψ(x))

t (T − t)
, (21)

η(x, t) = e2λm‖ψ‖L∞(�) − eλ(m‖ψ‖L∞(�)+ψ(x))

t (T − t)
, (22)
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for (x, t) ∈ Q and m > 1, and we adopt the following notations:

L = ∂

∂t
− � + a(z)I,

L∗ = − ∂

∂t
− � + a(z)I,

L∗
0 = − ∂

∂t
− �,

V = {ρ ∈ C∞(Q) such that ρ = 0, �},

where the function a defined by (7) satisfies ‖a(z)‖L∞(Q) ≤ K.

Then, we have the following Carleman inequality [3, 11, 12].

Proposition 2.2 Let ψ , ϕ and η be the functions defined respectively by (20a)–(22).
Then, there exist λ0 = λ0(�,ω) > 1 and s0 = s0(�,ω,T ) > 1 and there exists some
number C = C(�,ω) > 0 such that, for any λ ≥ λ0, any s ≥ s0, and any ρ ∈ V , the
following estimate holds:

∫ T

0

∫
�

e−2sη

sϕ

(∣∣∣∣∂ρ∂t

∣∣∣∣
2

+ |�ρ|2
)

dx dt

+
∫ T

0

∫
�

sλ2ϕe−2sη|∇ρ|2 dx dt +
∫ T

0

∫
�

s3λ4ϕ3e−2sη|ρ|2 dx dt

≤ C

(∫ T

0

∫
�

e−2sη|L∗
0ρ|2 dx dt +

∫ T

0

∫
ω

s3λ4ϕ3e−2sη|ρ|2 dx dt

)
. (23)

Proposition 2.3 Let ψ , ϕ and η be the functions defined respectively by (20a)–(22).
Then, there exist λ0 = λ0(�,ω,K) > 1 and s0 = s0(�,ω,K,T ) > 1 and there exists
some number C = C(�,ω,K,T ) > 0 such that, for any λ ≥ λ0, any s ≥ s0, and any
ρ ∈ V ,

∫ T

0

∫
�

e−2sη

sϕ

(∣∣∣∣∂ρ∂t

∣∣∣∣
2

+ |�ρ|2
)

dx dt

+
∫ T

0

∫
�

sλ2ϕe−2sη|∇ρ|2 dx dt +
∫ T

0

∫
�

s3λ4ϕ3e−2sη|ρ|2 dx dt

≤ C

(∫ T

0

∫
�

e−2sη|L∗ρ|2dx dt+
∫ T

0

∫
ω

s3λ4ϕ3e−2sη|ρ|2dx dt

)
. (24)

Proof It is consequence of (23). Indeed, if we write L∗
0 ρ = L∗ ρ − a(z)ρ, the

inequality (23) holds for all z ∈ L2(Q), for fixed λ ≥ λ0(�,ω) > 1 and s ≥
s0(�,ω,T ) > 1. Therefore, observing that
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∫ T

0

∫
�

e−2sη|L∗
0 ρ|2 dx dt

≤ 2

[∫ T

0

∫
�

e−2sη|L∗ ρ|2 dx dt + K2
∫ T

0

∫
�

e−2sη|ρ|2 dx dt

]
,

since ‖a(z)‖L∞(Q) ≤ K, and choosing s and λ sufficiently large depending on K,

we absorb the term 2K2
∫ T

0

∫
�

e−2sη|ρ|2 dx dt in the left-hand side and we deduce
from (23), the estimate (24). �

Since ϕ does not vanish on Q, we set

θ = ϕ−3/2esη. (25)

Then according to the definition of ϕ and η given respectively by (21) and (22), the
function θ is positive and 1

θ
is bounded. Thus, replacing ϕ−3/2esη by θ in (24), the

following inequality holds:

∫ T

0

∫
�

1

θ2
|ρ|2 dx dt ≤ C

(∫ T

0

∫
�

1

θ2ϕ3s3λ4
|L∗ρ|2 dx dt +

∫ T

0

∫
ω

1

θ2
|ρ|2 dx dt

)
.

Hence, since the functions 1
θ

and 1
ϕ

are bounded, s ≥ s0 > 1 and λ ≥ λ0 > 1, we get
the next observability inequality for any ρ ∈ V ,

∫ T

0

∫
�

1

θ2
|ρ|2 dx dt ≤ C

(∫ T

0

∫
�

|L∗ρ|2 dx dt +
∫ T

0

∫
ω

|ρ|2 dx dt

)
. (26)

Corollary 2.1 Let θ be defined by (25). Then, there exist λ0 = λ0(�,ω,K) > 1 and
s0 = s0(�,ω,K,T ) > 1 and there exists some number C = C(�,ω,K,T ) > 0 such
that, for fixed λ ≥ λ0 and s ≥ s0 and for any ρ ∈ V ,

∫
�

|ρ(0)|2 dx +
∫ T

0

∫
�

1

θ2
|ρ|2 dx dt

≤ C

(∫ T

0

∫
�

|L∗ρ|2 dx dt +
∫ T

0

∫
ω

|ρ|2 dx dt

)
. (27)

Proof We refer to [13, 14]. �

Remark 2.2 When U ⊥ = L2(ωT ), the null controllability problem (10)–(12) has no
constraint on the control. Therefore, using the observability inequality (27), one can
prove that the null controllability problem without constraint on the control holds (see
for example [11]). Since the control belongs to U ⊥ �= L2(ωT ), we need an observ-
ability inequality adapted to this constraint.

We denote

• P = P(z) the orthogonal projection operator from L2(ωT ) into U ,

• Pρ the orthogonal projection of ρχω, for ρ ∈ L2(Q).
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Proposition 2.4 (Adapted Carleman Inequality) Assume that (3) holds. Let θ be de-
fined by (25). Then, there exist λ0 = λ0(�,ω,K) > 1 and s0 = s0(�,ω,K,T ) > 1
and there exists some number C = C(�,ω,K,T ) > 0 such that, for any z ∈ L2(Q),
for fixed λ ≥ λ0 and s ≥ s0 and for any ρ ∈ V ,

∫
�

|ρ(0)|2 dx +
∫ T

0

∫
�

1

θ2
|ρ|2 dx dt

≤ C

(∫ T

0

∫
�

|L∗ρ|2 dx dt +
∫ T

0

∫
ω

|ρ − Pρ|2 dx dt

)
. (28)

The proof of this proposition requires the following lemmas:

Lemma 2.2 Assume that (3) holds. Let γ ∈ L∞(Q) and let qi be the solution of

−∂qi

∂t
− �qi + γ qi = ei, in Q, (29a)

qi = 0, on �, (29b)

qi(T ) = 0, in �. (29c)

We set Uγ = Span(q1χω, . . . , qMχω), the vector subspace of L2(ωT ) generated by

the M independent functions qiχω, 1 ≤ i ≤ M. Then, any function ρ verifying − ∂ρ
∂t

−
�ρ + γρ = 0 in ω × (0, T ) and ρ|ω ∈ Uγ is identically zero in ω × (0, T ).

Proof Let ρ be such that ρ|ω ∈ Uγ and − ∂ρ
∂t

− �ρ + γρ = 0 in ω × (0, T ). Then one
can find αi ∈ R, 1 ≤ i ≤ M , such that

ρ =
M∑
i=1

αi qiχω.

Therefore, for any ω′, open subset of ω, we have

−∂ρ

∂t
− �ρ + γρ =

M∑
i=1

αi

(
−∂qi

∂t
− �qi + γ qi

)
, in ω′ × (0, T ),

which in view of (29) gives

−∂ρ

∂t
− �ρ + γρ =

M∑
i=1

αiei, in ω′ × (0, T ). (30)

Consequently, using (30) and the fact that − ∂ρ
∂t

− �ρ + γρ = 0 in ω × (0, T ), it
follows that

M∑
i=1

αi ei = 0, in ω × (0, T ).

Then, thanks to (3), for all 1 ≤ i ≤ M , we have αi = 0. Hence, ρ = 0 in ω× (0, T ). �
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Lemma 2.3 Let (H,‖ · ‖H ) be a Hilbert space. For n ∈ N
∗, let {pn

i , 1 ≤ i ≤ M} be
a family of linearly independent functions and let hn ∈ Span(pn

1 , . . . , pn
M). Assume

that there exists a family of linear independent functions {qi, 1 ≤ i ≤ M} such that

pn
i → qi, strongly in H, 1 ≤ i ≤ M. (31)

Assume also that there exists C > 0, independent of n, such that ‖hn‖H ≤ C. Then,
there exists a subsequence of (hn) still denoted by (hn) such that

hn → h ∈ Span(q1, . . . , qM), strongly in H.

Proof Denote by (., .)H , the scalar product in H . Consider {p̂ n
i , 1 ≤ i ≤ M}, the

orthonormal basis obtained by applying the Gram-Schmidt algorithm to the family of
functions {pn

i , 1 ≤ i ≤ M}. Then,

p̂ n
i = wn

i

‖wn
i ‖H

, 1 ≤ i ≤ M, (32)

where

wn
1 = pn

1 , (33a)

wn
i = pn

i −
i−1∑
k=1

(pn
i , p̂n

k )H p̂n
k , 2 ≤ i ≤ M. (33b)

As ‖p̂ n
i ‖H = 1, 1 ≤ i ≤ M, we can extract a subsequence of (p̂ n

i ) still denoted (p̂ n
i )

such that

p̂ n
i ⇀ q̂i, weakly in H. (34)

Let us show by induction that, for 1 ≤ i ≤ M ,

wn
i → wi = qi −

i−1∑
k=1

(qi, q̂k)H q̂k, strongly in H. (35)

In view of (33a) and (31), we have

wn
1 → w1 = q1, strongly in H.

Thus, relation (35) is true for i = 1. Moreover,

p̂ n
1 = wn

1

‖wn
1‖H

→ q̂1 = w1

‖w1‖H

, strongly in H.

Now, assume that

wn
j → wj = qj −

j−1∑
k=1

(qj , q̂k)H q̂k, strongly in H for 1 ≤ j ≤ i − 1, 2 ≤ i ≤ M.
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Then,

p̂ n
j = wn

j

‖wn
j ‖H

→ q̂j = wj

‖wj‖H

, strongly in H, ∀j ≤ i − 1, 2 ≤ i ≤ M. (36)

Hence, using (33b), (31) and (36), we get

wn
i → wi = qi −

i−1∑
k=1

(qi, q̂k)H q̂k, strongly in H.

Thus, relation (35) is true for 1 ≤ i ≤ M. In addition,

p̂ n
i = wn

i

‖wn
i ‖H

→ q̂i = wi

‖wi‖H

strongly in H, 2 ≤ i ≤ M. (37)

Therefore, passing to the limit in (32) and (33), we obtain

q̂i = wi

‖wi‖H

, 1 ≤ i ≤ M,

where

w1 = q1,

wi = qi −
i−1∑
k=1

(qi, q̂k)H q̂k, 2 ≤ i ≤ M.

This means that the functions q̂i , 1 ≤ i ≤ M are deducted from qi, 1 ≤ i ≤ M , by the
Gram-Schmidt algorithm. Consequently, {q̂i , 1 ≤ i ≤ M} is an orthonormal basis,
since the family {qi, 1 ≤ i ≤ M} is linearly independent.

Next, as hn ∈ Span(pn
1 , . . . , pn

M), there exists βn
i ∈ R, 1 ≤ i ≤ M , such that

hn = ∑M
i=1 βn

i p̂ n
i . Consequently ‖hn‖H ≤ C if and only if

∑M
i=1 |βn

i |2 ≤ C2. Thus,
we can extract subsequence of (βn

i ) still denoted (βn
i ) such that βn

i → βi in R, 1 ≤
i ≤ M. Hence, hn → h = ∑M

i=1 βiq̂i strongly in H , since (37) holds. Thus, h ∈
Span(q̂1, . . . , q̂M) = Span(q1, . . . , qM). �

Proof of Proposition 2.4 We proceed by contradiction. Suppose that (28) does not
hold. Then, ∀n ∈ N∗, ∃zn ∈ L2(Q), ∃ρn ∈ V , such that

∫
�

|ρn(0)|2 dx +
∫ T

0

∫
�

1

θ2
|ρn|2 dx dt = 1, (38a)

∫ T

0

∫
�

|L∗
nρn|2 dx dt ≤ 1

n
, (38b)

∫ T

0

∫
ω

|ρn − Pnρn|2 dx dt ≤ 1

n
, (38c)
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where L∗
nρn = − ∂ρn

∂t
− �ρn + a(zn)ρn and Pn = P(zn) is the orthogonal projection

operator from L2(ωT ) into U (zn) = Span(p1(zn)χω, . . . ,pM(zn)χω).

Now, the rest of the proof consists in showing that (38) yields a contradiction. We
do it in three steps.

Step 1. We have

∫ T

0

∫
ω

1

θ2
|Pnρn|2 dx dt ≤ 2

∫ T

0

∫
ω

1

θ2
|ρn|2 dx dt + 2

∫ T

0

∫
ω

1

θ2
|ρn − Pnρn|2 dx dt.

Since 1/θ2 is bounded, it follows from (38) that

∫ T

0

∫
ω

1

θ2
|Pnρn|2 dx dt ≤ C.

Since Pnρn belongs to U (zn), which is of finite dimension,

‖Pnρn‖L2(ωT ) ≤ C. (39)

Hence, using again (38c), we deduce that

‖ρn‖L2(ωT ) ≤ C. (40)

Step 2. Let us define L2( 1
θ
,X) = {ρ ∈ L2(X),

∫
X

1
θ2 |ρ|2 dX < ∞}. Then, in view

of (38a), there exists a subsequence of (ρn) still denoted by (ρn) such that

ρn ⇀ ρ weakly in L2
(

1

θ
,Q

)
.

If we refer to the definition of (21)–(22) and the definition of 1
θ

given by (25), we
can see that (ρn) is bounded in L2(]β,T − β[;L2(�)), ∀β > 0. Then, we have in
particular, for every β > 0,

ρn ⇀ ρ, weakly in L2(]β,T − β[×�).

This implies that

ρn ⇀ ρ, weakly in D′(Q).

Therefore, using (40), we have

ρnχω ⇀ ρχω, weakly in L2(ωT ). (41)

According to the definition of a given by (7), we have ‖a(zn)‖L∞(Q) ≤ K. Since the
embedding of L∞(Q) into L2(Q) is continuous, there exists a positive constant C

such that ‖a(zn)‖L2(Q) ≤ C. Consequently, we can extract a subsequence of (a(zn))

(still called a(zn)) such that

a(zn)
∗
⇀ γ, weakly star in L∞(Q), (42)

a(zn) ⇀ γ, weakly in L2(Q). (43)
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Now, since pi(zn) is solution of (13), we deduce on the one hand that

‖pi(zn)‖L2(0,T ;H 1
0 (�)) ≤ C(�,T ,K)‖ei‖L2(Q), (44)

and on the other hand that pi(zn) verifies

−∂pi(zn)

∂t
− �pi(zn) = cn, in Q,

pi(zn) = 0, on �,

pi(zn)(T ) = 0, in �,

where cn = ei − a(zn)pi(zn) is uniformly bounded in L2(Q) according to (44)
and (8). Then, from the regularizing effect of the heat equation, pi(zn) is bounded
in 
1,2(Q) = (L2(0, T ;H 2(�) ∩ H 1

0 (�))) ∩ H 1(0, T ,L2(�)). Therefore, we can
extract a subsequence of (pi(zn)) (still called pi(zn)) such that

pi(zn) ⇀ qi, weakly in 
1,2(Q). (45)

Hence, using the compactness embedding of 
1,2(Q) into L2(0, T ,H 1
0 (�)), we have

pi(zn) → qi, strongly in L2(0, T ,H 1
0 (�)), 1 ≤ i ≤ M. (46)

Therefore, it can be shown using (43)–(46) that qi is solution of (29),

−∂qi

∂t
− �qi + γ qi = ei, in Q, (47a)

qi = 0, on �, (47b)

qi(T ) = 0, in �. (47c)

Since Pnρn belongs to U (zn) = Span(p1(zn)χω, . . . ,pM(zn)χω) and verifies (39),
it suffices to apply Lemma 2.3 with H = L2(ωT ), pn

i = pi(zn) and hn = Pnρn to
obtain that there exists g ∈ Uγ = Span(q1χω, . . . , qMχω) such that

Pnρn → g, strongly in L2(ωT ). (48)

As in view of (38c),

ρn − Pρn → 0, strongly in L2(ωT ), (49)

combining (49) with (48), we obtain

ρn → g, strongly in L2(ωT ).

Hence, from (41), we deduce on the one hand that

ρnχω → ρχω, strongly in L2(ωT ), (50)

and on the other hand that ρχω = g. This means that ρχω ∈ Uγ .
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Next, using (50) and (43), we have

L∗
nρn ⇀ −∂ρ

∂t
− �ρ + γρ, weakly in D′(ω × (0, T )),

which according to (38b) implies that

−∂ρ

∂t
− �ρ + γρ = 0, in ω × (0, T )

since

L∗
nρn → 0, strongly in L2(Q). (51)

In short, we proved that ρ is such that

−∂ρ

∂t
− �ρ + γρ = 0, in ω × (0, T ),

ρχω ∈ Uγ .

Therefore, Lemma 2.2 allows us to conclude that ρ = 0 on ω × (0, T ) and (50) be-
comes

ρn → 0, strongly in L2(ωT ). (52)

Step 3. Since ρn ∈ V , it follows from the inequality (27) that

∫
�

|ρn(0)|2 dx +
∫ T

0

∫
�

1

θ2
|ρn|2 dx dt

≤ C

(∫ T

0

∫
�

|L∗ρn|2 +
∫ T

0

∫
ω

|ρn|2 dx dt

)
.

Then, in view of (51) and (52), we deduce that

∫
�

|ρn(0)|2 dx +
∫ T

0

∫
�

1

θ2
|ρn|2 dx dt → 0,

when n → +∞. The contradiction occurs thanks to (38a). The proof of (28) is com-
plete. �

We also need the following estimates to prove that problem (10), (11), (5) has a
solution.

Proposition 2.5 Let θ be defined by (25). Let pi and u0 be respectively defined
by (13) and (17). Then, there exists C = C(�,K,T ,

∑M
i=1 ‖ei‖L2(Q)) > 0 such that,

for any z ∈ L2(Q),

‖θu0(z)‖L2(ωT ) ≤ C‖y0‖L2(�), (53a)

‖u0(z)‖L2(ωT ) ≤ C‖y0‖L2(�). (53b)
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To prove Proposition 2.5, we need the following results:

Lemma 2.4 Let pi and θ be respectively defined by (13) and (25). Let also Aθ(z) =
(
∫ T

0

∫
ω

1

θ
pi(z)pj (z) dx dt)ij , 1 ≤ i, j ≤ M . Then, there exists δ > 0 such that, for all

z ∈ L2(Q),

(Aθ (z)X(z),X(z))RM ≥ δ‖X(z)‖RM ,

where

(Aθ (z)X(z),X(z))RM =
∫ T

0

∫
ω

1

θ

(
M∑
i=1

Xi(z)pi(z)

)(
M∑

j=1

Xj(z)pj (z)

)
dx dt

and

X(z) = (X1(z), . . . ,XM(z)) ∈ R
M.

Proof We proceed by contradiction. Assume that, ∀n ∈ N
∗, ∃zn ∈ L2(Q), ∃X(zn) =

(X1(zn), . . . ,XM(zn)) ∈ R
M such that

(Aθ (zn)X(zn),X(zn))RM ≤ 1

n
‖X(zn)‖RM .

Set X̃(zn) = X(zn)
‖X(zn)‖

RM
. Then,

‖X̃(zn)‖RM =
√√√√ M∑

i=1

|X̃i(zn)|2 = 1,

(
Aθ(zn)X̃(zn), X̃(zn)

)
RM ≤ 1

n
.

Hence, we can extract subsequence of (X̃i(zn)), 1 ≤ i ≤ M , still called (X̃i(zn)), 1 ≤
i ≤ M , such that

X̃i(zn) → X̃i, in R, 1 ≤ i ≤ M.

Moreover,
∑M

i=1 |X̃i |2 = 1.

Let

ũn =
M∑
i=1

X̃i(zn)pi(zn).

Then, in view of (46),

ũn → ũ =
M∑
i=1

X̃iqi, strongly in L2(Q).
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And since ∫ T

0

∫
ω

1

θ
|ũn|2 dx dt = (

Aθ(zn)X̃(zn), X̃(zn)
)
RM ≤ 1

n
,

we deduce that
∫ T

0

∫
ω

1

θ
|ũ|2dx dt = 0. Consequently, ũ = 0 in ω × (0, T ).

As qi verifies (47), we have

−∂ũ

∂t
− �ũ + γ ũ =

M∑
i=1

X̃iei, in Q,

ũ = 0, on �,

ũ(T ) = 0, in �,

which combined with the fact that ũ = 0 in ω × (0, T ) gives ũ = 0 in � × (0, T ).

Thus

M∑
i=1

X̃iei = 0, in � × (0, T ).

Hence,

M∑
i=1

X̃iei = 0, in ω × (0, T )

and from assumption (3), we deduce that X̃i = 0, 1 ≤ i ≤ M. This is impossible
because

M∑
i=1

|X̃i |2 = 1.
�

Proof of Proposition 2.5 In view of (17), we have

∫ T

0

∫
ω

u0(z)pi(z) dx dt = −
∫

�

y0pi(z)(0) dx, 1 ≤ i ≤ M. (54)

Since u0(z) ∈ Span( 1
θ
p1(z)χω, . . . , 1

θ
pM(z)χω), there exists

α(z) = (α1(z), . . . , αM(z)) ∈ R
M

such that

u0(z) =
M∑

j=1

αi(z)
1

θ
pj (z)χω.
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Therefore, replacing u0(z) by
∑M

j=1 αj (z)
1
θ
pj (z)χω in (54), we obtain

∫ T

0

∫
ω

M∑
i=1

αj (z)
1

θ
pj (z)pi(z) dx dt = −

∫
�

y0pi(z)(0) dx, 1 ≤ i ≤ M,

from which we deduce that

∫ T

0

∫
ω

1

θ

(
M∑
i=1

αi(z)pi(z)

)(
M∑

j=1

αj (z)pj (z)

)
dx dt

= −
∫

�

y0
M∑
i=1

αi(z)pi(z)(0) dx.

Therefore, applying to this latter identity Lemma 2.4 with X(z) = α(z) to the left-
hand side and to the right-hand side, the Cauchy-Schwartz inequality, we get

δ‖α(z)‖2
RM ≤ ‖y0‖L2(�)

M∑
i=1

|αi(z)|‖pi(z)(0)‖L2(�). (55)

From the energy inequality for pi(z), solution of (13), it follows that

‖pi(z)(0)‖L2(�) ≤ C(�,K,T )‖ei‖L2(Q), 1 ≤ i ≤ M,

which combined with (55) and the fact that δ > 0 gives

‖α(z)‖2
RM ≤ δ−1C(�,K,T )‖y0‖L2(�)‖α(z)‖RM

√√√√ M∑
i=1

‖ei‖2
L2(Q)

. (56)

Finally, as from u0(z) = ∑M
j=1 αi(z)

1
θ
pj (z)χω , we have

‖u0(z)‖L2(ωT ) ≤
M∑

j=1

|αi(z)|1

θ
‖pj (z)‖L2(ωT ),

‖θu0(z)‖L2(ωT ) ≤
M∑

j=1

|αi(z)|‖pj (z)‖L2(ωT ),

using (56), the fact that 1
θ

and pj are respectively bounded in L∞(Q) and L2(Q),
and setting

C

(
�,K,T ,

√√√√ M∑
i=1

‖ei‖2
L2(Q)

)
= δ−1C(�,K,T )

√√√√ M∑
i=1

‖ei‖2
L2(Q)

we deduce that (53a) and (53b) hold. �
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2.3 Linear Null Controllability Problem with Constraint on the Control

We consider the following symmetric bilinear form

a(ρ, ρ̂) =
∫ T

0

∫
�

L∗ρ L∗ρ̂ dx dt +
∫ T

0

∫
ω

(ρ − Pρ)(ρ̂ − P ρ̂) dx dt. (57)

According to Proposition 2.4, this symmetric bilinear form is a scalar product
on V . Let V be the completion of V with respect to the norm

ρ �→ ‖ρ‖V = √
a(ρ,ρ). (58)

The closure of V is the Hilbert space V.

Let θ and u0 be respectively defined as in (25) and (17). Then, thanks to the
Cauchy-Schwartz inequality, (28) and (53a), the linear form defined on V by

ρ �→
∫ T

0

∫
�

u0χωρ dx dt +
∫

�

y0ρ(0) dx

is continuous on V . Therefore, the Lax-Milgram theorem allows us to say that, for
every y0 ∈ L2(�) and for any z ∈ L2(Q), there exists one and only one solution
ρθ = ρθ (z) in V of the variational equation,

a(ρθ , ρ) =
∫ T

0

∫
�

L∗ρθ L∗ρ dx dt +
∫ T

0

∫
ω

(ρ − Pρ)(ρθ − Pρθ) dx dt

=
∫ T

0

∫
�

u0χωρ dx dt +
∫

�

y0ρ(0) dx, ∀ρ ∈ V. (59)

Proposition 2.6 For any y0 ∈ L2(�) and for any z ∈ L2(Q), let ρθ be the unique
solution of (59), let

uθ = −(ρθχω − Pρθ) (60)

and

yθ = L∗ρθ . (61)

Then, the pair (uθ , yθ ) is such that (11), (10) and (5) hold. Moreover, there exists

C = C

(
�,ω,K,T ,

M∑
i=1

‖ei‖L2(Q)

)
> 0

such that

‖ρθ‖V ≤ C‖y0‖L2(�), (62a)

‖uθ‖L2(ωT ) ≤ C‖y0‖L2(�), (62b)

‖yθ‖L2(0,T ;H 1
0 (�)) ≤ C‖y0‖L2(�). (62c)



J Optim Theory Appl (2009) 143: 539–565 557

Proof One proceeds exactly as in [9, 13], using the variational equation (59) and
inequality (28). �

Proposition 2.7 For any y0 ∈ L2(�) and for any z ∈ L2(Q), there exists a unique
control u = u(z) such that

‖u(z)‖L2(ωT ) = min
ū(z)∈E

|ū(z)|L2(ωT ), (63)

where

E = {
ū(z) ∈ L2(ωT )| (ū(z), ȳ(z) = y(ū(z))) verifies (11), (10), (5)

}
.

Moreover, there exists

C = C

(
�,ω,K,T ,

M∑
i=1

‖ei‖L2(Q)

)
> 0

such that, for every z ∈ L2(Q),

‖u(z)‖L2(ωT ) ≤ C‖y0‖L2(�). (64)

Proof According to Proposition 2.6, the pair (uθ (z), yθ (z)) satisfies (11), (10) and
(5). Consequently, the set E is non empty. Since E is also a closed convex subset of
L2(ωT ), we deduce that there exists a unique control variable u(z) of minimal norm
in L2(ωT ) such that (u(z), y(z) = y(u(z))) solves (11), (10) and (5). This means that

‖u(z)‖L2(ωT ) ≤ ‖uθ (z)‖L2(ωT ).

Hence, using (62b), we obtain (64). �

Proposition 2.8 Let u(z) be the unique control verifying (63). Let also P be the
orthogonal projection operator from L2(ω × (0, T )) into U . Then,

u(z) = −(ρ(z)χω − Pρ(z)χω), (65)

where ρ(z) ∈ V is solution of

L∗ρ(z) = 0, in Q, (66a)

ρ(z) = 0, on �. (66b)

Moreover, there exists

C = C

(
�,ω,K,T ,

M∑
i=1

‖ei‖L2(Q)

)
> 0
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such that, for any z ∈ L2(Q),

‖ρ(z)‖V ≤ C‖y0‖L2(�), (67a)

‖ρ(z)‖L2(ωT ) ≤ C‖y0‖L2(�). (67b)

Proof The proof of Proposition 2.8 uses a penalization method. We also refer to [9]
for more details. �

Theorem 2.1 Assume that the hypotheses of Theorem 1.1 are satisfied. For any z ∈
L2(Q), let u0 = u0(z) ∈ Uθ be defined by (17) and let u = u(z) be the solution of (63).
Then, the control v = v(z) defined by

v = (u0 + u)χω (68)

is such that the pair (v, y(v)) verifies the null controllability problem with constraints
on the state associated to the linearized system (9), (4) and (5), and there exists

C = C

(
�,ω,K,T ,

M∑
i=1

‖ei‖L2(Q)

)
> 0

such that

‖v‖L2(Q) ≤ C‖y0‖L2(�). (69)

Proof We proved above that, for any z ∈ L2(Q), there exists a unique control u =
u(z) ∈ U ⊥, solution of (63) such that the pair (u, y = y(u)) verifies (11) and (5).
Therefore, Proposition 2.1 allows to say that the control v = (u0 +u)χω with u0 ∈ Uθ

is such that (v, y(v)) satisfies the null controllability problem with constraints on the
state associated to the linearized system (9), (4) and (5). Then, using (53b) and (64),
we deduce that

‖v‖L2(Q) ≤ C‖y0‖L2(�).
�

3 Proof of Theorem 1.1

In Sect. 2.3, we showed that, for every z ∈ L2(Q), there exists a control v ∈ L2(Q)

verifying (68) such that the pair (v, y(v)) satisfies the null controllability problem
with constraints on the state associated to the linearized system (9), (4) and (5). Thus,
we have constructed a nonlinear map

S : L2(Q) → L2(Q),

such that, for every z ∈ L2(Q), S(z) = y(v(z)) = y(z) is the solution of (9) with
v(z) = (u0 + u)χω , u0(z) ∈ Uθ and u(z) ∈ U ⊥. Now, proving that S has a fixed point
y ∈ L2(Q), such that S(y) = y, since a(y)y = f (y), will be sufficient to finish the
proof of Theorem 1.1.
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Proposition 3.1 Let f be a real function of class C 1, globally Lipschitz verifying (2).
Then:

(i) S is continuous.
(ii) S is compact.

(iii) The range of S is bounded; i.e.,

∃M > 0 : ‖S(z)‖L2(Q)) ≤ M, ∀z ∈ L2(Q).

3.1 Proof of the Continuity of S

We proceed in five steps.
Step 1. Let (zn) ∈ L2(Q) be such that zn → z strongly in L2(Q). Then, we can

extract a subsequence of (zn), still denoted (znk), such that znk → z almost every-
where in Q. Therefore, f being a function of class C 1, the function a defined by (7)
is continuous and we have

a(znk) → a(z), almost everywhere in Q.

And since Q is bounded and |a(znk)| ≤ K almost everywhere in Q the Lebesgue
theorem allows us to write

a(znk) → a(z), strongly in L2(Q). (70)

Step 2. Since Theorem 2.1 holds for every z ∈ L2(Q), it also holds for znk ∈
L2(Q). Thus, the control v(znk) is such that the solution ynk = y(znk) of

∂ynk

∂t
− �ynk + a(znk)ynk = v(znk)χω, in Q, (71a)

ynk = 0, on �, (71b)

ynk(0) = y0, in � (71c)

satisfies ∫ T

0

∫
�

ynk ei dx dt = 0, 1 ≤ i ≤ M, (72)

and

ynk(T ) = 0, in �. (73)

More precisely,

v(znk) = (u0(znk) + u(znk))χω, (74)

where, on the one hand, in view of (17),

u0(znk) ∈ Span

(
1

θ
p1(znk)χω, . . . ,

1

θ
pM(znk)χω

)
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verifies

−
∫

�

y0pi(znk)(0) dx =
∫ T

0

∫
ω

u0(znk)pi(znk) dx dt, 1 ≤ i ≤ M, (75)

with pi(znk) solution of

−∂pi(znk)

∂t
− �pi(znk) + a(znk)pi(znk) = ei, in Q, (76a)

pi(znk) = 0, on �, (76b)

pi(znk)(T ) = 0, in �. (76c)

On the other hand, if we denote by Pnk = P(znk) the orthogonal projection operator
from L2(ωT ) into U (znk) = Span(p1(znk), . . . , pM(znk)), in view of (65),

u(znk) = −(ρ(znk)χω − Pnkρ(znk)), (77)

ρ(znk) ∈ V, solution of

−∂ρ(znk)

∂t
− �ρ(znk) + a(znk)ρ(znk) = 0, in Q, (78a)

ρ(znk) = 0, on �. (78b)

Furthermore, according to (67), (53b), (53a), (64) and (69), there exists a positive
constant

C = C

(
�,ω,K,T ,

M∑
i=1

‖ei‖L2(Q)

)
> 0

independent of znk such that

‖ρ(znk)‖V ≤ ‖y0‖L2(�), (79a)

‖ρ(znk)‖L2(ωT ) ≤ C‖y0‖L2(�), (79b)

‖u0(znk)‖L2(ωT ) ≤ C‖y0‖L2(�), (79c)

‖θu0(znk)‖L2(ωT ) ≤ C‖y0‖L2(�), (79d)

‖u(znk)‖L2(ωT ) ≤ C‖y0‖L2(�), (79e)

‖v(znk)‖L2(Q) ≤ C‖y0‖L2(�). (79f)

Consequently, we can extract subsequences (ρ(znk)), (u0(znk)), (θu0(znk)) and
(u(znk)) (still denoted (ρ(znk)), (u0(znk)), (θu0(znk)) and (u(znk))) such that

ρ(znk) ⇀ ρ̃, weakly in V, (80a)

ρ(znk) ⇀ ρ̃, weakly in L2(ωT ), (80b)
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u0(znk) ⇀ w̃, weakly in L2(ωT ), (80c)

θu0(znk) ⇀ w̃1, weakly in L2(ωT ), (80d)

u(znk) ⇀ ũ, weakly in L2(ωT ). (80e)

Hence, from (74) and (79f), we obtain

v(znk) ⇀ ṽ = (w̃ + ũ)χω weakly in L2(Q). (81)

Step 3. Since ynk is solution of (71), using (79f) we have

‖ynk‖W(0,T ) ≤ C

(
�,ω,K,T ,

M∑
i=1

‖ei‖L2(Q)

)
‖y0‖L2(�), (82)

where

W(0, T ) =
{
ρ ∈ L2(0, T ;H 1

0 (�)),
∂ρ

∂t
∈ L2(0, T ;H−1(�))

}
.

Hence, there exists ỹ ∈ W(0, T ) such that

ynk ⇀ ỹ, weakly in W(0, T ). (83)

Moreover, the embedding of W(0, T ) into L2(0, T ,L2(�)) being compact, we have

ynk → ỹ, strongly in L2(Q). (84)

Therefore, passing to the limit in (71), (72) and (73), while using (70), (81), (83)
and (84), we deduce that (ṽ, ỹ = y(ṽ)) verifies

∂ỹ

∂t
− �ỹ + a(z)ỹ = ṽχω, in Q, (85a)

ỹ = 0, on �, (85b)

ỹ(0) = y0, in �, (85c)
∫ T

0

∫
�

ỹ ei dx dt = 0, 1 ≤ i ≤ M. (86)

and

ỹ(T ) = 0 in �. (87)

Step 4. Since pi(znk) is solution of (76), we deduce on the one hand that

‖pi(znk)‖L2(0,T ;H 1
0 (�)) ≤ C(�,T ,K)‖ei‖L2(Q), (88)

and on the other hand that pi(znk) verifies



562 J Optim Theory Appl (2009) 143: 539–565

−∂pi(znk)

∂t
− �pi(znk) = cnk, in Q,

pi(znk) = 0, on �,

pi(znk)(T ) = 0, in �,

where cnk = ei − a(znk)pi(znk) is uniformly bounded in L2(Q) according to (88)
and (8). Then, from the regularizing effect of the heat equation, pi(znk) is bounded
in 
1,2(Q).

Therefore, we can extract a subsequence of (pi(znk)) (still called pi(znk)) such
that

pi(znk) ⇀ qi, weakly in 
1,2(Q). (89)

Hence, using the compactness embedding of 
1,2(Q) into L2(0, T ,H 1
0 (�)), we have

pi(znk) → qi strongly in L2(0, T ,H 1
0 (�)), 1 ≤ i ≤ M. (90)

From the energy inequality for pi(znk) and (88), it follows that

‖pi(znk)(0)‖L2(�) ≤ C(�,T ,K)‖ei‖L2(Q). (91)

Therefore, passing to the limit in (76) while using (70), (89), (90), we get

−∂qi

∂t
− �qi + a(z)qi = ei, in Q,

qi = 0, on �,

qi(T ) = 0, in �,

and in view of (91),

pi(znk)(0) ⇀ qi(0), 1 ≤ i ≤ M weakly in L2(�). (92)

Thus, for each ei 1 ≤ i ≤ M , qi is solution of (13). Hence, thanks to uniqueness of
the solution of (13),

qi(z) = pi(z), 1 ≤ i ≤ M. (93)

Step 5. Since θu0(znk) ∈ Span(p1(znk)χω, . . . ,pM(znk)χω) and satisfies (79d),
using Lemma 2.3 with H = L2(ωT ), hn = θu0(znk), pn

i = p1(znk) while taking into
account (80d), (90) and (93), we deduce that there exists α̃j ∈ R, 1 ≤ j ≤ M such
that

θu0(znk) → w̃1 =
M∑

j=1

α̃jpj (z)χω, strongly in L2(ωT ).

Hence, 1
θ

being bounded in L∞(Q) and u0(znk) verifying (80c), it follows that

u0(znk) → w̃ =
M∑

j=1

α̃j

1

θ
pj (z)χω, strongly in L2(ωT ).



J Optim Theory Appl (2009) 143: 539–565 563

Passing to the limit in (75), while using (80c), (90), (92) and (93), we have

−
∫

�

y0 pi(0) dx =
∫ T

0

∫
ω

w̃ pi dx dt, 1 ≤ i ≤ M.

Therefore, the uniqueness of u0 ∈ Uθ which verifies (17), allows us to conclude that
u0(z) = w̃.

Next, since u(znk) ∈ U ⊥(znk) = Span(p1(znk)χω, . . . ,pM(znk)χω)⊥, we have

∫ T

0

∫
ω

u(znk)pi(znk) dx dt = 0, 1 ≤ i ≤ M.

Consequently, passing to the limit in this identity while using (80e), (90) and (93),
we deduce that ∫ T

0

∫
ω

ũpi dx dt = 0, 1 ≤ i ≤ M.

This means that ũ ∈ U ⊥ = Span(p1χω, . . . ,pMχω)⊥.
Now, as ρ(znk) ∈ V verifies (78) and (79b), if we apply inequality (24) to ρ(znk)

we obtain that ρ(znk) is bounded in (]β,T − β[;H 2(�)), ∀β > 0. Then, we have in
particular, for every β > 0,

ρ(znk) ⇀ ρ̃, weakly in L2(]β,T − β[×�),

ρ(znk) ⇀ ρ̃, weakly in L2(]β,T − β[×�).

This implies that

ρ(znk) ⇀ ρ̃, weakly in D′(Q),

ρ(znk) ⇀ ρ̃, weakly in D′(�).

Therefore setting L∗
nk ρ(znk) = − ∂ρ(znk)

∂t
− �ρ(znk) + a(znk)ρ(znk) and using (70),

we have L∗
nkρ(znk) ⇀ L∗ρ weakly in D′(Q). Hence, in view of (78), we deduce that

L∗ρ̃ = 0, in Q,

ρ̃ = 0, on �.

According to (79a) and the definition of the norm on V , we have

‖Pnkρ(znk) − ρ(znk)‖L2(ωT ) ≤ C

(
�,ω,K,T ,

M∑
i=1

‖ei‖L2(Q)

)
‖y0‖L2(�); (94)

Applying inequality (27) to ρ(znk) while taking into account (78) and (79b), we ob-
tain

∥∥∥∥1

θ
ρ(znk)

∥∥∥∥
L2(Q)

≤ C

(
�,ω,K,T ,

M∑
i=1

‖ei‖L2(Q)

)
‖y0‖L2(�). (95)
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Then, proceeding as in the Step 1 of the proof of Proposition 2.4, while using (94)
and (95), we deduce that

‖Pnkρ(znk)‖L2(ωT ) ≤ C

(
�,ω,K,T ,

M∑
i=1

‖ei‖L2(Q)

)
‖y0‖L2(�). (96)

Therefore, Pnk ρ(znk) being in U (znk), using Lemma 2.3 with H = L2(ωT ),hn =
Pnk ρ(znk), pn

i = pi(znk), while taking into account (90) and (93), we obtain

Pnk ρ(znk) → δ ∈ Span(p1(z)χω, . . . ,pM(z)χω).

This means that δ ∈ U . Now, using (77), (80e) and (80b), we get

u(znk) = −ρ(znk)χω + Pnkρ(znk) ⇀ −ρχω + δ = ũ, weakly in L2(ωT ).

Observing that P(ũ)=0 and P(δ)= δ because ũ∈ U ⊥ and δ ∈ U , from −ρχω + δ = ũ,
we derive −P(ρ) + δ = 0. This means that δ = P(ρ) and ũ = −ρχω + Pρ = u.

Therefore, relation (81) allows us to say that ṽ = u0(z) + u = v and it results that
the pair (v, y) verifies (9), (4) and (5).

3.2 Proof of the Compactness of S

The argument above show that, when z lies in bounded subset B of L2(Q), S(z) =
y(z) lies in bounded set of W(0, T ). Since W(0, T ) is compact in L2(Q), we deduce
that S(B) is relatively compact in L2(Q). Consequently, S is a compact operator.

3.3 Proof of the Boundedness of the Range of S

Let z ∈ L2(Q). Since S(z) = y(z) is solution of (9) with v(z) satisfying (69), we have

‖y(z)‖L2(0,T ;H 1
0 (�)) ≤ C

(
�,ω,K,T ,

M∑
i=1

‖ei‖L2(Q)

)
‖y0‖L2(�).

Hence, the embedding of L2(0, T ;H 1
0 (�)) into L2(Q) being continuous, it follows

that

‖y(z)‖L2(Q) ≤ C

(
�,ω,K,T ,

M∑
i=1

‖ei‖L2(Q)

)
‖y0‖L2(�).

Finally, in view of Proposition 3.1, the hypotheses of Schauder fixed-point The-
orem are satisfied. Consequently, the operator S has a fixed point y. The proof of
Theorem 1.1 is then complete. �
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