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Abstract We make use of the Banach contraction mapping principle to prove the
linear convergence of a regularization algorithm for strongly monotone Ky Fan in-
equalities that satisfy a Lipschitz-type condition recently introduced by Mastroeni.
We then modify the proposed algorithm to obtain a line search-free algorithm which
does not require the Lipschitz-type condition. We apply the proposed algorithms to
implement inexact proximal methods for solving monotone (not necessarily strongly
monotone) Ky Fan inequalities. Applications to variational inequality and comple-
mentarity problems are discussed. As a consequence, a linearly convergent derivative-
free algorithm without line search for strongly monotone nonlinear complementarity
problem is obtained. Application to a Nash-Cournot equilibrium model is discussed
and some preliminary computational results are reported.
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1 Introduction

Let C be a nonempty closed convex set in a real Hilbert space H and f : C x C — R.
We consider the following problem:

(P) Find x* € C such that f(x*,y) >0, forallyeC.
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We will refer to this problem as the Ky Fan inequality due to his results in this
field [1]. Problem (P) is very general in the sense that it includes, as special cases, the
optimization problem, the variational inequality, the saddle point problem, the Nash
equilibrium problem in noncooperative games, the Kakutani fixed point problem and
others (see for instance [2-9] and the references quoted therein). The interest of this
problem is that it unifies all these particular problems in a convenient way. More-
over, many methods devoted to solving one of these problems can be extended, with
suitable modifications, to solving Problem (P). It is worth mentioning that when f is
convex and subdifferentiable on C with respect to the second variable, then (P) can
be formulated as a generalized variational inequality of the form

Find x* € C, z* € 9, f (x*, x*) such that (z*,y —x*) >0, forall y € C,

where df>(x*, x*) denotes the subdifferential of f(x*,.) at x*.

In recent years, methods for solving Problem (P) have been studied extensively.
One of the most popular methods is the proximal point method. This method was
introduced first by Martinet [10] for variational inequalities and then was extended by
Rockafellar [11] for finding the zero point of a maximal monotone operator. Moudafi
[6] and Konnov [12] further extended the proximal point method to Problem (P) with
monotone and weakly monotone bifunctions respectively.

Another solution-approach to Problem (P) is the auxiliary problem principle. This
principle was introduced first to optimization problems by Cohen [13] and then ex-
tended to variational inequalities in [14]. Recently, Mastroeni [4] further extended the
auxiliary problem principle to Problem (P) involving strongly monotone bifunctions
satisfying a certain Lipschitz-type condition. Noor [8] used the auxiliary problem
principle to develop iterative algorithms for solving (P) where the bifunctions f were
supposed to be partially relaxed strongly monotone.

Other solution methods well developed in mathematical programming and vari-
ational inequalities such as the gap function, extragradient and bundle methods re-
cently have been extended to Problem (P) [5, 9, 12, 15].

In this paper, first we make use of the Banach contraction mapping principle to
prove linear convergence of a regularization algorithm for strongly monotone Ky
Fan inequalities that satisfy a Lipschitz-type condition introduced in [4]. Then, we
apply the algorithm to strongly monotone Lipschitzian variational inequalities. As
a consequence, we obtain a new linearly convergent derivative-free algorithm for
strongly monotone complementarity problems. The obtained linear convergence rate
allows the algorithm to be coupled with inexact proximal point methods for solving
monotone (not necessarily strong) problem (P) satisfying the Lipschitz-type condi-
tion introduced in [4]. Finally, we propose a line-search free algorithm for the strong
monotone problem (P) which does not require the Lipschitz-type condition as the
algorithm presented in Sect. 2.

The rest of the paper is organized as follows. In Sect. 2, we describe an algorithm
for a strongly monotone problem (P) and prove its linear convergence-rate. This algo-
rithm is then applied in Sect. 3 to strongly monotone variational inequalities and com-
plementarity problems. A new derivative-free linearly convergent algorithm without
line search for strongly monotone complementarity problems is described at the end
of this section. Section 4 is devoted to present an algorithm which does not require

@ Springer



J Optim Theory Appl (2009) 142: 185-204 187

the above mentioned Lipschitz-type condition. In Sect. 5, we apply the algorithms
obtained in the Sects. 3 and 4 to implement inexact proximal point methods for solv-
ing monotone (not necessarily strong) Problem (P). We close the paper with some
computational experiments and results for a Nash-Cournot equilibrium model.

2 Linearly Convergent Algorithm

First of all, we recall the following well-known definitions on monotonicity that we
need in the sequel.

Definition 2.1 (Seee.g. [2]) Let f : C x C — RU{+o0}. The bifunction f is said to
be monotone on C if f(x,y)+ f(y,x) <0, forall x, y € C. It is said to be strongly
monotone on C with modulus 7 > 0 if f(x,y) + f(y,x) < —tl|lx — y||?, for all
x,yeC.

Throughout the paper we suppose that the bifunction f satisfies the following
blanket assumption.

Assumption A For each x € C, the function f(x,-) is proper, closed convex and
subdifferentiable on C with respect to the second variable.
For each x € C, we define the mapping S by taking

$(x) = argmin{pf (x, y) + (1/2)lly — x|}, ey

where p > 0. As usual, we refer to p as a regularization parameter. Since the objective
function is strongly convex, problem (1) admits a unique solution. Thus the mapping
S is well defined and single valued.

The following lemma can be found, for example, in [4] (see also [15]).

Lemma 2.1 Let S be defined by (1). Then, x* is a solution to (P) if and only if
x*=8Sx").

Lemma 2.1 suggests an iterative algorithm for solving (P) by taking x**! = §(x¥).
It has been proved in [4] that, with suitable values of the regularization parameter p,
the sequence {xk}kzo converges strongly to the unique solution of (P) when f is
strongly monotone and satisfies the following Lipschitz-type condition introduced by
Mastroeni in [4].
There exists constants L; > 0 and L, > O such that
fEN+f.2 2 f&x2) = Lilx =y = Lally — 2%,

Vx,y,z€C. 2)
Applying this inequality with x = z, we obtain

F )+ f(y.x)=—(Li+Ly)|x —y|>, Vx,yeC.
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Thus, if in addition f is strongly monotone on C with modulus 7, then T < L1 + L».
For convenience of presentation, we refer to L1 and L, as the Lipschitz constants
for f.

The following theorem shows that the sequence {xk }k>0 defined by XK = §(xF)
linearly converges to the unique solution of (P) under the same condition as in [4].

Theorem 2.1 Suppose that f is strongly monotone on C with modulus t and satisfies
the Lipschitz-type condition (2). Then, for any starting point x° € C, the sequence
{xK}k=0 defined by

XK= arglggg{pﬂx", y) + (1/2)lly — x* 1%} 3)
satisfies
5T — x| < aflxf —x*)%, ¥k >0, 4)

provided 0 < p < 1/(2Ly), where x* is the unique solution of (P) and o :=
1—2p(t — Ly).

Proof For each k > 0, let

fiex) = pf (5, x) + (1/2)lx — x¥)12.

Then, by the convexity of f(x¥, ), the function f; is strongly convex on C with
modulus 1, which implies

FE D+ @HT =Y+ (1/2)1x = KNP < i), YxeC,  (5)

where w¥ € 3 (x**1). Since x*¥*! is the solution of problem (3), (w*)” (x —x**+1) >
0 for every x € C. Thus, from (5), it follows that

[ D + A/l =P < fio, veec ©)
Applying (6) with x = x* and using the definition of f;, we obtain

5 —x* 12 < 2p[ f(xF, x%) — Fk, X))

S EaE R P ()
Since f is strongly monotone on C with modulus t,
FOE %) < —Ft, xb) — ok —x*)2
Substituting this inequality into (7), we have
e — )2 < (1= 2pD) Ix* - 2%

+2p[—f(x*, 2% — FEE D — I —XR12s 8)
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Now, applying the Lipschitz-type condition (2) with x = x*, y = x¥, and z = x¥*1,

we obtain

—F ek Y = p o, ) < = F O, XKD 4 Lyt — xR Lot — X F )2

< Lylx* — x¥ )2 4 Lok — X% 12, )

The latter inequality in (9) follows from f(x*, x*t1y > 0, since x* is the solution
of (P). Substituting into (8), we obtain

[ — ¥ < [1 = 2p(r — LDIIIx = x> = (1 = 2pLy) [x*F1 = K12 (10)
By the assumption 0 < p < 1/(2L5), it follows from (10) that

IF = x| < [1 = 2p(r — L) ]lIx* — x*|1?, (11)

which proves the theorem. g

The following corollary is immediate from Theorem 2.1.
Corollary 2.1 Let L1 <t and 0 < p < 1/(2L3). Then,
I =2 <l =)L VE=0,
where 0 <r:=./1—2p(t — L) < 1.

Remark 2.1 Since © < L1 + L, and 0 < p < 1/(2L3), it is easy to see that
2p(t — L1) < 1. Thus, r attains its minimal value at p = 1/(2L>).

Based upon Theorem 2.1 and Corollary 2.1, we can develop a linearly convergent
algorithm for solving problem (P) where f is r-strongly monotone on C and satis-
fies (2) with positive constants L1, Ly such that L < t. As usual, we call a point
x € C an g-solution to (P) if ||x — x™|| < &, where x* is an exact solution of (P).

Algorithm A1 (Strongly Monotone Problem)
Initialization. Choose a tolerance ¢ > 0 and 0 < p < 1/(2L,). Take xOecC.
Iteration k, k =0, 1, .... Execute Steps 1 and 2 below:

Step 1. Compute x**! by solving the strongly convex program

(Pr) 1= argryneig{pf(x", )+ A2y —xF)1%).

Step 2. If ||x*¥*1 — x*|| < e(1 — r)/r, with r := /T —2p(z — L1), then terminate:
x**1 is an g-solution to (P). Otherwise, increase k by 1 and go to iteration k.

Note that, by the contraction property

x5 — x*| < rllxf = x*||,  withr <1,
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it is easy to see that
A — 2 < /(= P =KL V= 0.
Hence,
I — e < A — 0 — X, k>0,
Thus, if
5T — XK < et —r)/r or AT —)Ix0 =2t <,

then indeed

x5 — x*|| <.

In this case, we can terminate the algorithm to obtain an e-solution. Clearly, Algo-
rithm A1 terminates after a finite number of iterations when ¢ > 0.

Remark 2.2 This algorithm has been presented in [4], but its linear convergence was
not proved there.

3 Application to Variational Inequality and Complementarity Problems

Let C C 'H be a nonempty, closed, convex set as before, ¢ be a proper, closed, convex
function on C, and let F : H — H be a multivalued mapping. Suppose that

CCdomF :={xeH: F(x)#0}.
Consider the following generalized (or multivalued) variational inequality:
(VIP) Find x* € C, w* € F(x*) such that (w*)7 (y —x*) >0, forallyeC.

It is well known [3] that, when C is a closed convex cone, then (VIP) becomes the
following complementarity problem:

(CP) Find x* € C, w* € F(x*) such that w* € C*, (w*)Tx* =0,
where
C*:={w|wlx>0, Vx e C}

is the polar cone of C.
We recall the following well known definitions (see e.g. [3]).

(1) The multivalued mapping F is said to be monotone on C if

(u—v)T(x—y)ZO, Vx,yeC, Yue F(x), Yv e F(y).
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(i) F is said to be strongly monotone on C with modulus t (shortly t-strongly
monotone) if

w—v)"x—y)=tlx—yl® Vx,yeC, YueF(x), YveF(y.
(iii) F 1is said to be Lipschitz on C with constant L (shortly L-Lipschitz) if

sup inf |lu—v| <Llx—yl, Vx,yeC.
ueF (x) VEF(Y)

Define the bifunction f by taking

flx,y) = sulz)uT(y—X)er(y)—w(x)- (12)
ueF(x

The lemma below follows immediately from Proposition 4.2 in [9].

Lemma 3.1 Let f be given by (12). The following statements hold:

@) If F is t-strongly monotone (resp. monotone) on C, then f is t-strongly
monotone (resp. monotone) on C.

(i) If F is Lipschitz on C with constant L > 0, then f satisfies the Lipschitz-type
condition (2); namely, for any § > 0, we have

FGN+ fh2) = fx,2) = (L)) x — yI* = (L&/lly —zI*. (13)

Suppose that F(x) is closed and bounded and that f is defined by (12). Then,
Problem (VIP) is equivalent to Problem (P) in the sense that their solution sets co-
incide. Lemma 3.1 allows us to apply Algorithm Al to strongly monotone mixed
variational inequalities.

Remark 3.1 In order to apply Algorithm A1 for strongly monotone variational in-
equality problems, it must hold that L1 < 7. By Lemma 3.1, L1 = L/(26). Hence,
L1 < 7 whenever § > L/(27).

Now, we apply Algorithm A1 to the complementarity Problem (CP) when C = R’}
and F is a single-valued and strongly monotone on C with modulus 7. In this case,
Problem (CP) takes the form

Find x* > 0 such that F(x*) >0, Fx*) x*=0. (14)

Note that, in this case, the subproblem

(Pr) xF = arg{gig{pf(xk, y) + (172)llx — x¥ 1%}

defined in Algorithm A1 takes the form

X = argrygig{pF(x")T(y — x5+ /2y — 2517,
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which in turns is
= P (68 — pF (),

where Pgn is the Euclidean projection of the point xk — pF(x*) onto R . Tt is easy

to verify that, if y = (y1, ..., yn)T is the Euclidean projection of x = (x, ..., x,,)T
onto R’} , then for every i =1, ..., n one has

yi=x;, ifx; >0,
x; =0, otherwise.

Suppose that F is single valued, t-strongly monotone, and L-Lipschitz continuous
on R’} . Then, Algorithm Al applied to the complementarity problem (CP) collapses
into the following algorithm.

Algorithm A2 (Strongly Monotone Complementarity Problem)
Initialization. Fixed a tolerance ¢ > 0. Choose § and p such that § > L/(27), 0 <
p < 1/(L8). Take x° > 0.

Iteration k, k =0, 1, .... Execute Steps 1 and 2 below:
Step 1. Compute x¥+! = (xll‘+1, <, xkM DT by taking

k+1 . k : k
x; T =x;, if pF,-(xk) <x7,

x¥t1.=0, otherwise,

where the subindex i stands for the ith coordinate of a vector.

Step 2. If ||x**1 — xK|| < e(1 — r)/r, with r := /T = 2p(L/(28) — 1), then termi-
nate: x**! is an e-solution to (14). Otherwise, increase k by 1 and go to
iteration k.

The validity and linear convergence of Algorithm A2 are immediate from those of
Algorithm Al. Algorithm A2 is quite different from the derivative-free algorithm of
Mangasarian and Solodov [16]. In fact, our algorithm is based upon the contraction
mapping approach and does not use a line search, whereas the algorithm in [16] is
based upon a gap function using a line search technique defined by the derivative of
the cost mapping F.

4 Avoiding the Lipschitz-Type Condition

In the previous section, we suppose that f satisfies the Lipschitz-type condition (2).
This assumption sometimes is not fulfilled; if it does, the constants L and L; are not
always easy to estimate. In this section, we consider the case where the bifunction f
does not necessarily satisfy the Lipschitz-type condition (2).

In the following algorithm, we do not require the Lipschitz-type condition (2).
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Algorithm A3
Initialization. Choose two sequences {ox }x>0 C (0, 1) and {pi}r>0 € (0, +00) such
that

00 o]
Zpkok:oo, Zakz<oo,
k=0 k=0

and proy € (0, 1/(27)) for all k > 0. Take xYec.
Iteration k, k =0, 1, .... Execute Steps 1 and 2 below:

Step 1. Find w* € H such that
o R )+ @HT (v -2 >0, vyec, (15)

where p; > 0 is a regularization parameter.

(a) If wk =0, then terminate: x is the solution of (P).
(b) If w* 0, go to Step 2.

Step 2. Set = xk +o% wk and xF 1 = Pc (ZkH), where P¢ stands for the Euclid-
ean projection on C.

Remark 4.1 Note that the main subproblem in Algorithm A3 is problem (15). This
problem can be solved, for example, as follows:

(i) Suppose that the convex program minyec f (x*, y) admits a solution. Let

My ;= —min f(xk, y) < +o00.
yeC

Take w* € H such that (w¥)7 (y — x*) > pxmy, for all y € C. Then, it is easy to
seethat w¥ is a solution to (15).
(i) Since f(x, -) is convex and subdifferentiable on C, we have

FEE N = 26D =xN vyec g eanf(h xh.
Since f(x*, x) =0, it follows that wk = —p,jlgk satisfies the inequality
o f &5y + @y — x>0, vyec.

Hence, w* solves the subproblem (15).

Now, we are in position to prove convergence of Algorithm A3.

Theorem 4.1 Suppose that f is strongly monotone with modulus t on C. Let {x* }e=0
be the sequence generated by Algorithm A3. Then, one has

5 —x* )12 < (A = 2ropo) IxF — x*1 + o Iwk |2, VE>0,  (16)

where x* is the unique solution of (P). Moreover, if the sequence {wk}kzo is bounded,
then {x*} converges to the solution x* of (P).
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Proof Let x* be the unique solution of (P). Since x**! = Pc(zF*1), we have
k+1 2 k1 2 k1 k12
B [ [F o e [ L (17)

Substituting

2=k box

k
in (17), we obtain

||Zk+1 _x*||2: k_x*||2

||xk + orw
= x* = x4+ 200 )T F = xF) + o wEP. (18)

Applying (15) with y = x*, we obtain

picf ek, x%) = T ek —x). (19)

Since f is strongly monotone on C with modulus 7 and since x* is a solution to (P),
we have

pic f (K x*) < —prtllxb = x| = g f 20 < —tprllxF = xF 2 (20)
From (18)—(20) it follows that
125 = x* )12 < (1 = 2zpp00) x5 — x*)12 + o w1 (1)
Substituting (21) into (17), we obtain

k1 2 k 2 20 k2 k] kD2
[*F — X% < (1 = 2zpp00) 16" — x*|1 + o w1 — [25F! — x|

< (1 =2zp0p)llx* — x* |12 + o llwh|I?,

which proves inequality (16).
To prove limy_, o x¥ = x*, using the assumption of boundedness of the sequence
{wk}, from (16) we have

x5+ — ¥ )2 < (1 = 2zopon) Xk — x*|1? + of M, VK, (22)

where M > 0 is a constant. Let Ay = 27pr0%; by the assumption on the sequences
{pox} and {ox}, we have that A; € (0, 1), for all £k > 0, and Z}(’io Ak = 00. On the
other hand, since ) to | 0 < +00, it is easy to see from (22) that ||x*T! — x*|| — 0,
as k — 4-o00. The theorem thus is proved. 0
Note that, since Algorithms A3 is not linearly convergent, we cannot use ||x ! —
x¥|| to check whether or not the iterate x¥*! is an e-solution as in Algorithm Al.
Instead, we may use the value of a gap function at the iterate to check its e-solution.
The following two gap functions have been defined for Problem (P) (see e.g. [5]):

g(x) == sup{f(x, y)} (23)
yeC
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and
h(x):= Iyneag{—f(x,y) — (/@) ly — x|}, (24)

where A > 0 is a regularization parameter.

The function g is the Auslender gap function and # is the Fukushima gap function
extended to Problem (P). Since f(x,-) is convex on C, evaluating these functions
amounts to solving convex programs. Note that the convex program defining g(x)
may not have a solution; if it has a solution, it may not be unique. The Fukushima
gap function can avoid this inconvenience because the objective function of the max-
imization program defining % (x) is strongly concave. It has been shown in [4] that
these are gap functions, which means that, for the g-function, g(x) > 0, for every
x € C,and g(x) =0, x € C if and only if x solves (P). The same properties are also
true for the h-function.

For checking the e-solution of an iterate, we use the following lemma that is an
immediate consequence of Propositions 4.1 and 4.2 in [5].

Lemma 4.1 Letr [ be strongly monotone on C with modulus t > 0. Then, for any
A > 0, we have:

() gx) = t|lx —x*||?, forallx € C.
(i) h(x) > (t = 1/@1M)||lx — x*|12, for all x € C, where x* is an arbitrary solution

of (P).

By Lemma 4.1, if one of the following inequalities hold true:

(i) g(xb) < e,
(i) h(x*) < (x —1/@20))e,

then x¥ is an e-solution to (P).

5 Application to the Proximal Point Method

In the preceding section, in order to ensure the convergence, we require that f is
strongly monotone on C. This requirement may not be fulfilled in some applications.

In [6], Moudafi has extended the proximal point method [11] to Problem (P),
where f is monotone. However, in [6] he does not discuss how to solve the sub-
problems raised in the proximal point method. In this section, we make used of the
linear convergence rate obtained in the preceding section to implement inexact prox-
imal point algorithms. Each iteration k = 1,2, ... of the proximal point method for
solving (P) requires that the following subproblem to be solved:

(Px) Find x*T! € C such that
Ckf(xk+1, )+ (ka — xk)T(y — xk+1) >0, foralyeC,

where cx > 0 is a regularization parameter. Since the computation of the exact solu-
tion of this subproblem can be quite difficult or even impossible in practice, the use
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of approximate solutions is essential for devising implementable algorithms. Rock-
afellar [11] suggests approximation criteria that enable one to replace the exact prob-
lem by an approximation problem. Using the ideas of Rockafellar, for Problem (P),
Moudafi [6] has proposed the following approximation problem:

(P,,) Find x*™! € C such that

afOE )+ K =Ty — XKy > —g, forall y € C.

It has been proved in [6] that, if f is upper hemicontinuous, monotone on C and if
£ (x, ) is proper, closed convex for each fixed x € C, then the sequence {x*};o gen-
erated by the proximal point algorithm using the approximation subproblems (P, )
weakly converges to a solution of (P) provided 0 < ¢ < ¢x < 400 for all £ > 0 large,
and g > 0 is such that ) 2 &x < +00.

In the sequel, instead of approximate solution defined by (P, ), we use the usual
definition of gi-solution. Recall that x € C is an g;-solution to (P) if ||x — x*| <
e, where x* is an exact solution of (P). We show that, if x¥ is an & solution to
the subproblem (P), then the sequence {x*} weakly converges to a solution of (P)
provided & N\ 0 (not necessarily Y 2, & < 400 as in the approximate rules that
have been used in [6, 11]).

To this end, for each k > 0, we define the bifunction f; on C by taking

Jele,y) = e f O, 3) + (= x) T (y = ). (25)

The following lemma says that the bifunction in subproblem (Py) is strongly
monotone and satisfies the Lipschitz-type condition (2).

Lemma 5.1 Suppose that f is monotone on C and satisfies Lipschitz-type condition
(2) with positive constants L1, Lo. Then, for any ci > 0, it holds true that:

(i) The bifunction fi is strongly monotone with modulus 1.
(i1) The bifunction fi satisfies the Lipschitz-type condition (2); namely,

e, M+ fiy, %) > felx, 2) — (ex Ly +1/@)) 1x — 11> — (kLo + Dy — 212,
(26)
forallx,y,zeCandt > 0.

Proof Since f is monotone on C, we have

S, y) + fi(y, x)
=af@ N+ =2 -0 +afG.0+ 0= -y
< —llx =yl
which proves (i). Let
ge(x,y) = (x =x9T (y = x).
We first show that g satisfies the condition (2). Indeed,
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8rk(x,y) + gk(y,2) — gk(x,2)
=@—2-0-0-H"c-»-6ac-2H"c-x
=0-0"e@—y =<lly—xllz=yl. 27)
Using the well-known elementary inequality
20y —xllllz =yl < (1/@O) Ny — x| + 2tz = y|*, ¥t >0,

we obtain from (27) that

g, ) + gk (y,2) = g (x, 2) — /@Dy —x|I> =tz — ylI*>,  ¥r>0.

Since f satisfies (2) with constants L, L, and since

S, y) = f(x,y) + ge(x, y),
it follows that f; also satisfies (2) with constants
Lyi=prL1+1/(4t) and Ly =ckLy+1t.
Namely,

S, ) + fi(y, x) = filx,2) = (ckLi + 1/@D)Ix = yII* = (cxLa + Dlly — 2,

for all x, y,z € C and t > 0. The statement (ii) is proved. O

Lemma 5.1 allows us to apply Algorithm Al to solve the subproblem (Py). Cou-
pling Algorithm A1l with the inexact proximal point algorithms, we obtain imple-
mentable algorithms for solving (P). For simplicity of notation, we take ¢y =c¢ > 0
for all k.

Let

Ly :=cLi+1/(4t), Lipp:=clLy+t (28)

be the Lipschitz constants for f; and let

rii=+/T=2cpe(1 = L), (29)

with Ly <t =1and 0 < px <1/(2L2), where p; denotes the regularization para-
meter for subproblem (Py).

Algorithm A4 (BFP Algorithm for Monotone Problems)
Initialization. Choose t > 0, ¢ > 0 and a positive sequence {& }x>0 such that:

ex 0 and Lgy=cL;i+1/4t) e (0,1).

Take x° € C.

Outer Loop Main Iteration k = 0,1,.... Choose pr such that 0 < pr < 1/
(2(cLy +1)). Take xK:0 := xk.

Inner Loop Iteration j =0, ..., Ji.
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Step 1. Compute x*/+1 by solving the strongly convex program:

xRt = arggféilcl{Pkfk(xk'j )+ A2 Ny = X572, (30)

Step 2. If

It — x5 < (= rer/ e, re= V1 =2pc(1 = Lia),

terminate the inner loop. Set x¥*! := x¥/+1 and go to the outer iteration k
with k := k 4 1. Otherwise, go to Step 1 of the inner iteration j with j :=
J+1

Note that, since fj is strongly monotone and satisfies the condition (2), by Al-
gorithm Al the inner loop in Algorithm A4 must terminate after a finite number of
iterations yielding an eg-solution of subproblem (Py).

Theorem 5.1 Suppose that, in addition to Assumption A, f is hemicontinuous on
C x C, monotone on C and satisfies the Lipschitz-type condition (2). Then, the se-
quence {xk }k>0 generated by Algorithm A4 weakly converges to a solution of (P).
Moreover, if Y ;2| ek < 400, then the following estimate holds true:

Iac* =¥ )2 < — 2 = I = xR s, Ve >0, (31)
where

Sk i= 6M (gg—1 + &x) + &7, + 2ex—18k,
with M > 0 being a constant.
Proof For each k, let x* be the exact solution of Problem (Pr). By Theorem 1 in [6],

the sequence {x¥} weakly converges to a solution, say, x* of (P). Since x**! is an
gx-solution of (Py), we have

Thus, the sequence {x¥} converges weakly to x* too. Indeed, since x* weakly con-
verges to x* and

x¥ — || <ex_y, withep — 0,
for every w € H, we have

waksz(xk_ik +ik)=wT(xk_)zk)+wak_)wa*’ k—>+OO,

which means that x* weakly converges to x*. Thus, both sequences {x¥ — x*} and
{x¥ — x*} are bounded. So, there is a positive constant M such that

Ix* —x* <M, | -x* <M. (32)
From the Theorem 1 in [6], we have

k1 2 _ sk 2 skl kg2
e e [ i e FRab sl (33)
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Now, by using the elementary inequality
lllall =151l < lla + bl

we have

|||‘xk+1 _x*” _ ||)_Ck+l _xk+1 |||2 S ||)Ek+1 _x*||2

which implies

||xk+l _x*||2 _ 2||xk+l k+1 _ )Ek+l ”

—x*[lllx
S ”xk+1 _x*||2 _ 2||xk+] _ x*” ||xk+1 _ )Ek+l ” + ”xk+] —)Ek+l ”2
k+1 _ *”2

=Ix x

Combining this inequality with
I — T <

we can write

kT — ¥ )% = 2ep I — ) < 7 — )2 (34)

On the other hand,
55 — x* )17 < (155 — x5+ ek = x* )2
< b =P 2k — = x4 EE - xR
<l = x* 12+ 26— IxF — x*l + ey (35)

From (33), (34), and (35), it follows that

R — )12 = 2 [t — x|
<l = X% 2o It — x|+ epoy — = 502 (36)
Now, we estimate || XXt — ¥%||2 as follows:
||)Ek+1 —)Ek||2 > |||)Ek+1 _xk+1 ” _ ”xk+l —)Ek|||2
_ ”xk-H —)Ek+1||2 _ 2||xk+1 _ gkl ||||xk+1 _ik“ + ||xk+1 _ ikllz

k1 _ k2 k1 _ okl kD _ ok
> = B =2 - T = 5

k+1 _ k k_ k2 k1 _ <kl k] ok
> (I = X = o = BT = 20 = R = X

k+1 _ k2 k 2 k1 kpyok _ k
e R o el Ea o e B o [ B

gk — Rk = EK|

Il
k1 _ k2 K+l _ kyyok ok
> = = 2 — Xt = 2

_ 2||xk+1 —)Ek+1 ||||.Xk+1 _ )Ek ”
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k k+1 _ k k+1 _ ok
[ X — x|l

> [lxF T — K12 — 24 1x x| = 2exlx

k+1

k+1 _ k2 k
x| x|

> |lx — 2e—1llx

k+1 k k —k
— 2ep (T = x4 116 = 7 )
k+1 k2 k+1 k k+1 k
> [ = )% = 2o I = = 2T — X
— 2ekk—1, (37
which follows from the inequalities

kT gk

kK =k
lx* —x"| <&—1 and | | < ex.

Substituting (37) into (36), we have

k+1 2 k+1
A — ¥ )12 = 2 kT — x|
k 2 k+1 k2 k 2
< b = 7 = R = xR 4 26 16— x4 e
+ 28— T — xR 26 5 — XK+ 265 e,
which implies

k+1 2 k 2 k+1 k2 k+1 k
[ — 12 <l = )% = = P 2 T — x| 4 26 16 — x|
+ef 2o 1T — XK 2ep 1T — xR 26016

e e P b
+ (e + 2D — 2]+ Qe+ deD I — x|
+ 8,3_1 + 2ep_18k.
Combining the above relation with (32), it follows that
T — 2 < [k — )2 — ekt — K2
< I = = I = R M (e + ) + ey + 261k
Setting
Sk = 6M (ep—1 + &r) + 8]%_1 + 216k,
we obtain

ok — ¥ )2 < lxf — )2 = I — K2 s, Ve 0.

From the assumption Y o, &k < +00, it is easy to see that Y po 8 < +00. The
inequality (31) thus is proved. d
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Remark 5.1

(i) The main subproblem in each iteration k of Algorithm A4 is the problem (30). By
the definition of f, this subproblem is a strongly convex mathematical program
of the form

ﬂquﬂ%%w+mu“—ﬁf@—xmruumw—ﬁW%.6&

(i) Applying (31) iteratively, we obtain

k
=t < 0 =P+ 85, VA =0,
j=0

which shows that convergence of the algorithm depends crucially on the starting
; 0
point x”.

In the case where the bifunction f does not satisfy the Lipschitz-type condition
(2), we can use Algorithm A3 to find an g, -solution of subproblem (P, ). In this case,
to check whether or not the iterate point x**1is an g;-solution of (Px), we may use the
Auslender or Fukushima gap function of the subequilibrium (Py). Let gx (resp. hy)
denote the Auslender (resp. Fukushima) gap function for Problem (Pj). Then, since
the bifunction of (Py) is strongly monotone with modulus 1, by Lemma 4.1, if either
gk (¥ Ty < g or hp(x¥1) < (1 — 1/(21))ex hold true, then x**! is an e -solution
to (Py).

6 Application to a Nash-Cournot Market Equilibrium Model

In this section, we use Algorithms Al and A3 to solve the following well-known
Nash-Cournot oligopolistic market equilibrium model that has been introduced in
some books and research papers (see e.g. [3, 19] and the references therein).
Suppose that there are n-firms producing a common homogeneous commodity and
that the price p; of the goods produced by firm i depends on the commodities of all
firms j, j =1,2,...,n. Let h; (x;) denote the cost of the firm i, that is assumed to be
dependent on only its production level x;. Then, the profit of firm i can be given as

fi(xl,xz,...,x,,)=xipi(x1,x2,...,xn)—hi(xi), i=1,2,...,n. (39)

Let C; CR,i =1,2,...,n, denote the strategy set of the firm i. Each firm i seeks
to maximize its own profit by choosing the corresponding production level x;.
Let C C R” denote the strategy set of the model. For convenience we write x =
(x1,x2, ..., x,)T € C and recall that x* = (x], x5, .. .,x;f)T € C is an equilibrium
point to this oligopolistic market equilibrium model if

fiGls o Xy X)) S filyL ),

VyieCi,i=1,2,...,n. (40)
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Denote

n
YY) == Y fi(, e Xie s Vi Xig ooy Xn),
i=1

d(x,y) =Y (x,y) —¥(x,x).

The problem of finding an equilibrium point of this model can be formulated as fol-
lows:

(P1) Find x* € C such that ¢ (x*, y) >0, forallyeC.

Suppose that the cost function /4; has the following form:

B, _~1/B; (B;+D/B

C:Xi + =T X ifl; <x;j <m;
i Rdd ] ﬂ_+] i i ’ I =M s
MOD=N Th uE G “D
cixi+ T Uy ifmi = xi =,
where ¢;, ¢;, /Si, ,B_i, ti,i =1,...,n,are given positive parameters, /;, u; are the lower

and upper bounds for the production level of firm i, and m; is the change level of the
cost function #;, which depends on the market demand. To ensure the convexity and
continuity of %;, we choose the parameter ¢; such that

B N\ /8, . N\ /B
a=at (M) - () @)
ﬁi+1 Ti Bi+1\ T

As in [18], we take the price function p(o) as

5000\ .
plo)=—— , withn=1.1. 43)
o

Suppose that the strategy set C of the model is the n-dimensional box given by
C:=Cix--xCp, (44)

where the interval C; := [I;, u;] is the strategy set of firm i, i = 1,...,n. It is easy
to see that the price function given by (43) with o := ) _7_, x; is convex on C and
that h; is convex on C;. These properties imply that ¢ (x, -) is convex with respect to
the second variable y on C. Let d2¢ (x, x) denote the subgradient of the bifunction ¢
with respect to the second variable at x. It has been indicated in [17] that the function
G(x) := 029 (x, x) is strongly monotone on C. We have used Algorithms Al and A3
to find an equilibrium point of the Nash-Cournot market model where the cost and
price functions are given by (41) and (43) respectively. For Algorithm A3, the two
sequences {ox} and {px} have been chosen such that the conditions

o0 o0
prok € (0. 1/Q21)), Y ox=+00, Y of <400
k=0 k=0
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250

200

ook b

Error: [|xk - x*||

T s e

) A S .1 V) S S S

0 5 10 15 20 25 7 30 35 40 45 50
Iteration: k

Fig. 1 Convergence behavior of Algorithm A1 and Algorithm A3 (n =6, ¢ = 1079%)

Table 1 Results computed with random data

Size Algorithm Al Algorithm A3
Iter CPU_time(s) Error Iter CPU_time(s) Error

5 23 1.75 0(107%) 51 0.49 0(1078%)
10 31 6.11 0(1078) 76 1.31 0(10~8)
20 48 34.11 0(1078) 129 9.99 0(10~8)
30 57 75.02 0(107%) 121 7.33 0(107%)
40 46 121.35 0(107%) 116 8.53 0(107%)
50 67 251.00 0(1078) 128 9.13 0(1078%)
100 79 1058.39 0(1078) 144 14.53 0(1078)
150 47 1590.51 0(107%) 123 18.00 0(1078%)
200 61 3415.56 0(107%) 150 24.34 0(107%)

are satisfied. Namely, we choose
o =0.499/(roy), or =1/ + 1)—0.55.

Both algorithms were implemented on a PC with 1.7 GHz, 512 Mb-RAM and 100 Gb
memory by the MATLAB software Version 7.0. The main subproblems were solved
with the MATLAB Optimization Toolbox by using FMINCON and QUADPROG
functions, respectively. The convergence behavior of Algorithms Al and A3 is shown
in Fig. 1. The horizontal and vertical axes show the iteration k and error err :=
llx* — x*||, respectively.

To test Algorithms Al and A3, we have implemented them with random data and
with

C:={xeR"|1=<x;<150, Vi=1,...,n}.
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The parameters c;, éi, Bi, 7;, forall i =1, ..., n, have been generated randomly in

the intervals [2, 10], [0.5, 1.5], [0.4, 1.4], [5, 6]. In this case, the convexity of ¢ (x, -)
and the monotonicity of G(x) := d2¢ (x, x) are still guaranteed. The computational
results are reported in Table 1 below.

The results in Table 1 show that Algorithm A1 spends more CPU time than Algo-
rithm A3. The reason is as follows: for Algorithm A3, by using (ii) of Remark 4.1,
at each iteration, we need only to compute g € dr¢ (x*, x¥); for Algorithm Al, at
each iteration, we have to solve convex subprograms which, for this model, are not
quadratic.
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