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Abstract This work is concerned with differentiable constrained vector optimization
problems. It focus on the intrinsic connection between positive linearly dependent
gradient sets and the distinct notions of regularity that come to play in this con-
text. The main aspect of this contribution is the development of regularity conditions,
based on the positive linear dependence or independence of gradient sets, for prob-
lems with general nonlinear constraints, without any convexity hypothesis. Being
easy to verify, these conditions might be useful to define termination criteria in the
development of algorithms.
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1 Introduction

The role of the constraint qualifications is well known in nonlinear programming.
These conditions are properties of the feasible points that, whenever satisfied by
a minimizer, ensure that the Karush-Kuhn-Tucker (KKT) condition holds at such
a point. Among the most known and used constraint qualifications, we can men-
tion the linear independence of the gradients of the active constraints, Mangasarian–
Fromovitz constraint qualification, quasinormality constraint qualification [1] and the
constant positive linear dependence (CPLD), recently introduced by Qi and Wei [2]
and further analyzed by Andreani, Martínez and Schuverdt [3].

On the other hand, in nonlinear vector optimization, qualification conditions in-
volving only the constraints are not enough to ensure, in general, the existence of the
nonzero multipliers associated to the objective functions. Therefore, one needs con-
ditions involving the problem functions, which in spite of the potential confusion, are
frequently called in the literature “constraint qualifications” [4, 5]. In this work, we
prefer to use the term regularity conditions whenever the problem functions involve
the objective functions and use the term constraint qualification if they do not in-
clude the objective functions. The concept of total regularity has been introduced by
Castellani, Mastroeni and Pappalardo [6] in the context of linear separation of sets,
following the ideas of the alternative theorem of generalized systems [7]. Bigi and
Pappalardo deepened the analysis to the more general theory of separation sets [8]
and extended this scheme to the vector optimization case [9].

There are many contributions dealing with constraint qualifications and regularity
conditions for the vector optimization problem. In most of them, as a consequence,
necessary conditions for Pareto optimal points are obtained. Among the conditions
most closely related to those of the current work, we can mention those of Maeda [5],
Preda and Chitescu [10] and Giorgi, Jiménez and Novo [11].

For the differentiable vector optimization problem with inequality constraints,
Maeda reviews several constraint qualifications, establishes relationships among
them and derives KKT necessary conditions for Pareto points. Preda and Chitescu de-
velop similar results to Maeda for the semidifferentiable case, but their conclusions
are limited to problems under convexity assumptions. More recently, the previous
results were extended by Giorgi, Jiménez and Novo to the equality and inequality
cases, assuming Dini or Hadamard differentiable functions. These authors introduce
new constraint qualifications, analyze the relationships among them, and give several
KKT necessary conditions to a local Pareto minimal point.

In this work, regularity conditions established in the mentioned papers are revis-
ited within the framework of the positive linear dependence (PLD) and positive linear
independence (PLI) properties of the sets of gradient vectors. In mathematical pro-
gramming, these concepts were employed in [12, 13]. More recently, these notions
have been used by Qi and Wei [2] and by Andreani, Martínez and Schuverdt [3] in
the context of sequential quadratic programming and augmented Lagrangian meth-
ods, respectively.

We assume that the feasible set is stated explicitly by means of equality and in-
equality constraints and apply these properties to characterize the classes of multipli-
ers introduced by Bigi and Pappalardo [9].
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The main contribution of this paper is to bring the positive linear dependence
into the vector optimization scenario, not only restating already known regularity
conditions within this perspective, but also presenting new results along such point of
view, without any convexity assumption. Besides being easily computable, since they
rest upon gradient evaluations, the new conditions might be useful in the development
of algorithms, particularly in the definition of termination criteria.

Through this work, we use different tools to present and prove the results as well
as to relate them to others in the literature. For instance, the classic theorems of
the alternative can be stated in a compact way in terms of sets of vectors, which is
a primal approach. Our proofs, based on the geometric and algebraic concepts of
PLD and PLI, follow a primal-dual point of view. In order to enlarge the reader’s
perspective, we restate also the results in terms of sets of vectors.

This paper is organized as follows. We start by defining the general problem, some
notation and basic properties in Sect. 2. In Sect. 3, the different classes of regularity
for feasible points are characterized and the relationships with known results are es-
tablished. Finally, comments and concluding remarks are drawn in Sect. 4.

2 Preliminaries

Let us consider the following vector optimization problem (VOP),

min F(x) = (f1(x), f2(x), . . . , fr (x))T ,

s.t. hi(x) = 0, i ∈ I,

gj (x) ≤ 0, j ∈ J,

where fk : R
n → R, k ∈ K ≡ {1, . . . , r}, hi : R

n → R, i ∈ I ≡ {1, . . . ,m}, gj :
R

n → R, j ∈ J ≡ {1, . . . , p} are continuously differentiable functions, and for which
the order is with respect to the cone int(Rr+) ∪ {0}, that is, given F : R

n → R
r ,

F(x̂) ≤ F(x̃) ⇔ F(x̂) − F(x̃) ∈ int(Rr+) ∪ {0}. We define the constraint set as

X = {x ∈ R
n : hi(x) = 0, i ∈ I, gj (x) ≤ 0, j ∈ J }

and the active set index related to the inequality constraints as

A(x) = {j ∈ J : gj (x) = 0}.
We recall the associated notion of weak Pareto optimality in the following defini-

tion.

Definition 2.1 A vector x� ∈ X is said to be a weakly Pareto optimal point if there
does not exist another vector x ∈ X such that fk(x) < fk(x

�) for all k ∈ K .

When the ordering cone is R
r+, the vector optimization problem is known as the

Pareto optimization problem and its optimality related notion gives rise to Pareto
optimal solutions. Since this work focuses on the properties of the feasible points
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rather than the optimal solutions, we do not put emphasis on the different optimality
notions.

The next result states the Fritz-John necessary condition for weak Pareto optimal-
ity.

Theorem 2.1 [14] Let us consider the VOP problem and let the functions involved
be continuously differentiable at x� ∈ X. A necessary condition for x� to be a weak
Pareto point is that there exist vectors θ ∈ R

r+, λ ∈ R
p
+ and μ ∈ R

m such that

∑

k∈K

θk∇fk(x
�) +

∑

j∈J

λj∇gj (x
�) +

∑

i∈I

μi∇hi(x
�) = 0, (1)

λjgj (x
�) = 0, j ∈ J, (2)

(θ, λ,μ) 	= (0,0,0). (3)

The nonzero vector (θ, λ,μ) satisfying (1)–(3) is generally known as the Fritz-
John multiplier vector. Let M(x�) denote the set of such vectors associated to x�.

Unfortunately, the Fritz-John condition does not guarantee by itself that the mul-
tipliers θk, k ∈ K , associated to the objective functions are all nonzero. In fact, from
(1)–(3), one cannot even ensure the existence of at least a single θk > 0. To strengthen
this result, it is necessary to have some regularity on the problem. Following the clas-
sification made by Bigi and Pappalardo [9], we state the notions of regularity that we
are going to use in this work.

Definition 2.2 Given x ∈ X such that M(x) 	= ∅, we say that:

(a) x is weak-regular if there exists (θ, λ,μ) ∈ M(x) with θ 	= 0.
(b) x is totally weak-regular if, for all (θ, λ,μ) ∈ M(x), there exists k ∈ K such that

θk 	= 0.
(c) x is regular if there exists (θ, λ,μ) ∈ M(x) with θk > 0 for all k ∈ K .
(d) x is totally regular if, for all (θ, λ,μ) ∈ M(x), one has θk > 0 for all k ∈ K .

Naturally, notion (d) implies (b) and (c), and in turn notions (b) and (c) imply (a).
Note that notions (b) and (c) are not related, as can be seen from the examples pro-
vided in [9].

These four notions of regularity were already characterized by Bigi [15] in terms
of alternative theorems and by means of Mangasarian-Fromovitz related conditions.
In this work, we analyze the relationships between such notions and the concepts of
positive linear dependence and independence.

It is worth mentioning that, although the regularity analysis is essentially of in-
terest for solution candidates, the regularity notion is a property of feasible points.
For the VOP, the existence of Fritz-John multipliers at a feasible point allows these
multipliers to take part in (1) in several ways, so that the objective functions effec-
tively influence the relation (1) in different degrees. The distinct regularity notions
of Definition 2.2 provide such possible combinations; and the existence of Fritz-John
multipliers associated to feasible points is usually enough to obtain theoretical results,
avoiding the assumption of a weak Pareto point.
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2.1 Properties of Gradient Sets

We review the concepts of positive linear dependence and independence of vectors
introduced by Davis [12] and used by many authors, like Robinson and Meyer [16],
Robinson [17] and Qi and Wei [2]. These concepts are crucial in the development of
the results of the next section.

Definition 2.3 Let V = {v1, . . . , vq} and W = {w1, . . . ,w�} be two finite sets of vec-
tors in R

n. The pair of sets (V ,W) is positive linearly dependent (PLD) if there exist
scalars α ∈ R

q and β ∈ R
� such that α ≥ 0, (α,β) 	= (0,0) and

q∑

i=1

αivi +
�∑

j=1

βjwj = 0.

Otherwise, the pair of sets (V ,W) is positive linearly independent (PLI).

Remark 2.1 A single set V = {v1, . . . , vq} ⊂ R
n is PLD if there exists α ∈ R

q such
that α ≥ 0 and

∑q

i=1 αivi = 0. Otherwise, the set V is PLI.

Next, let us introduce some notation associated to a given set of vectors
V = {v1, . . . , vq} ⊂ R

n:

V − = {u ∈ R
n : 〈vi, u〉 < 0, i = 1, . . . , q},

V ⊥ = {u ∈ R
n : 〈vi, u〉 = 0, i = 1, . . . , q},

V � = {u ∈ R
n : 〈vi, u〉 ≤ 0, i = 1, . . . , q}.

Proposition 2.1 The following properties hold:

(a) The set V is PLI if and only if V − 	= ∅ (i.e., the set of inequalities 〈vi, u〉 < 0,
i = 1, . . . , q , has at least a nonzero solution u ∈ R

n).
(b) The pair (V ,W) is PLI if and only if W is linearly independent and V − ∩

W⊥ 	= ∅.
(c) Given the set V̂ = {̂v1, . . . , v̂p} ⊂ R

n, the pair (V ∪ V̂ ,W) is PLI if and only if
W is linearly independent and V − ∩ V̂ − ∩ W⊥ 	= ∅.

Proof Using the Gordan and Motzkin Theorems of the Alternative [18], the proofs
are straightforward. �

Given x ∈ R
n, let us introduce the following gradient sets associated to the VOP

functions:

F (x) = {∇fk(x) : k ∈ K}, H(x) = {∇hi(x) : i ∈ I },
G(x) = {∇gj (x) : j ∈ J }, GA(x) = {∇gj (x) : j ∈ A(x)}.

The next lemma states an equivalence property between the set of Fritz-John mul-
tipliers and the set of gradients of the VOP functions.
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Lemma 2.1 The set M(x�) 	= ∅ if and only if the pair (F (x�) ∪ GA(x�), H(x�)) is
PLD.

Proof Whenever M(x�) 	= ∅, the Fritz-John conditions (1)–(3) are equivalent to

∑

k∈K

θk∇fk(x
�) +

∑

j∈A(x�)

λj∇gj (x
�) +

∑

i∈I

μi∇hi(x
�) = 0,

λj ≥ 0, for all j ∈ A(x�),

λj = 0, for all j ∈ J − A(x�),

θk ≥ 0, for all k ∈ K,

with (θ, λ,μ) 	= (0,0,0). Then, by using Definition 2.3, such relationships are equiv-
alent to saying that (F (x�) ∪ GA(x�), H(x�)) is PLD. �

3 Regularity Conditions Based on PLD and PLI

Some preliminary properties of weak-regular and totally weak-regular points, already
established in [15] under a different perspective, are presented to further enlighten
the connections between the gradient vector sets of the constraints and the objective
functions of the VOP.

The next theorem provides necessary and sufficient conditions for a point to be
weak-regular.

Theorem 3.1 Let us consider the VOP and x� ∈ X.

(a) If there exist G0(x
�) ⊂ GA(x�) and H0(x

�) ⊂ H(x�) such that the pair (G0(x
�),

H0(x
�)) is PLI and (F (x�) ∪ G0(x

�), H0(x
�)) is PLD, then M(x�) 	= ∅ and x�

is weak-regular.
(b) If x� is weak-regular, then F (x�) is PLD, or there exist G0(x

�) ⊂ GA(x�) and
H0(x

�) ⊂ H(x�) such that the pair (G0(x
�), H0(x

�)) is PLI and (F (x�) ∪
G0(x

�), H0(x
�)) is PLD.

Proof (a) The proof is immediate.
(b) Let us suppose that x� weak-regular. Then, there exists (θ, λ,μ) ∈ M(x�) such

that θ 	= 0 and

∑

k∈K̃

θk∇fk(x
�) +

∑

j∈A(x�)

λj∇gj (x
�) +

∑

i∈I

μi∇hi(x
�) = 0, (4)

where K̃ = {k ∈ K | θk > 0} ⊆ K . Thus,

∑

k∈K̃

θk∇fk(x
�) = −

(∑

i∈I

μi∇hi(x
�) +

∑

j∈A(x�)

λj∇gj (x
�)

)
= u ∈ R

n.
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(i) If u = 0, then {∇fk(x
�) : k ∈ K̃} is PLD and so F (x�) is PLD.

(ii) If u 	= 0 then, by using Caratheodory’s lemma [1, p. 689], there exist index
sets J0 ⊂ A(x�) and I0 ⊂ I such that, defining G0(x

�) ≡ {∇gj (x
�) : j ∈ J0}

and H0(x
�) ≡ {∇hi(x

�) : i ∈ I0}, the pair (G0(x
�), H0(x

�)) is PLI and from (4)
it follows that ({∇fk(x

�) : k ∈ K̃} ∪ G0(x
�), H0(x

�)) is PLD. Thus (F (x�) ∪
G0(x

�), H0(x
�)) is PLD. �

In the next theorem, a necessary and sufficient condition for x� to be a totally
weak-regular point is stated.

Theorem 3.2 A point x� ∈ X for which M(x�) 	= ∅ is totally weak-regular if and
only if (F (x�) ∪ GA(x�), H(x�)) is PLD and (GA(x�), H(x�)) is PLI.

Proof (⇒) If (GA(x�), H(x�)) is PLD, then there exists a pair (λ̄, μ̄) 	= (0,0) with
λ̄ ≥ 0 such that

∑

j∈A(x�)

λ̄j∇gj (x
�) +

∑

i∈I

μ̄i∇hi(x
�) = 0.

Thus (θ, λ,μ) ≡ (0, λ̄, μ̄) ∈ M(x�) and x� would not be totally weak-regular.
(⇐) Let us assume that (F (x�)∪ GA(x�), H(x�)) PLD; then, by Lemma 2.1, there

exists (θ, λ,μ) ∈ M(x�) 	= ∅, (θ, λ,μ) 	= (0,0,0), θ ≥ 0, λ ≥ 0. This means that

∑

k∈K

θk∇fk(x
�) +

∑

j∈A(x�)

λj∇gj (x
�) +

∑

i∈I

μi∇hi(x
�) = 0. (5)

Now, since (GA(x�), H(x�)) is PLI, there does not exist a pair (α,β) 	= (0,0) with
α ≥ 0 such that

∑

j∈A(x�)

αj∇gj (x
�) +

∑

i∈I

βi∇hi(x
�) = 0.

Therefore, since λ ≥ 0, it follows from (5) that
∑

k∈K

θk∇fk(x
�) 	= 0, with θk ≥ 0,

and x� is totally weak-regular. �

The next definition recalls the Mangasarian–Fromovitz constraint qualification
(MFCQ, [19]).

Definition 3.1 The MFCQ holds at x ∈ X if:

(i) the set {∇hi(x) : i ∈ I } is linearly independent;
(ii) there exists d ∈ R

n such that

∇gj (x)T d < 0, j ∈ A(x),

∇hi(x)T d = 0, i ∈ I.
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Remark 3.1 The condition established in Definition 3.1 was used by Da Cunha and
Polak [14, Corollary 77, p. 114] to conclude that the multiplier vectors associated
to the set F (x) are not zero. Subsequently, Bigi [15, Theorem 2.2.2(i), p. 42] proved
that this property is a necessary and sufficient condition for a point to be totally weak-
regular.

Remark 3.2 Using the gradient sets introduced in the previous section and Propo-
sition 2.1(b), the MFCQ can be written as: the pair (GA(x), H(x)) is PLI. Hence,
Theorem 3.2 is equivalent to Theorem 2.2.2(i) of [15].

Now, we introduce the strict positive linear dependence (SPLD) regularity condi-
tion and the positive linear independence regularity condition (PLIRC). These condi-
tions are based on the positive linear dependence or independence of sets of vectors,
stated in Definition 2.3.

The main feature of the SPLD condition is that it is weaker than the Mangasarian-
Fromovitz regularity condition (MFRC) introduced by Bigi [15] and recalled here
in Definition 3.4. From the theoretical viewpoint, in the convergence theorems, the
weaker is the regularity condition satisfied at a stationary point, the stronger are the
related convergence results.

Concerning the second regularity condition introduced (PLIRC), we prove that it
is necessary and sufficient for total regularity at a feasible point at which there exists
a Fritz-John multiplier.

Definition 3.2 Let x be a feasible point of the VOP. The strict positive linear de-
pendence (SPLD) regularity condition holds at x if, for each s ∈ K , there exist sets
Fs(x) ⊂ F (x), ∇fs(x) ∈ Fs(x) such that (Fs(x) ∪ GA(x), H(x)) is PLD with corre-
sponding scalar αs > 0.

In the next theorem, the SPLD regularity condition is shown to be a necessary
and sufficient condition for the regularity of a feasible point for which there exists a
Fritz-John multiplier.

Theorem 3.3 Let us consider the VOP. The SPLD condition holds at x� ∈ X if and
only if, M(x�) 	= ∅ and x� is a regular point.

Proof (⇒) Let us assume first that x� fulfills the SPLD condition. Then, for each
s ∈ K ,

α(s)
s ∇fs(x

�) +
∑

k∈K,k 	=s

α
(s)
k ∇fk(x

�) +
∑

j∈A(x�)

β
(s)
j ∇gj (x

�) +
∑

i∈I

γ
(s)
i ∇hi(x

�) = 0,

(6)
with α

(s)
s > 0, α

(s)
k ≥ 0, β

(s)
j ≥ 0, γ (s) ∈ R

m. Summing (6) over all s and rearranging
conveniently the coefficients, we obtain

r∑

k=1

θk∇fk(x
�) +

∑

j∈A(x�)

λj∇gj (x
�) +

∑

i∈I

μi∇hi(x
�) = 0,
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where

θk = α
(k)
k +

r∑

s=1,s 	=k

α
(s)
k > 0,

for all k ∈ K , with α
(k)
k > 0 and where α

(s)
k ≥ 0 is the coefficient of ∇fk(x

�) in (6).
In case ∇fk(x

�) = 0, then the corresponding coefficient is taken θk > 0. In a similar
way, the coefficients λj and μi are determined,

λj =
r∑

s=1

β
(s)
j , μi =

r∑

s=1

γ
(s)
i .

Hence, we are able to obtain (θ, λ,μ), where θ ∈ R
r has all components greater than

zero, μ ∈ R
m and λ ∈ R

|A(x�)|
+ , possibly including some λj = 0 to complete the vector

λ ∈ R
p
+, and x� is regular.

(⇐) Now, if x� is regular, then there exists (θ̄ , λ̄, μ̄) ∈ M(x�) such that θ̄k > 0,
for all k ∈ K , λ̄ ∈ R

p
+, μ̄ ∈ R

m. That is,

r∑

k=1

θ̄k∇fk(x
�) +

∑

j∈A(x�)

λ̄j∇gj (x
�) +

∑

i∈I

μ̄i∇hi(x
�) = 0,

and the SPLD condition holds at x� for all s ∈ K . �

Remark 3.3 It is worth noticing that, due to the alternative result of Motzkin, the
fulfillment of the SPLD condition at x� can be rewritten as follows: for each s ∈ K ,
the system

∇fs(x
�)T d < 0, (7)

∇fk(x
�)T d ≤ 0, k ∈ K,k 	= s, (8)

∇gj (x
�)T d ≤ 0, j ∈ A(x�), (9)

∇hi(x
�)T d = 0, i ∈ I, (10)

has no solution d ∈ R
n. Therefore, the result expressed by our Theorem 3.3 is a

restatement of Theorem 2.2.1(ii) of Bigi’s thesis [15, p. 40].

Remark 3.4 For the sake of completeness, the system (7)-(10) is expressed in terms
of the gradient sets as follows: for all s ∈ K ,

{∇fs}− ∩ F �
s ∩ G�

A ∩ H⊥ = ∅,

where Fs = F − {∇fs} and all the gradients are evaluated at x�.

The next example shows that the SPLD regularity condition does not imply total
regularity.
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Example 3.1 Let us consider the VOP with n = 2, r = 2,m = 1,p = 2, f1(x) =
−x1, f2(x) = x2, h1(x) = x1 − x2

2 , and g1(x) = x2
1 − x2, g2(x) = −x1. We see that

x� = (0,0)T is a locally weak Pareto optimal point. The system obtained from the
Fritz-John necessary condition is given by

−θ1 − λ2 + μ1 = 0,

θ2 − λ1 = 0.

The SPLD holds at x� because (θ, λ,μ) = (1,1;1,0;1) ∈ M(x�), but x� is not totally
weak-regular because (θ1, θ2;λ1, λ2;μ1) = (0,0;0,1;1) ∈ M(x�) as well.

In the sequel, a regularity condition for VOP is introduced, which results to be
necessary and sufficient for total regularity.

Definition 3.3 Let x be a feasible point of the VOP. The positive linear independence
regularity condition (PLIRC) holds at x if:

(i) the pair (GA(x), H(x)) is PLI;
(ii) for each s ∈ K , there does not exist α ∈ R

r−1, αk ≥ 0, α 	= 0, βj ≥ 0, j ∈ A(x),
γ ∈ R

m such that
∑

k∈K−{s}
αk∇fk(x) +

∑

j∈A(x)

βj∇gj (x) +
∑

i∈I

γi∇hi(x) = 0. (11)

Remark 3.5 Due to Motzkin’s theorem, the second condition of PLIRC is equivalent
to: for each s ∈ K , there exists d ∈ R

n such that

∇fk(x)T d < 0, k ∈ K,k 	= s, (12)

∇gj (x)T d ≤ 0, j ∈ A(x), (13)

∇hi(x)T d = 0, i ∈ I. (14)

Remark 3.6 By using the gradient sets and the notation introduced in Remark 3.4,
the system (12)–(14) can be rewritten as: for all s ∈ K ,

Fs(x)− ∩ G�
A(x) ∩ H⊥(x) 	= ∅;

combining the first and the second conditions of the PLIRC, the relation above can
be equivalently stated as: for all s ∈ K , H(x) is LI and F −

s (x)∩ G−
A (x)∩ H⊥(x) 	= ∅.

Thus, applying Proposition 2.1(c), the PLIRC holds at x if and only if the pair of sets
(Fs(x) ∪ GA(x), H(x)) is PLI.

Theorem 3.4 Let x� ∈ X be such that M(x�) 	= ∅. The VOP is totally regular at x�

if and only if the PLIRC holds at x�.

Proof (⇒) To prove that a totally regular point x� does satisfy conditions (i) and (ii)
of Definition 3.3, we assume that the thesis does not hold and prove that x� cannot
be totally regular.
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If x� ∈ X is such that the pair (GA(x�), H(x�)) is PLD, then the pair (G(x�),

H(x�)) is also PLD and there exists scalar sets {ηi}i∈I , {ξj }j∈J with ξj ≥ 0, for all
j ∈ J ,

∑
i∈I |ηi | + ∑

j∈J ξj > 0 and

∑

i∈I

ηi∇hi(x
�) +

∑

j∈J

ξj∇gj (x
�) = 0.

Thus, (0, η, ξ) ∈ M(x�) and x� is not totally regular.
Now, if (GA(x�), H(x�)) is PLI, but the second condition is not verified, then

for each s ∈ K there exists (α,β, γ ) ∈ R
r−1+ × R

p
+ × R

m, (α,β, γ ) 	= (0,0,0),
βj = 0, j ∈ J − A(x�) such that (11) holds. Therefore, for each s ∈ K , we have
(θ,β, γ ) ∈ M(x�), θ ∈ R

r , with a null sth component and x� is not totally regular.
(⇐) Let us assume that x� is not totally regular. Since M(x�) 	= ∅, two cases should
be considered.

Case 1. If θk = 0 for all k ∈ K , the Fritz-John relationship (1) becomes
∑

j∈A(x�)

λj∇gj (x
�) +

∑

i∈I

μi∇hi(x
�) = 0,

so that the pair (GA(x�), H(x�)) is PLD, which contradicts the positive linearly inde-
pendence assumption.

Case 2. If there exists K̂ ⊂ K such that θk = 0 for all k ∈ K̂ , then the Fritz-John
condition (1) becomes:

∑

k∈K−K̂

θk∇fk(x
�) +

∑

j∈A(x�)

λj∇gj (x
�) +

∑

i∈I

μi∇hi(x
�) = 0. (15)

By the Motzkin alternative theorem, condition (ii) of Definition 3.3 is equivalent to:
for each s ∈ K there exists d ∈ R

n, such that:

∇fk(x
�)T d < 0, k ∈ K,k 	= s, (16)

∇gj (x
�)T d ≤ 0, j ∈ A(x�), (17)

∇hi(x
�)T d = 0, i ∈ I. (18)

Then, taking s ∈ K̂ and multiplying (15) by d satisfying (16)–(18), we obtain

0 =
∑

k∈K−K̂

θk∇fk(x
�)T d +

∑

j∈A(x�)

λj∇gj (x
�)T d < 0,

which is a contradiction. �

Another regularity condition from the literature (cf. [15]) that enlarges the per-
spective of the PLIRC condition is recalled below.

Definition 3.4 The Mangasarian-Fromovitz regularity condition (MFRC) is satisfied
at x ∈ X if:
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(i) the set {∇hi(x) : i ∈ I } is linearly independent;
(ii) for all s ∈ K , there exists d ∈ R

n so that

∇fk(x)T d < 0, k ∈ K,k 	= s,

∇gj (x)T d < 0, j ∈ A(x),

∇hi(x)T d = 0, i ∈ I.

Remark 3.7 Once again, we observe that the MFRC at x can be expressed in terms
of the gradient sets as follows:

(i) the set H(x) is LI;
(ii) for all s ∈ K the set F −

s (x) ∩ G−
A (x) ∩ H⊥(x) 	= ∅,

that is, from Proposition 2.1(c), for all s ∈ K , (Fs(x) ∪ GA(x), H(x)) is PLI.

The following result establishes a relationship between the PLIRC and MFRC.

Theorem 3.5 Let x� ∈ X be such that M(x�) 	= ∅. The PLIRC holds at x� if and only
if the MFRC holds at x�.

Proof The proof is immediate from Remarks 3.6 and 3.7. �

Remark 3.8 For vector optimization problems in which the index set I = ∅, the
MFRC becomes the so-called Cottle-type constraint qualification (CCQ, [5]).

Our PLIRC is an alternative to the MFRC, with the same order of complexity as far
as verification is concerned, but that exploits the positive linear independence notion.
Moreover, although distinct than MFRC, our condition turns out to be equivalent
to it. Therefore, a result similar to Bigi’s on the boundedness of a normalized set of
multipliers in case the MFRC holds [15, Theorem 2.3.2, p. 44] is valid for the PLIRC.

4 Conclusions

The main contribution of this work is the use of the concept of positive linear depen-
dence within the vector optimization context, (i) restating already known regularity
conditions within this perspective and (ii) presenting new results along such point of
view, without any convexity assumption.

The positive linear dependence and independence are tools that allow a direct
analysis of the interrelations among the gradients of the objective functions and the
constraints. As a consequence, the distinct notions of regularity that might occur
in the vector optimization field emerge naturally in connection with the Fritz-John
necessary condition for optimality. Approaches involving separation sets, contingent
cones, linearized approximations to the feasible set, etc., are related to the Fritz-John
condition indirectly by means of alternative results like Motzkin’s theorem.

For the general vector optimization problem, we have proved a sufficient condition
for weak regularity, based on the notions of PLI and PLD (Theorem 3.1). Moreover,
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PLIRC ↔ Totally
Regular

↔ MFRC

↙ ↘Theorem
2.2.1(ii)
([15]) ↘↖

SPLD ↙↗
Regular

Totally
Weak

Regular

↙↗ (GA, H) PLI
(MFCQ)

↘↖ (GA, H) PLI
(F ∪ GA, H) PLD↘ ↙

Theorem
3.1(a)

→ Weak
Regular

↔
Theorem
2.2.1(i)
([15])

↓
Theorem

3.1(b)

Fig. 1 Interrelations of regularity conditions for the VOP

we have shown that the positive linear dependence condition is necessary for totally
weak regularity (Theorem 3.2). The SPLD regularity condition has been introduced
for the VOP. It was proved to be necessary and sufficient for regularity in the general
case (Theorem 3.3). Another regularity condition proposed for the VOP, namely the
PLIRC, proved to be necessary and sufficient for total regularity (Theorem 3.4). De-
spite being distinct from the Mangasarian-Fromovitz regularity condition employed
by Bigi, our PLIRC turned out to be equivalent to MFRC (Theorem 3.5). Due to this
equivalence, a result on the boundedness of a normalized set of multipliers associ-
ated to a feasible point for which the PLIRC holds is valid. Finally, summarizing our
discussion, we have put all the results and remarks together in the diagram of Fig. 1.
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