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Abstract The notion of extended-well-posedness has been introduced by Zolezzi
for scalar minimization problems and has been further generalized to vector mini-
mization problems by Huang. In this paper, we study the extended well-posedness
properties of vector minimization problems in which the objective function is C-
quasiconvex. To achieve this task, we first study some stability properties of such
problems.
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1 Introduction

The notion of well-posedness for scalar optimization problems has been deeply stud-
ied (see e.g. Refs. [1, 2] for a review of the topic). Basically, two different approaches
are known. The former is due to Hadamard (Ref. [3]), and it concerns the stability of
the optimal solutions with respect to perturbations of the optimization problem (i.e.
of the objective function and the feasible region). For this reason, Hadamard well-
posedness is often called also “stability” and in this paper we follow this convention.
The latter has been introduced by Tykhonov (see Ref. [4]) and it is based on the con-
vergence of minimizing sequences. The relations between the two approaches have
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been widely studied (see e.g. Refs. [1, 2]). In Ref. [5] the notion of extended well-
posedness has been proposed. In some sense this notion unifies the ideas of Tykhonov
and Hadamard well-posedness, allowing perturbations of the objective function (but
not of the feasible region).

The development of the well-posedness notion for vector optimization problems
is less systematic. Several definitions have been proposed with regard to vector min-
imization problems (see e.g. Ref. [6]). Among recent contributions to this topic we
recall Refs. [7–10]. In particular, in Ref. [9] vector well-posedness notions have been
separated into two types: pointwise notions and global notions. The first class in-
cludes those definitions which consider a fixed solution point and deal with well-
posedness of the vector optimization problem at this point. The second class con-
siders those definitions which involve the efficient frontier as a whole. Moreover,
the notion of extended well-posedness has been generalized to vector optimization
problems by Huang in Refs. [11, 12].

One of the main tasks in studying well-posedness is to find classes of problems
that enjoy such property (see e.g. Refs. [1, 2]). It is worth to recall here that scalar
optimization problems with quasiconvex objective function are well-posed in the ex-
tended sense (Ref. [2]). The search for classes of well-posed optimization problems is
being performed also in the vector case. For instance, in Refs. [7–9] it has been shown
that vector quasiconvex functions enjoy well-posedness properties of Tykhonov type
and in Ref. [13] it has been proved that vector convex functions enjoy stability prop-
erties.

The previous considerations arise naturally the question whether vector optimiza-
tion problems with convex or quasiconvex objective function are well-posed in the
extended sense.

In this paper, we study an even more general problem. Indeed, we slightly gener-
alize Huang’s definition of extended well-posedness in order to consider also pertur-
bations of the feasible region of the problem. This leads to consider a well-posedness
notion for vector optimization problems that fully combines the features of stability
and Tykhonov well-posedness. Our main result shows that, under some assumptions,
vector quasiconvex functions enjoy such well-posedness property (and a fortiori en-
joy Huang’s extended well-posedness property). We show also that for convex vector
functions these well-posedness properties can be proved under simpler assumptions.
In order to prove such results, in Sect. 3 we first investigate the stability properties of
quasiconvex vector minimization problems.

2 Preliminaries

Consider a function f : R
m → R

l , let X be a closed convex subset of R
m and let

C ⊆ R
l be a closed convex pointed cone with nonempty interior. We deal with the

vector optimization problem

VP(f,X) C-minf (x), x ∈ X.

We recall that a point x ∈ X is said to be an efficient solution of VP(f,X) when

(f (X) − f (x)) ∩ (−C) = {0} ,
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while x ∈ X is said to be a weakly efficient solution of VP(f,X) when

(f (X) − f (x)) ∩ (−intC) = ∅.

We denote by Eff(f,X) the set of all efficient solutions of the problem VP(f,X) and
by Min(f,X) the set of all minimal points, i.e. the image of Eff(f,X) through the
objective function f . Further WEff(f,X) is the set of weakly efficient solutions and
WMin(f,X) the image of WEff(f,X) through the objective function f .

Convexity and its generalizations play a crucial role to define classes of functions
which imply well-posedness of VP(f,X). We briefly recall some classic definitions.

Definition 2.1 (Ref. [14]) A function f : R
m → R

l is said to be:

(i) C-convex if

f
(
λx1 + (1 − λ)x2

)
− λf

(
x1

)
− (1 − λ)f

(
x2

)
∈ −C,

for every x1, x2 ∈ R
m and λ ∈ [0,1].

(ii) C-quasiconvex if, for every y ∈ R
l the level sets

Lev(f, y) := {
x ∈ R

m : f (x) ∈ y − C
}

are either empty or convex.
(iii) Strictly C-quasiconvex when, ∀y ∈ R

l and x1, x2 ∈ X, x1 �= x2, t ∈ (0,1),

f
(
x1

)
, f

(
x2

)
∈ y − C

imply f (tx1 + (1 − t)x2) ∈ y − intC.

In the following, we set Lev(f, y,X) = Lev(f, y) ∩ X. The proof of the next
proposition is immediate and we omit it.

Proposition 2.1 Let f be continuous and strictly C-quasiconvex. Then:

(i) WEff(f,X) = Eff(f,X);
(ii) ∀y ∈ Min(f,X), f −1(y) is a singleton.

Since we deal with set convergence in Euclidean spaces, we shall consider the
Kuratowski-Painlevé set-convergence (see e.g. Ref. [2]). Let An be a sequence of
subsets of R

m. Set

LsAn :=
{
x ∈ R

m : x = lim
k→+∞xk, xk ∈ Ank

, nk a subsequence of the integers
}
,

LiAn :=
{
x ∈ R

m : x = lim
k→+∞xk, xk ∈ Ak, eventually

}
.

The set LsAn is called the upper limit of the sequence of sets An, while the set LiAn

is called the lower limit of An. We say that the sequence An converges in the sense
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of Kuratowski to the set A when

LsAn ⊆ A ⊆ LiAn

and we denote this convergence by An
K→ A.

When needed, we may use a fixed vector e ∈ intC. If no confusion occurs, we
may omit to explicitely assume what e represents in the following sections.

3 Stability of Quasiconvex Vector Minimization Problems

Stability properties of vector optimization problems have been studied in Ref. [13]
when the objective function is C-convex. Here we give some extensions of these
properties to the case of a C-quasiconvex function which have a relevant role in
the next section. Let fn : R

m → R
l be a sequence of functions and let Xn be a se-

quence of subsets of R
m. Together with problem VP(f,X), we consider problems

VP(fn,Xn) and we investigate the behaviour of the sets WEff(fn,Xn), Eff(fn,Xn),
WMin(fn,Xn), Min(fn,Xn), when fn and Xn “approach” to f and X respectively.

In the following, B denotes the closed unit ball both in R
m and in R

l . From the
context it will be clear to which space we refer.

Lemma 3.1 Let fn : R
m → R

l and f : R
m → R

l be continuous C-quasiconvex func-
tions, y ∈ R

l and yn → y. Assume that:

(i) fn → f in the continuous convergence.

(ii) Xn
K→ X.

(iii) Lev(f, y,X) is nonempty and bounded.

Then, ∀ε > 0, it holds that

Lev(fn, y
n,Xn) ⊆ Lev(f, y,X) + εB,

eventually.

Proof Assume the contrary. Then, one can find a number ε̄ > 0 such that, ∀n of some
subsequence, there exists a point xn ∈ Lev(fn, y

n,Xn) with

xn �∈ Lev(f, y,X) + ε̄B.

Let x̂ ∈ Lev(f, y,X). Since Xn
K→ X, we can find a sequence x̂n ∈ Xn such that

x̂n → x̂. Since f is continuous we have f (x̂n) → f (x̂) ∈ y −C and hence for α > 0,
we get fn(x̂

n) ∈ y − C + αe, eventually, i.e.

x̂n ∈ Lev(fn, y + αe,Xn). (1)

Moreover, since yn → y, for e ∈ intC and α > 0, we have yn ∈ y − C + αe,

eventually and hence it follows fn(x
n) ∈ y − C + αe, eventually. Let xn(t) =

txn + (1 − t)x̂n, t ∈ [0,1]. From the C-quasiconvexity of fn we obtain the exis-
tence of an integer n̄ = n̄(α) such that fn(x

n(t)) ∈ y − C + αe for every t ∈ [0,1]
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and n > n̄. For every n > n̄, we can find a number tn ∈ [0,1], which satisfies

xn(tn) ∈ ∂[Lev(f, y,X) + ε̄B].
Indeed, it is enough to observe that, since x̂n → x̂, it holds x̂n ∈ Lev(f, y,X) + ε̄B,

eventually, while xn �∈ Lev(f, y,X) + ε̄B .
Since Lev(f, y,X) + ε̄B is compact, without loss of generality we can assume

xn(tn) → x̃ ∈ ∂[Lev(f, y,X)+ ε̄B] and from fn → f in the continuous convergence,

we get also fn(x
n(tn)) → f (x̃) ∈ y − C + αe. Since Xn

K→ X, we get x̃ ∈ X and
since α is arbitrary we conclude f (x̃) ∈ y − C, i.e. x̃ ∈ Lev(f, y,X), which is a
contradiction. �

Theorem 3.1 Let fn : R
m → R

l , f : R
m → R

l be continuous, C-quasiconvex func-

tions with fn → f in the continuous convergence and Xn
K→ X. Assume that the level

sets of f , Lev(f, y,X), are bounded when nonempty.

(i) If y ∈ Min(f,X), there exists a sequence yn ∈ Min(fn,Xn) such that yn → y,

i.e. Li Min(fn,Xn) ⊇ Min(f,X).

(ii) If y ∈ Min(f,X), there exist x̄ ∈ f −1(y) and a sequence xn ∈ Eff(fn,Xn),

which admits a subsequence xnk converging to x̄.

(iii) If f is strictly C-quasiconvex, then we have:

(a) Min(fn,Xn)
K→ Min(f,X);

(b) Eff(fn,Xn)
K→ Eff(f,X).

Proof (i) Let y ∈ Min(f,X) and consider the level set Lev(f, y,X) = f −1(y). The
assumptions ensure f −1(y) is compact. Let x̄ ∈ f −1(y).

From x̄ ∈ X, and Xn
K→ X, we get the existence of a sequence zn ∈ Xn, zn → x̄.

Since fn → f in the continuous convergence, we get fn(z
n) → f (x̄) and hence, for

e ∈ intC, we can find a sequence αn → 0+ such that

fn(z
n) ∈ y + αne − C,

i.e. zn ∈ Lev(fn,w
n,Xn) with wn = y +αne → y. Using Lemma 3.1, for every ε > 0

we get

Lev(fn,w
n,Xn) ⊆ Lev(f, y,X) + εB = f −1(y) + εB, (2)

eventually. From the assumptions we get that both Lev(fn,w
n,Xn) and

fn(Lev(fn,w
n,Xn)) are compact. Hence Min(fn,Lev(fn,w

n,Xn)) is nonempty
(see Ref. [14]). From the assumptions and (2), we get

f
(
Lev(fn,w

n,Xn)
) ⊆ f (Lev(f, y,X) + εB) ,

eventually and hence

Min
(
fn,Lev(fn,w

n,Xn)
) ⊆ f (Lev(f, y,X) + εB)

= f
(
f −1(y) + εB

)
,
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eventually. Since f is continuous, for every δ > 0 there exists ε > 0 such that
f (f −1(y) + εB) ⊆ y + δB and hence

Min(fn,Lev(fn,w
n,Xn)) ⊆ y + δB,

eventually. Let yn ∈ Min(fn,Lev(fn,w
n,Xn)). Then we can assume yn → y, and

the proof is complete observing that Min(fn,Lev(fn,w
n,Xn)) ⊆ Min(fn,Xn).

(ii) Let yn ∈ Min(fn,Lev(fn,w
n,Xn)) be the sequence previously found at point

(i) and let xn ∈ f −1(yn). We have

xn ∈ Eff(fn,Lev(fn,w
n,Xn)) ⊆ Eff(fn,Xn).

Since Eff(fn,Lev(fn,w
n,Xn)) ⊆ Lev(fn,w

n,Xn) ⊆ f −1(y) + εB, eventually, ε is
arbitrary and f −1(y) is compact, we obtain the existence of a subsequence of xn

converging to some point x̄ ∈ f −1(y).
(iii) At point (i) we have proved Li Min(fn,Xn) ⊇ Min(f,X). It remains to prove

Ls Min(fn,Xn) ⊆ Min(f,X). Let yn ∈ Min(fn,Xn) and assume yn admits a con-
vergent subsequence ynk . Since f is strictly C-quasiconvex we have Min(f,X) =
WMin(f,X) (see Proposition 2.1). Assume by contradiction ynk → y �∈ Min(f,X).

Hence there exists x̄ ∈ X such that f (x̄) − y ∈ −intC. Since x̄ ∈ X and Xn
K→ X,

there exists a sequence xn ∈ Xn, with xn → x̄. From f (x̄) − y ∈ −intC, recalling
fnk

(xnk ) → f (x̄), it follows easily fnk
(xnk ) − ynk ∈ −intC − αe ⊆ −intC, eventu-

ally, which contradicts ynk ∈ Min(fnk
,Xnk

) and a) is proved. To prove b) it is enough
to recall f −1(y) is a singleton and the proof easily follows from ii). �

Remark 3.1 One can easily check that in Theorem 3.1 the boundedness assumption
on the level sets can be replaced with the weaker requirement that f −1(y) is bounded
for every y ∈ Min(f,X). This condition is certainly satisfied when f is strictly C-
quasiconvex (see Proposition 2.1).

Remark 3.2 It is known that every C-convex functions is continuous (see Ref. [15]).
Hence, when f and fn are C-convex functions, the continuity assumption in Theo-
rem 3.1 is superfluous. Further, in this case, in Theorem 3.1, it is enough to require
the existence of y ∈ R

l such that Lev(f, y,X) is nonempty and bounded. Indeed for
a C-convex function, the boundedness of one of the nonempty level sets Lev(f, y,X)

is equivalent to the boundedness of all the level sets (see Ref. [13]).

4 Extended Well-Posedness of Quasiconvex Vector Minimization Problems

The concept of extended well-posedness for vector (and also set-valued) optimization
problems is due to Huang (see Refs. [11, 12]), who has generalized a concept intro-
duced in the scalar case by Zolezzi (see Ref. [5]). In this section we introduce a slight
generalization of Huang’s definition and we show that vector optimization problems
with quasiconvex or convex objective functions enjoy, under certain assumptions, this
well-posedness property. Throughout this section we assume WEff(f,X) �= ∅. Fur-
ther d(y,A) = inf{‖y − a‖ , a ∈ A} denotes the distance of a point y ∈ R

l from a set
A ⊆ R

l . We introduce first the following definition.
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Definition 4.1 Let fn : R
m → R

l be a sequence of functions, let f : R
m → R

l and let
Xn be a sequence of subsets of R

m. Problem VP(f,X) satisfies property (P) (with
respect to the perturbations defined by the sequences fn and Xn) when, for every
sequence xn ∈ Xn such that

(fn(Xn) − fn(x
n)) ∩ (−intC − εne) = ∅, (3)

for some sequence εn → 0+, there exists a subsequence xnk of xn such that
d(xnk ,WEff(f,X)) → 0, as k → +∞.

It can be shown that the previous definition does not depend on the choice of the
vector e ∈ intC. The proof of this statement can be given along the lines of Proposi-
tion 3.3 in Ref. [7].

Observe that when WEff(f,X) is compact, the requirement d(xnk ,WEff(f,X)) →
0, amounts to the existence of a point x̄ ∈ WEff(f,X) such that xnk converges to x̄.

Theorem 4.1 Let f : R
m → R

l and fn : R
m → R

l be continuous and C-quasicon-
vex, with fn → f in the continuous convergence. Let Xn be a sequence of closed

convex subsets of R
m such that Xn

K→ X. Assume that, for every y ∈ R
l , Lev(f, y,X)

is bounded and let WEff(f,X) be bounded. Assume further that there exists n̄ ∈ N

such that Lev(fn, y,Xn) is bounded for every y ∈ R
l and for every n > n̄. Then,

problem VP(f,X) satisfies property (P) with respect to the perturbations defined by
the sequences fn and Xn.

Proof Let

WEffεne(fn,Xn) = {x ∈ Xn : (fn(Xn) − fn(x)) ∩ (−intC − εne) = ∅}.
Assume that VP(f,X) does not satisfy property (P). Then we can find sequences
εn → 0+, xn ∈ WEffεne(fn,Xn), such that, for some δ > 0, it holds that xn �∈
WEff(f,X) +δB, eventually.

We claim that for every sufficiently large n there exists a point zn ∈ ∂[WEff(f,X)+
δB] such that zn ∈ WEffεne(fn,Xn). Indeed, if such a zn does not exist, we would
have for some n

WEffεne (fn,Xn) ⊆ int
[
WEff (f,X) + δB

] ∪ [
WEff(f,X) + δB

]c
. (4)

Clearly WEffεne(fn,Xn) ∩ [WEff(f,X) + δB]c �= ∅. We now prove that

WEffεne (fn,Xn) ∩ int
[
WEff(f,X) + δB

] �= ∅, (5)

eventually. Since

WEff (fn,Xn) ⊆ WEffεne (fn,Xn) ,

it is enough to prove that

WEff (fn,Xn) ∩ int[WEff(f,X) + δB] �= ∅, (6)
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eventually. Let y ∈ f (X) be fixed. The level set Lev(f, y,X) is nonempty since
f −1(y) ⊆ Lev(f, y,X) and from the assumptions we obtain that both Lev(f, y,X)

and f (Lev(f, y,X)) are compact.
It follows (see Ref. [14]) that Min(f,Lev(f, y,X)) is nonempty and since

Min(f,Lev(f, y,X)) ⊆ Min(f,X) also Min(f,X) is nonempty.
Let y ∈ Min(f,X). From Theorem 3.1(ii), we get the existence of a point x̄ ∈

f −1(y) ⊆ Eff(f,X) and a sequence vn ∈ Eff(fn,Xn), which admits a subsequence
converging to x̄. Avoiding relabeling, we can assume, without loss of generality,
vn → x̄.

Recalling Eff(f,X) ⊆ WEff(f,X), it follows easily that (6) holds and hence (5)
holds.

Since there exists n̄ ∈ N such that Lev(fn, y,Xn) is bounded ∀y ∈ R
l and for

all n > n̄, the sets WEffεne(fn,Xn) are connected, nonempty and closed for n >

n̄ (see Theorem 4 in Ref. [7]) and hence (4) cannot hold. It follows the existence
of a sequence zn ∈ ∂[WEff(f,X) + δB] ∩ WEffεne(fn,Xn). Since WEff(f,X) is

compact, we can assume zn converges to a point z̄ and since Xn
K→ X, it follows z̄ ∈

X. Since zn ∈ WEffεne(fn,Xn) it follows z̄ ∈ WEff(f,X). Indeed, if z̄ /∈ WEff(f,X),
there exists x ∈ X such that f (x) − f (z̄) ∈ −intC and hence we can find a positive
number δ̄, such that

f (x) − f (z̄) ∈ −intC − δ̄e. (7)

Since x ∈ X, there exists a sequence wn → x, wn ∈ Xn and from (7), we
obtain fn(w

n) − fn(z
n) ∈ −intC − δ̄e, eventually, which contradicts to zn ∈

WEffεne(fn,Xn). To complete the proof it is enough to observe that from zn ∈
∂[WEff(f,X) + δB] we get the contradiction z̄ /∈ WEff(f,X). �

Remark 4.1 Actually, we cannot apply Lemma 3.1, to achieve boundedness of
Lev(fn, y,Xn) from the same property for Lev(f, y,X). Indeed here we require
something stronger, namely that it can be fixed the same n̄ for every y, while
Lemma 3.1 implies only that such n̄ exists for every y, possibly depending on it.

When f and fn are C-convex functions, the assumptions of Theorem 4.1 can be
simplified. Indeed, we get the following:

Corollary 4.1 Let f : R
m → R

l and fn : R
m → R

l be C-convex functions, with
fn → f in the continuous convergence and assume that WEff(f,X) is bounded.
Then, problem VP(f,X) satisfies property (P) with respect to the perturbations de-
fined by fn and Xn.

Proof It is known (see Ref. [15]) that C-convex functions are continuous. If ȳ =
f (x̄), with x̄ ∈ WEff(f,X), the level set Lev(f, ȳ,X) is clearly nonempty and fur-
ther we have Lev(f, ȳ,X) ⊆ WEff(f,X). Indeed, assume there exists a point x′ ∈
Lev(f, ȳ,X)\WEff(f,X). Hence f (x′) ∈ f (x̄) − C and we can find a point x′′ ∈ X

such that f (x′′) ∈ f (x′) − intC. This entails f (x′′) ∈ f (x′) − intC ⊆ f (x̄) − intC,
which contradicts to x̄ ∈ WEff(f,X).
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The inclusion Lev(f, ȳ,X) ⊆ WEff(f,X) proves Lev(f, ȳ,X) is bounded. From
Lemma 3.1, we get

Lev(fn, ȳ,Xn) ⊆ Lev(f, ȳ,X) + εB, (8)

eventually. Hence there exists n̄ ∈ N such that Lev(fn, ȳ,Xn) is bounded for n >

n̄. Since fn are C-convex, this implies that for n > n̄ all the level sets of fn are
bounded (see Ref. [13]). Hence, the assumptions of Theorem 4.1 hold and the proof
is complete. �

The boundedness assumption on WEff(f,X) cannot be avoided, as the following
example shows.

Example 4.1 Let f : R
2 → R

2, f (x, z) = (z2, ex), C = R
2+ and X = R

2, fn = f,

and Xn = X, for every n.
The objective function is C-convex, the set WMin(f,X) = {(y1, y2) ∈ R

2 : y1 =
0}, while WEff(f,X) = {(x, z) ∈ R

2 : z = 0}.
The sequence (xn, zn) = (−n,−n) satisfies (3), but does not admit any subse-

quence (xnk , znk ) such that d(f (xnk , znk ), WEff(f,X)) → 0.

Now, let (P,ρ) be a metric space and let p∗ ∈ P be a fixed point. Let L be a closed
ball in P with center p∗ and positive radius. Let I : R

m × L → R
l be vector-valued

functions such that

I (x,p∗) = f (x), ∀x ∈ X,

and let Z : L � R
m be a set-valued function.

The perturbed problem corresponding to the parameter p is denoted by

VP(I (x,p),Z(p)) C-min I (x,p), x ∈ Z(p).

In this framework we formulate a notion of extended well-posedness which is a gen-
eralization of well-posedness in the strongly extended sense formulated in Refs. [11,
12].

Definition 4.2 Problem VP(f,X) is well-posed, with respect to the perturbations
defined by the sequences I (·,p) and Z(p), when:

(i) WEff(f,X) �= ∅.
(ii) For any sequences pn → p∗ and xn ∈ Z(pn) such that ∃εn > 0, εn → 0+, with

(I (Z(pn),pn) − I (xn,pn) + εne) ∩ (−intC) = ∅, (9)

there exists a subsequence xnk of xn such that d(xnk ,WEff(f,X)) → 0, as k →
+∞.

Sequences xn satisfying (9) are called asymptotically minimizing sequences.
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Remark 4.2 Sequences xn and xnk in Definition 4.2 may fail to be feasible for the
original problem VP(f,K).

We regard this feature as an extension of Levitin-Polyak approach to well-
posedness (see Ref. [18]).

Huang’s notion is generalized in Definition 4.2 mainly by the following two facts:

(a) it allows for perturbations of the feasible region and not only of the objective
function;

(b) requirement (ii) in Definition 4.2 weakens the convergence requirement of
Huang’s definition.

Theorem 4.2 Let I (·,p) be continuous C-quasiconvex functions, and let Z(p) be a
closed convex subset of R

m, for every p ∈ L.
Assume the following:

(i) ∀pn → p∗ and xn → x∗, xn ∈ Z(pn), it holds that I (xn,pn) → I (x∗,p∗) :=
f (x∗) and Xn := Z(pn)

K→ X.
(ii) ∀y ∈ R

l , Lev(f, y,X) is bounded.
(iii) ∀pn → p∗, there exists n̄ ∈ N such that Lev(I (·,pn), y,Z(pn)) is bounded for

every y ∈ R
l and for every n > n̄.

(iv) WEff(f,X) is nonempty and bounded.

Then, problem VP(f,X) is well-posed (with respect to the perturbations defined by
the sequences I (·,p) and Z(p)).

Proof Let pn → p∗ and set fn(·) = I (·,pn) and Xn := Z(pn), ∀n. The proof fol-
lows easily from Theorem 4.1. �

Corollary 4.2 Assume I (·,p) are C-convex functions and let Z(p) be a convex sub-
set of R

m, for every p ∈ L. Let assumptions (i), (ii) and (iv) of Theorem 4.2 hold.
Then, problem VP(f,X) is well-posed (with respect to the perturbations defined by
the sequences I (·,p) and Z(p)).

Proof It is an immediate consequence of Corollary 4.1. �

It remains an open question whether, in the case of C-quasiconvex functions, the
assumptions of Theorem 4.1 can be simplified. Proposition 4.3 below, shows however
that, when Z(p) = X for every p ∈ L, this is the case if we strenghten the conver-
gence requirement on the sequences I (·,pn). We need first to recall the notion of
oriented distance from a point to a set.

Definition 4.3 For a set A ⊆ R
l , the oriented distance function DA : R

l → R∪{±∞}
is defined as

DA(y) = d(y,A) − d(y,Ac).
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The function DA has been introduced in Ref. [16] in the framework of nonsmooth
scalar optimization.

The main properties of the function DA are gathered in the following proposition
(see e.g. Ref. [17]).

Proposition 4.1

(i) If A �= ∅ and A �= R
l , then DA is real valued.

(ii) DA(y) < 0 for every y ∈ intA, DA(y) = 0 for every y ∈ ∂A and DA(y) > 0 for
every y ∈ intAc.

(iii) If A is closed, then it holds that A = {y : DA(y) ≤ 0}.

Lemma 4.1 Let fn : R
m → R

l be a sequence of functions converging to f in the
uniform convergence. Assume that, for every y ∈ R

l , Lev(f, y,X) is bounded. Then,
there exists n̄ ∈ N such that, for every n > n̄ and for every y ∈ R

l , Lev (fn, y,X) is
bounded.

Proof We begin observing that under the assumptions, for every y ∈ R
l we have

D−C(f (x) − y) → +∞, as ‖x‖ → +∞, x ∈ X. Indeed, assume, on the contrary
one can find a sequence xn ∈ X, with ‖xn‖ → +∞ and D−C(f (xn) − y) �→ +∞.
We distinguish two subcases.

1. The set {D−C(f (xn)−y),n ∈ N} is bounded. Then, without loss of generality, we
can assume D−C(f (xn) − y) → β ∈ R and the following two cases are possible.
(i) β < 0. Then it holds f (xn) ∈ y −C, eventually, which contradicts the bound-

edness of the level sets.
(ii) β ≥ 0. In this case, it is easily seen that we can choose α > 0 such that f (xn) ∈

y +αe −C, eventually, contradicting again the boundedness of the level sets.
2. The set {D−C(f (xn)− y),n ∈ N} is unbounded. Since D−C(f (xn)− y) �→ +∞,

it is possible to find a subsequence xnk of xn such that D−C(f (xnk ) − y) →
−∞. In this case it holds again f (xnk ) ∈ y − C, eventually, which contradicts the
boundedness of the level sets.

Assume now, ab absurdo, that for every n there exists yn ∈ R
l , such that Lev(fn, y

n,X)

is unbounded. Hence, for a fixed n̄ ∈ N, we can find a sequence zk, k ∈ N, with
zk ∈ X, ∀k, ‖zk‖ → +∞, as k → +∞ and zk ∈ Lev(fn̄, y

n̄,X), for every k, i.e.

fn̄(z
k) − yn̄ ∈ −C, ∀k.

We distinguish the following two cases:

(i) fn̄(z
k) − yn̄ ∈ −C, for every k except a finite number. In this case we contradict

the boundedness of the level set Lev(f, yn̄,X).

(ii) fn̄(z
k) − yn̄ �∈ −C for infinitely many k. Without loss of generality we can as-

sume fn̄(z
k) − yn̄ �∈ −C for every k and we have

∥∥∥f (zk) − fn̄(z
k)

∥∥∥ =
∥∥∥f (zk) − yn̄ − (fn̄(z

k) − yn̄)

∥∥∥
≥ D−C(f (zk) − yn̄).
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From D−C(f (zk) − yn̄) → +∞ as k → +∞, we obtain

sup
x∈Rm

‖f (x) − fn̄(x)‖ = +∞.

Since n̄ is arbitrary, we contradict the uniform convergence of fn to f . �

The previous lemma does not hold (even in the quasiconvex case) if we assume
fn → f in the continuous convergence, as the following example shows.

Example 4.2 Let f : R → R and fn : R → R, be defined as

f (x) = |x|,

fn(x) =
{|x|, x ∈ [−n,n],
|n|, otherwise,

and let X = R and C = R+. We have fn → f in the continuous convergence, but
not in the uniform convergence and it can be easily seen that the level sets of f are
bounded, but each function fn admits unbounded level sets.

Proposition 4.2 Let fn : R
m → R

l and f : R
m → R

l be continuous C-quasiconvex
functions and let WEff(f,X) be nonempty and bounded. Assume that fn → f in
the uniform convergence and that, for every y ∈ R

l , Lev(f, y,X) is bounded. Then,
problem VP(f,X) satisfies property (P) (with respect to the perturbations defined by
the sequences fn and Xn).

Proof Recalling Theorem 4.1, it is enough to prove that there exists n̄ > 0 such that,
for every n > n̄ and for every y ∈ R

l , Lev(fn, y,X) is bounded. But this follows
immediately from Lemma 4.1. �

The proof of the next result is an immediate consequence of Proposition 4.1.

Proposition 4.3 Let I (·,p) be continuous C-quasiconvex functions ∀p ∈ L, let
Z(p) = X, ∀p ∈ L and assume that ∀pn → p∗ it holds sup‖I (x,pn) − f (x)‖ → 0,

as n → +∞. If for every y ∈ R
l , Lev(f, y,X) is bounded and WEff(f,X) is non-

empty and bounded, then problem VP(f,X) is well-posed (with respect to the per-
turbations defined by the sequences I (·,p) and Z(p)).

References

1. Dontchev, A.L., Zolezzi, T.: Well-Posed Optimization Problems. Lecture Notes in Mathematics,
vol. 1543. Springer, Berlin (1993)

2. Lucchetti, R.: Convexity and Well-posed Problems. Springer, New York (2006)
3. Hadamard, J.: Sur les problè mes aux dé rivees partielles et leur signification physique. Bull. Univ.

Princet. 13, 49–52 (1902)
4. Tykhonov, A.N.: On the stability of the functional optimization problem. USSR J. Comput. Math.

Math. Phys. 6(4), 631–634 (1966)



J Optim Theory Appl (2009) 141: 285–297 297

5. Zolezzi, T.: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91(1), 257–
266 (1996)

6. Loridan, P.: Well-posedness in vector optimization. In: Lucchetti, R., Revalski, J. (eds.) Recent De-
velopments in Well-posed Variational Problems. Mathematics and its Applications, vol. 331, pp. 171–
192. Kluwer Academic, Dordrecht (1995)

7. Crespi, G.P., Guerraggio, A., Rocca, M.: Well posedness in vector optimization problems and vector
variational inequalities. J. Optim. Theory Appl. 132(1), 213–226 (2007)

8. Miglierina, E., Molho, E.: Well-posedness and convexity in vector optimization. Math. Methods Oper.
Res. 58, 375–385 (2003)

9. Miglierina, E., Molho, E., Rocca, M.: Well-posedness and scalarization in vector optimization.
J. Optim. Theory Appl. 126(2), 391–409 (2005)

10. Papalia, M., Rocca, M.: Strong well-posedness and scalarization of vector optimization problems. In:
Nonlinear Analysis with Applications in Economics, Energy and Transportation, pp. 209–222. Berg-
amo University Press—Collana Scienze Matematiche, Statistiche e Informatiche, Bergamo (2007)

11. Huang, X.X.: Extended well-posedness properties of vector optimization problems. J. Optim. Theory
Appl. 106, 165–182 (2000)

12. Huang, X.X.: Extended and strongly extended well-posedness of set-valued optimization problems.
Math. Methods Oper. Res. 53(1), 101–116 (2001)

13. Lucchetti, R., Miglierina, E.: Stability for convex vector optimization problems. Optimization 53(5–
6), 517–528 (2004)

14. Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)
15. Tanino, T.: Stability and sensitivity analysis in convex vector optimization. SIAM J. Control Optim.

26, 521–536 (1988)
16. Hiriart-Urruty, J.-B.: Tangent cones, generalized gradients and mathematical programming in Banach

spaces. Math. Methods Oper. Res. 4, 79–97 (1979)
17. Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42, 1071–

1086 (2003)
18. Levitin, E.S., Polyak, B.T.: Convergence of minimizing sequences in conditional extremum problems.

Sov. Math. Dokl. 7, 764–767 (1966)


	Extended Well-Posedness of Quasiconvex Vector Optimization Problems
	Abstract
	Introduction
	Preliminaries
	Stability of Quasiconvex Vector Minimization Problems
	Extended Well-Posedness of Quasiconvex Vector Minimization Problems
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


