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Abstract This paper is concerned with partially observed risk-sensitive optimal con-
trol problems. Combining Girsanov’s theorem with a standard spike variational tech-
nique, we obtain some general maximum principles for the aforementioned problems.
One of the distinctive differences between our results and the standard risk-neutral
case is that the adjoint equations and variational inequalities strongly depend on a
risk-sensitive parameter γ . Two examples are given to illustrate the applications of
the theoretical results obtained in this paper. As a natural deduction, a general max-
imum principle is also obtained for a fully observed risk-sensitive case. At last, this
result is applied to study a risk-sensitive optimal portfolio problem. An explicit op-
timal investment strategy and a cost functional are obtained. A numerical simulation
result shows the influence of a risk-sensitive parameter on an optimal investment pro-
portion; this coincides with its economic meaning and theoretical results.
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1 Introduction and Problem Formulation

Let (�, F , (Ft ),P ) be a complete filtered probability space equipped with a natural
filtration

Ft = σ {W(s),Y (s);0 ≤ s ≤ t},
where (W(·), Y (·)) is an Rd+r -valued standard Brownian motion defined on this
probability space. Let F = FT and let T > 0 be a fixed-time horizon.

Consider the following stochastic control system:

dxv(t) = b(t, xv(t), v(t))dt + σ(t, xv(t), v(t))dW(t), xv(0) = x0, (1)

where xv(t) ∈ Rn, v(t) ∈ U ⊆ Rk , 0 ≤ t ≤ T ,

b : [0, T ] × R
n × U → R

n, σ : [0, T ] × R
n × U → R

n×d ,

and x0 is an F0-measurable random variable with the law P0 and independent of
(W(·), Y (·)).

We assume that the state variable xv(·) cannot be observed directly, but we can
observe a related process Y(·), which is described by

dY (t) = h(t, xv(t), v(t))dt + dV v(t), Y (0) = 0, (2)

where h : [0, T ] × Rn × U → Rr and V v(·) denotes a stochastic process depending
on the control variable v(·).

Let Yt = σ {Y(s);0 ≤ s ≤ t}. For m = 2,3,4, . . ., a control variable v(t) : [0, T ]×
� → U is called admissible, if it is Yt -adapted and satisfies sup0≤t≤T E|v(t)|m <

+∞, a.e., a.s. The set of all the admissible control variables is denoted by Uad .
We assume that the following hypothesis holds.

(H1) The functions b, σ , h are twice continuously differentiable in x. They and their
partial derivatives bx , bxx , σx , σxx , hx , hxx are continuous in (x, v); bx , bxx ,
σx , σxx , h, hx , hxx are bounded and there exists a constant C > 0 such that both
b and σ are bounded by C(1 + |x| + |v|). x0 has finite moments of arbitrary
order.

For any v(·) ∈ Uad , (H1) implies that (1) admits a unique Ft -adapted solution.
Define dP v = Zv(t)dP with

Zv(t) = exp

{∫ t

0
h∗(s, xv(s), v(s))dY (s) − 1

2

∫ t

0
|h(s, xv(s), v(s))|2ds

}
,

where h∗ denotes the transpose of a matrix h and | · | denotes the square root of the
sum of all squares of components in the underlying matrix. Obviously, Zv(·) is a
unique Ft -adapted solution of

dZv(t) = Zv(t)h∗(t, xv(t), v(t))dY (t), Zv(0) = 1. (3)



J Optim Theory Appl (2009) 141: 677–700 679

Then, Girsanov’s theorem and (H1) imply that P v is a new probability measure and
(W(·),V v(·)) is an Rd+r -valued standard Brownian motion defined on the new prob-
ability space (�, F , (Ft ),P

v).
In terms of (H1), BDG inequality, Gronwall’s inequality and an elementary in-

equality

|m1 + m2 + m3|n ≤ 3n(|m1|n + |m2|n + |m3|n), ∀n > 0,

we obtain easily the following result.

Lemma 1.1 Let (H1) hold. For any v(·) ∈ Uad , the solutions of (3) and (1) satisfy

sup
0≤t≤T

E|Zv(t)|m < +∞, sup
0≤t≤T

E|xv(t)|m ≤ C
(

1 + sup
0≤t≤T

E|v(t)|m
)
,

with a constant C > 0 and m = 2,3,4, . . . .

We introduce the following cost functional:

J (v(·)) = E
v�

[∫ T

0
l(t, xv(t), v(t))dt + �(xv(T ))

]
, (4)

where E
v denotes expectation on (�, F , (Ft ),P

v) and � : R → R is a monotoni-
cally increasing disutility function. � , l and � satisfy some suitable conditions such
that J (v(·)) > −∞ holds for any v(·) ∈ Uad . The problem is to seek an admissible
control u(·) to minimize J (v(·)) subject to (1) and (3). If u(·) attains the minimum
value (if it exists), then it is called optimal, the corresponding solutions x(·), Z(·)
of (1) and (3) are called the optimal trajectories. For simplification, we also use the
abbreviation V (·) = V u(·).

The cost functional (4) subject to (1) and (3) consists of a partially observed risk-
sensitive optimal control problem. Let us now interpret the meaning of the word
risk-sensitive by an intuitive argument. We also refer to Yong and Zhou (Ref. [1]) for
more information on risk-sensitive. Define

X =
∫ T

0
l(t, xv(t), v(t))dt + �(xv(T ))

and suppose that � is twice differentiable at E
vX. By Taylor’s expansion, we have

E
v�(X) ≈ �(EvX) + 1

2
� ′′(EvX)Ev(X − E

vX)2.

If � is strictly concave near E
vX, then � ′′(EvX) < 0, which implies that the con-

troller is risk-seeking from an economic point of view. If � is strictly convex near
E

vX, then � ′′(EvX) > 0, which implies that the controller is risk-averse. Finally,
if � ′′(EvX) = 0, the risk-sensitive optimal control problem reduces to the standard
risk-neutral situation.

The aforementioned risk-sensitive optimal control problem has been discussed by
many researchers, such as Bensoussan and Van Schuppen (Ref. [2]), Charalambous



680 J Optim Theory Appl (2009) 141: 677–700

and Hibey (Ref. [3]) and references therein. They usually made the following two
assumptions: (i) �(x) = θeθx , where θ �= 0, a fixed constant, is the so called risk-
sensitive parameter; (ii) σ and h in (1) and (2) do not contain the control variable
v(·). In fact, they only studied a special class of problem. Recently, risk-sensitive
optimal control problems have attracted more research attention. One reason is that
the theory in itself is interesting and challenging. Another is that the risk-sensitive
parameter can describe the risk attitude of an investor, thus this kind of model can be
used to study some financial problems. The related work can be found in Nagai (Ref.
[4]), Nagai and Peng (Ref. [5]).

The other frequently used disutility function is the HARA utility

�(x) = 1

γ
xγ , γ �= 0, x > 0.

If x(·) represents the wealth process of an investor, then maximizing 1
γ

E[x(T )]γ
subject to (1) formulates an important risk-sensitive optimal portfolio problem arising
from a financial market. Therefore, this kind of cost functional has practical sense. As
a generalization of the expected HARA utility maximization problem, we consider
the cost functional

J (v(·)) = 1

γ
E

v[�(xv(T ))]γ , (5)

where γ , a fixed constant, is called the risk-sensitive parameter. The problem
is to seek an appropriate admissible control variable u(·) such that J (u(·)) =
minv(·)∈Uad

J (v(·)) subject to (1) and (3). Our main task is to find a necessary condi-
tion, the so called maximum principle, of the optimal control u(·). If γ = 1, it reduces
to the risk-neutral case. There exist lots of references, such as Bensoussan (Ref. [6]),
Haussmann (Ref. [7]), Baras, Elliott and Kohlmann (Ref. [8]), Zhou (Ref. [9]), Li and
Tang (Ref. [10]), Baghery and Øksendal (Ref. [11]). γ > 1 and γ < 1 correspond to
the risk-averse and the risk-seeking situations, respectively. To our best knowledge,
there exists few literature on this topic in the situation γ �= 1. In this paper, we are
more interested in the situation of γ > 0. For the case γ < 0, we can obtain some
similar conclusions. Obviously, (5) can be rewritten as

J (v(·)) = 1

γ
E{Zv(T )[�(xv(T ))]γ }, γ > 0. (6)

Thus, our original problem (5) is equivalent to minimizing (6) subject to (1) and (3).
For any x ∈ Rn, we introduce the following hypotheses.

(H2) There exists a constant C > 0 such that

(1 + |x|2)−1|�(x)| + (1 + |x|)−1|�x(x)| + |�xx(x)| ≤ C.

(or (1 + |x|)−1|�(x)| + |�x(x)| + |�xx(x)| ≤ C.)

(H3) When 0 < γ < 1 or 1 < γ < 2, we assume that E[�(xv(T ))]2γ−4 < +∞
holds.
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The rest of this paper is organized as follows. In Sect. 2, we first introduce a stan-
dard spike variation to get first-order and second-order variational equations, then we
derive the corresponding adjoint equations which are finite-dimensional backward
stochastic differential equations (BSDEs). This is a standard method used to deal with
the risk-neutral case. Please refer to Peng (Ref. [12]) and Li and Tang (Ref. [10]),
where some fully observed and partially observed maximum principles were ob-
tained, respectively. We also introduce an adjoint BSDE which depends on the risk-
sensitive parameter γ to deal with the term produced by partial information. Then
we derive some partially observed risk-sensitive maximum principles. Our method is
different from Bensoussan (Ref. [6]), Haussmann (Ref. [7]), Baras et al. (Ref. [8])
and Zhou (Ref. [9]). To characterize an adjoint process which is necessary for a max-
imum principle, Bensoussan (Ref. [6]) adopted an infinite-dimensional BSDE, Baras
et al. (Ref. [8]) used the theory of stochastic flows, Haussmann (Ref. [7]) and Zhou
(Ref. [9]) needed the theory of stochastic partial differential equations.

Obviously, our maximum principle is a generalization of the one in [10]. However,
even in the risk-neutral case (see e.g. [6–10]), few attention was paid to applications
of maximum principles. One of main difficulties is that there is no general filtering
estimate result for adjoint processes, which are characterized by BSDEs. So it is dif-
ficult to obtain explicit observable maximum principles, observable optimal controls
and cost functionals. In Sect. 3, we focus on two interesting examples which are used
to illustrate the applications of our theoretical results obtained in Sect. 2. One is a
partially observed linear-quadratic (LQ) non-zero sum stochastic differential game
problem. In [13], Hamadène studied a fully observed stochastic differential game
problem. And then, Wu and Yu (Ref. [14]) generalized it to the case with random
jump. In this paper, we will use the maximum principle to study a similar problem
under partial information and give an explicit observable Nash equilibrium point.
The other application is to a linear risk-sensitive optimal control problem, where the
maximum principle can also be used.

In Sect. 4, we will derive a general maximum principle for a fully observed risk-
sensitive optimal control problem. And then we apply this result to study a risk-
sensitive optimal portfolio problem in Sect. 5. An explicit optimal investment strategy
and an optimal cost functional are obtained. A numerical simulation is also used to
show a specific influence of the risk-sensitive parameter γ on an optimal investment
proportion in this section. The simulation result coincides with theoretical ones and
the economic meaning of γ .

Finally in Sect. 6, we compare our results with the existing ones in other papers.

2 General Maximum Principles

In this section, combining Girsanov’s theorem with a standard spike variational tech-
nique, we derive the general maximum principles for the aforementioned partially
observed risk-sensitive (neutral) optimal control problems.

Let u(·) be optimal. Since the control set U is nonconvex, we introduce the spike
variation

uε(t) =
{
v, if τ ≤ t ≤ τ + ε,

u(t), otherwise,
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where 0 ≤ τ < T is fixed, ε > 0 is sufficiently small and v is an arbitrary Yτ -
measurable random variable with values in U such that supω∈� |v(ω)| < +∞. Let
xε(·) and Zε(·) be the trajectories corresponding to uε(·).

For simplification, we introduce the notations

θ(u(t)) = θ(t, x(t), u(t)), θ(uε(t)) = θ(t, x(t), uε(t)),

where θ = b, σ , h, l as well as their partial derivatives with respect to the optimal
trajectory x.

We now introduce the first-order variational equations

dx1(t) =bx(u(t))x1(t)dt + [σx(u(t))x1(t) + σ(uε(t)) − σ(u(t))]dW(t), (7a)

x1(0) =0, (7b)
dZ1(t) =[Z1(t)h(u(t)) + Z(t)hx(u(t))x1(t)

+ Z(t)(h(uε(t)) − h(u(t)))]∗dY (t), (8a)

Z1(0) =0, (8b)

and the second-order variational equations

dx2(t) =
[
bx(u(t))x2(t) + 1

2
bxx(u(t))x1(t)x1(t) + b(uε(t)) − b(u(t))

]
dt

+
[
σx(u(t))x2(t) + 1

2
σxx(u(t))x1(t)x1(t)

+ (σ (uε(t)) − σ(u(t)))x1(t)

]
dW(t), (9a)

x2(0) =0, (9b)

dZ2(t) =
[
Z2(t)h(u(t)) + Z1(t)hx(u(t))x1(t) + Z1(t)(h(uε(t)) − h(u(t)))

+ Z(t)hx(u(t))x2(t) + 1

2
Z(t)hxx(u(t))x1(t)x1(t)

+ Z(t)(hx(u
ε(t)) − hx(u(t)))x1(t)

]∗
dY (t), (10a)

Z2(0) =0, (10b)

where fxxyy = ∑n
i,j=1 fxixj

yiyj for f = b, σ , h and �. From (H1), (7), (8), (9) and
(10) admit Ft -adapted solutions, respectively.

The following Lemma 2.1 is due to Li and Tang (Ref. [10]).

Lemma 2.1 Let (H1) hold. Then, we have

sup
0≤t≤T

E|x1(t)|m ≤ Cε
m
2 , sup

0≤t≤T

E|x2(t)|m ≤ Cεm,

sup
0≤t≤T

E|Z1(t)|m ≤ Cε
m
2 , sup

0≤t≤T

E|Z2(t)|m ≤ Cεm,
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sup
0≤t≤T

E|xε(t) − x(t) − x1(t) − x2(t)|m ≤ Cεε
m,

sup
0≤t≤T

E|Zε(t) − Z(t) − Z1(t) − Z2(t)|m ≤ Cεε
m,

where C and Cε are nonnegative constants and Cε → 0 when ε → 0.

Similarly, we obtain the following lemma.

Lemma 2.2 (Variational Inequality) Let (H1), (H2), (H3) hold. Then, we get

1

γ
E

u{Z−1(T )(Z1(T ) + Z2(T ))[�(x(T ))]γ }

+ E
u{Z−1(T )Z1(T )[�(x(T ))]γ−1�∗

x(x(T ))x1(T )}
+ E

u{[�(x(T ))]γ−1�∗
x(x(T ))(x1(T ) + x2(T ))}

+ 1

2
E

u{(γ − 1)[�(x(T ))]γ−2�x(x(T ))�∗
x(x(T ))x1(T )x1(T )}

+ 1

2
E

u{[�(x(T ))]γ−1�xx(x(T ))x1(T )x1(T )} ≥ o(ε). (11)

Proof Using the fact that J (uε(·))−J (u(·)) ≥ 0, the Taylor expansion and Lemma 2.1,
we have

0 ≤ 1

γ
E{Zε(T )[�(xε(T ))]γ } − 1

γ
E{Z(T )[�(x(T ))]γ }

= 1

γ
E{(Z1(T ) + Z2(T ))[�(x(T ))]γ }

+ E{Z1(T )[�(x(T ))]γ−1�∗
x(x(T ))x1(T )}

+ E{Z(T )[�(x(T ))]γ−1�∗
x(x(T ))(x1(T ) + x2(T ))}

+ 1

2
E{(γ − 1)Z(T )[�(x(T ))]γ−2�x(x(T ))�∗

x(x(T ))x1(T )x1(T )}

+ 1

2
E{Z(T )[�(x(T ))]γ−1�xx(x(T ))x1(T )x1(T )} + o(ε).

Thus, we draw the desired conclusion. �

We now focus on a necessary condition of the optimal control u(·). The method
is similar to that of Peng (Ref. [12]) and Li and Tang (Ref. [10]), so we will omit
similar proofs here.

Define the Hamiltonian function

H(t, xv, v,p, q, z̄) = 〈p,b(t, xv, v)〉 +
d∑

i=1

〈qi, σi(t, x
v, v)〉 + 〈z̄, h(t, xv, v)〉, (12)



684 J Optim Theory Appl (2009) 141: 677–700

where H : [0, T ] × Rn × U × Rn × Rn×d × Rr → R and 〈·, ·〉 denotes the product
of two vectors in an Euclidean space.

We introduce the adjoint equations which depend on the risk-sensitive parame-
ter γ ,

y(t) = 1

γ
[�(x(T ))]γ −

∫ T

t

z(s)dW(s) −
∫ T

t

z̄(s)dV (s), (13)

−dp(t) =H ∗
x (t, x(t), u(t),p(t), q(t), z̄(t))dt − q(t)dW(t) − q̄(t)dV (t), (14a)

p(T ) =[�(x(T ))]γ−1�∗
x(x(T )), (14b)

−dP (t) =
[
b∗
x(u(t))P (t) + P(t)b∗

x(u(t)) +
d∑

i=1

σ ∗
i,x(u(t))P (t)σi,x(u(t))

+
d∑

i=1

σ ∗
i,x(u(t))Qi(t) +

d∑
i=1

Qi(t)σi,x(u(t))

+ Hxx(t, x(t), u(t),p(t), q(t), z̄(t))

+
r∑

j=1

q̄j (t)h
∗
j,x(u(t)) +

r∑
j=1

hj,x(u(t))q̄∗
j (t)

]
dt

− Q(t)dW(t) − Q̄(t)dV (t), (15a)

P(T ) = (γ − 1)[�(x(T ))]γ−2�x(x(T ))�∗
x(x(T ))

+ [�(x(T ))]γ−1�xx(x(T )). (15b)

Hereinafter, we use the following notations:

σi,x(u(·)) = ∂

∂x
σi(u(·)), i = 1,2, . . . , d,

hj,x(u(·)) = ∂

∂x
hj (u(·)), j = 1,2, . . . , r.

Obviously, (H1), (H2), (H3) imply that (13), (14), (15) admit Ft -adapted solutions.
Applying Itô’s formula to

〈y(t),Z−1(t)(Z1(t) + Z2(t))〉 + 〈p(t),Z−1(t)Z1(t)x1(t)〉,
we have

E
u

{
1

γ
Z−1(T )(Z1(T ) + Z2(T ))[�(x(T ))]γ

}

+ E
u{Z−1(T )Z1(T )[�(x(T ))]γ−1�∗

x(x(T ))x1(T )}
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= E
u

∫ T

0
〈z̄(t), hx(u(t))(x1(t) + x2(t)) + h(uε(t)) − h(u(t))〉dt

+ E
u

∫ T

0
Tr

[
r∑

j=1

(hj,x(u(t))q̄j (t))(x1(t)x
∗
1 (t))

]
dt

+ 1

2
E

u

∫ T

0
Tr〈z̄(t), hxx(u(t))(x1(t)x

∗
1 (t))〉dt + o(ε). (16)

Substituting (16) into (11), we obtain

E
u

∫ T

0
〈z̄(t), hx(u(t))(x1(t) + x2(t))〉dt

+ E
u{[�(x(T ))]γ−1�∗

x(x(T ))(x1(t) + x2(t))}

+ E
u

∫ T

0
〈z̄(t), h(uε(t) − h(u(t)))〉dt

+ E
u

∫ T

0
Tr

[
r∑

j=1

(hj,x(u(t))q̄j (t))(x1(t)x
∗
1 (t))

]
dt

+ 1

2
E

u

∫ T

0
Tr〈z̄(t), hxx(u(t))(x1(t)x

∗
1 (t))〉dt

+ 1

2
E

u{(γ − 1)T r([�(x(T ))]γ−2�x(x(T ))�∗
x(x(T ))(x1(T )x∗

1 (T )))}

+ 1

2
E

u{Tr([�(x(T ))]γ−1�xx(x(T ))(x1(T )x∗
1 (T )))} ≥ o(ε). (17)

Applying Itô’s formula to 〈p(t), x1(t) + x2(t)〉 + P(t)[x1(t)x
∗
1 (t)] and comparing it

with (17), we get

E
u

∫ T

0

{
H(t, x(t), uε(t),p(t), q(t), z̄(t)) − H(t, x(t), u(t),p(t), q(t), z̄(t))

+ 1

2
Tr[(σ (uε(t)) − σ(u(t)))∗P(t)(σ (uε(t)) − σ(u(t)))]

}
dt ≥ o(ε).

Therefore, we have the following theorem.

Theorem 2.1 (Risk-Sensitive Maximum Principle: I) Assume that (H1), (H2), (H3)
hold. Let u(·) be optimal. Then, the maximum principle

E
u

{[
H(t, x(t), v,p(t), q(t), z̄(t)) − H(t, x(t), u(t),p(t), q(t), z̄(t))

+ 1

2
Tr[(σ (v) − σ(u(t)))∗P(t)(σ (v) − σ(u(t)))]

]
|Yt

}
≥ 0, ∀v ∈ U,a.e., a.s.,

holds, where the Hamiltonian function H is defined by (12).
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We now study a problem with a general running cost functional, i.e.,

min
v(·)∈Uad

J (v(·)),

J (v(·)) = 1

γ
E

v

[∫ T

0
l(t, xv(t), v(t))dt + �(xv(T ))

]γ

, γ ∈ (0,+∞), (18)

subject to (1) and (3). Here b, σ , h satisfy (H1) and � satisfies (H2). For any
(t, x, v) ∈ [0, T ] × Rn × U , we also assume that (H4) and (H5) below hold.

(H4) l : [0, T ] × Rn × U → R is continuously differentiable in x; l, lx , lxx are con-
tinuous in (x, v). There exists a constant C such that

(1 + |x| + |v|2)−1|l(t, x, v)| + |lx(t, x, v)| + |lxx(t, x, v)| ≤ C.

(H5) For 0 < γ < 1 or 1 < γ < 2, we suppose that

E

[∫ T

0
l(t, xv(t), v(t))dt + �(xv(T ))

]2γ−4

< +∞.

Our target is to give a necessary condition for the optimal control u(·). The
method is to combine the proof of Theorem 2.1 with a reformulation of the cost
functional (18).

Define the following stochastic differential equation (SDE):

dXv(t) = l(t, xv(t), v(t))dt, Xv(0) = 0; (19)

then, the corresponding first-order variational equation is

dX1(t) = [lx(u(t))X1(t) + l(uε(t)) − l(u(t))]dt, X1(0) = 0.

For any v(·) ∈ Uad , we can employ usual techniques to prove that

sup
0≤t≤T

E|Xv(t)|m ≤ C
(

1 + sup
0≤t≤T

E|v(t)|2m
)
, sup

0≤t≤T

E|X1(t)|m ≤ Cεm,

sup
0≤t≤T

E|Xε(t) − X(t) − X1(t)|m ≤ Cεε
m, m = 2,3,4, . . . .

Thus, our original problem (18), subject to (1) and (3), is equivalent to minimizing

J (v(·)) = 1

γ
E

v[Xv(T ) + �(xv(T )))]γ (20)

subject to (1), (3), (19). The fact that J (uε(·)) − J (u(·)) ≥ 0 implies that

1

γ
E{(Z1(T ) + Z2(T ))[X(T ) + �(x(T ))]γ }

+ 1

2
E{Z(T )[X(T ) + �(x(T ))]γ−1�xx(x(T ))x1(T )x1(T )}
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+ 1

2
E{(γ − 1)Z(T )[X(T ) + �(x(T ))]γ−2�x(x(T ))�∗

x(x(T ))x1(T )x1(T )}

+ E{Z(T )[X(T ) + �(x(T ))]γ−1�∗
x(x(T ))(x1(T ) + x2(T ))}

+ E{Z(T )[X(T ) + �(x(T ))]γ−1X1(T )}
+ E{Z1(T )[X(T ) + �(x(T ))]γ−1�∗

x(x(T ))x1(T )} ≥ o(ε). (21)

Since (21) is similar to (11), we introduce the following BSDEs:

�(t) = [X(T ) + �(x(T ))]γ−1 +
∫ T

t

lx(u(s))�(s)ds −
∫ T

t

(s)dW(s),

α(t) = 1

γ
[X(T ) + �(x(T ))]γ −

∫ T

t

β(s)dW(s) −
∫ T

t

β̄(s)dV (s),

−dϕ(t) = H ∗
x (t, x(t), u(t), ϕ(t),ψ(t), β̄(t))dt − ψ(t)dW(t) − ψ̄(t)dV (t),

ϕ(T ) = [X(T ) + �(x(T ))]γ−1�∗
x(x(T )),

−dξ(t) =
[
b∗
x(u(t))ξ(t) + ξ(t)b∗

x(u(t)) +
d∑

i=1

σ ∗
i,x(u(t))ξ(t)σi,x(u(t))

+
d∑

i=1

σ ∗
i,x(u(t))ηi(t) +

d∑
i=1

ηi(t)σi,x(u(t))

+ Hxx(t, x(t), u(t), ϕ(t),ψ(t), β̄(t))

+
r∑

j=1

ψ̄j (t)h
∗
j,x(u(t)) +

r∑
j=1

hj,x(u(t))ψ̄∗
j (t)

]
dt

− η(t)dW(t) − η̄(t)dV (t),

ξ(T ) = (γ − 1)[X(T ) + �(x(T ))]γ−2�x(x(T ))�∗
x(x(T ))

+ [X(T ) + �(x(T ))]γ−1�xx(x(T )),

where the Hamiltonian function H is defined by (12).
Applying Itô’s formula to 〈�(t),X1(t)〉, we have

E
u{[X(T ) + �(x(T ))]γ−1X1(T )} = E

u

∫ T

0
(l(uε(t)) − l(u(t)))�(t)dt. (22)

Define the Hamiltonian function

H(t, xv, v,ϕ,ψ, β̄,�) = H(t, xv, v,ϕ,ψ, β̄) + 〈�, l(t, xv, v)〉, (23)

where H : [0, T ] × Rn × U × Rn × Rn×d × Rr × R → R.
From (21), (22), (23) and Theorem 2.1, we get

E
u

{[
H(t, x(t), v,ϕ(t),ψ(t), β̄(t),�(t)) − H(t, x(t), u(t), ϕ(t),ψ(t), β̄(t),�(t))



688 J Optim Theory Appl (2009) 141: 677–700

+ 1

2
Tr[(σ (v) − σ(u(t)))∗ξ(t)(σ (v) − σ(u(t)))]

]
|Yt

}
≥ 0, ∀v ∈ U, a.e., a.s.

(24)

Theorem 2.2 (Risk-Sensitive Maximum Principle: II) Assume that (H1), (H2), (H4),
(H5) hold. Let u(·) be optimal. Then, the maximum principle (24) holds.

Obviously, the assumption conditions in Theorem 2.2 are rigorous. If we let γ = 1,
the cost functional (18) reduces to the risk-neutral case. In the situation, the hypoth-
esis on l(·, xv(·), v(·)) can be replaced by

(H6) l : [0, T ] × Rn × U → R is continuously differentiable in x; l, lx , lxx are con-
tinuous in (x, v). For any (t, x, v) ∈ [0, T ] × Rn × U , there exists a constant
C > 0 such that

(1+|x|2 +|v|2)−1|l(t, x, v)|+ (1+|x|+|v|)−1|lx(t, x, v)|+|lxx(t, x, v)| ≤ C.

Suppose that (H1), (H2), (H6) hold and the risk-sensitive parameter γ = 1. Using
the same techniques as the proof of Theorem 2.1, we get the following Theorem 2.3,
which coincides with Theorem 2.1 in Li and Tang (Ref. [10]).

Theorem 2.3 (Risk-Neutral Maximum Principle) Let u(·) be optimal. Then, the max-
imum principle

E
u

{[
H(t, x(t), v,ϕ(t),ψ(t), β̄(t)) − H(t, x(t), u(t), ϕ(t),ψ(t), β̄(t))

+ 1

2
Tr[(σ (v) − σ(u(t)))∗ξ(t)(σ (v) − σ(u(t)))]

]
|Yt

}
≥ 0, ∀v ∈ U, a.e., a.s.,

holds, where β̄(·), ϕ(·), ψ(·), ξ(·) satisfy

α(t) = �(x(T )) +
∫ T

t

l(u(s))ds −
∫ T

t

β(s)dW(s) −
∫ T

t

β̄(s)dV (s),

−dϕ(t) = H∗
x(t, x(t), u(t), ϕ(t),ψ(t), β̄(t))dt − ψ(t)dW(t) − ψ̄(t)dV (t),

ϕ(T ) = �∗
x(x(T )),

−dξ(t) =
[
b∗
x(u(t))ξ(t) + ξ(t)b∗

x(u(t)) +
d∑

i=1

σ ∗
i,x(u(t))ξ(t)σi,x(u(t))

+
d∑

i=1

σ ∗
i,x(u(t))ηi(t) +

d∑
i=1

ηi(t)σi,x(u(t))

+ Hxx(t, x(t), u(t), ϕ(t),ψ(t), β̄(t))

+
r∑

j=1

ψ̄j (t)h
∗
j,x(u(t)) +

r∑
j=1

hj,x(u(t))ψ̄∗
j (t)

]
dt
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− η(t)dW(t) − η̄(t)dV (t),

ξ(T ) = �xx(x(T ))

with the Hamiltonian function H : [0, T ]×Rn ×U ×Rn ×Rn×d ×Rr → R defined
by

H(t, xv, v,ϕ,ψ, β̄) = H(t, xv, v,ϕ,ψ, β̄) + l(t, xv, v). (25)

Let us now study an important case, i.e., γ = 1, σ(·, xv(·), v(·)) ≡ σ(·, xv(·)) and
l(·, xv(·), v(·)) ≡ l(·, v(·)). For any (t, x, v) ∈ [0, T ]×Rn ×U , we also suppose that
the following hypothesis holds.

(H7) The functions b, σ , h satisfy (H1). There exists a constant C > 0 such that

(1 + |v|2)−1|l(t, v)| + (1 + |x|2)−1|�(x)| + (1 + |x|)−1|�x(x)| ≤ C.

In this case, the corresponding second-order variational equations reduce to the
usual first-order ones, which are

α(t) = �(x(T )) +
∫ T

t

l(u(s))dt −
∫ T

t

β(s)dV (s),

−dϕ(t) = [b∗
x(u(t))ϕ(t) + σ ∗

x (u(t))ψ(t) + h∗
x(u(t))β(t)]dt − ψ(t)dW(t),

ϕ(T ) = �∗
x(x(T )).

From Theorem 2.3, we get easily the following result.

Corollary 2.1 Assume that γ = 1, σ(·, xv(·), v(·)) ≡ σ(·, xv(·)), l(·, xv(·), v(·)) ≡
l(·, v(·)) and (H7) hold. Let u(·) be optimal. Then, the maximum principle

E
u[H(t, x(t), v,ϕ(t),ψ(t), β(t))|Yt ] ≥ E

u[H(t, x(t), u(t), ϕ(t),ψ(t), β(t))|Yt ],
∀v ∈ U,a.e., a.s. holds, where the Hamiltonian function H is defined by (25).

This result will be applied to study a partially observed LQ nonzero sum differen-
tial game problem in the next section.

3 Two Interesting Examples

From Theorem 2.1, 2.2, 2.3 and Corollary 2.1, we notice that maximum principles
depend strongly on adjoint processes. To get an observable optimal control, it is nec-
essary to investigate the filtering estimate for adjoint processes which satisfy BSDEs.
Since there is no general filtering results for BSDEs, it is difficult to get explicitly
observable maximum principles. However, we will try to give some applications of
partially observed maximum principles to differential game and optimal control prob-
lems.
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As before, we always assume that (W(·), Y (·)) is a 2-dimensional standard Brown-
ian motion defined on the space (�, F , (Ft ),P ). x0 is an F0-measurable random
variable with the mean m0 and is independent of (W(·), Y (·)).

We first study a partially observed LQ nonzero sum differential game problem.

Example 3.1 For simplification, let us consider only the case of two players. The
1-dimensional state and observation equations are as follows:

dx(t) = (Ax(t) + B1v1(t) + B2v2(t))dt + CdW(t), x(0) = x0, (26)

dY (t) = D(t)dt + dV v(t), Y (0) = 0. (27)

Here Ni > 0, Qi ≥ 0, Bi , i = 1, 2; A and C are constants and D(·) is bounded
deterministic in [0, T ]. Then, (26) admits a unique solution denoted by xv(·). The
cost functionals of the two players are described as

Ji(v1(·), v2(·)) = 1

2
E

v

{∫ T

0
Niv

2
i (t)dt + Qi[xv(T )]2

}
, i = 1,2. (28)

Our problem is to seek a pair of (u1(·), u2(·)) such that

J1(u1(·), u2(·)) = min
v1(·)∈Uad

J1(v1(·), u2(·)),

J2(u1(·), u2(·)) = min
v2(·)∈Uad

J2(u1(·), v2(·)).

Such a pair (u1(·), u2(·)) (if it exists) is called a Nash equilibrium point of the game
problem. The corresponding trajectory is denoted by x(·). We use three steps to solve
this problem.

Step 1 The Hamiltonian functions are

H1(t, x
v1(t), v1(t), u2(t), ϕ1(t),ψ1(t), β1(t))

= (Axv1(t) + B1v1(t) + B2u2(t))ϕ1(t) + Cψ1(t) + D(t)β1(t) + 1

2
N1v

2
1(t),

H2(t, x
v2(t), u1(t), v2(t), ϕ2(t),ψ2(t), β2(t))

= (Axv2(t) + B1u1(t) + B2v2(t))ϕ2(t) + Cψ2(t) + D(t)β2(t) + 1

2
N2v

2
2(t),

where (ϕi(·),ψi(·)), i = 1, 2, and (αi(·), βi(·)), i = 1, 2, are the solutions of

ϕi(t) = Qix(T ) +
∫ T

t

Aϕi(s)ds −
∫ T

t

ψi(s)dW(s), i = 1,2,

αi(t) = 1

2
Qix

2(T ) + 1

2

∫ T

t

Niu
2
i (s)ds −

∫ T

t

βi(s)dV (s), i = 1,2.

Here, let xv1(·) and xv2(·) be the trajectories under the controls (v1(·), u2(·)) and
(u1(·), v2(·)), respectively. Noticing the aforementioned Hamiltonian functions, if
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(u1(·), u2(·)) is a Nash equilibrium point, then Corollary 2.1 implies that

ui(t) = −N−1
i BiE

u[ϕi(t)|Yt ], i = 1,2, (29)

where

ϕi(t) = eA(T −t)QiE
u[x(T )|Ft ], i = 1,2.

Step 2 We will use filtering theory to find a more explicit representation of
(u1(·), u2(·)) defined by (29). It is worthwhile pointing out that the most success-
ful result of filtering theory was obtained for linear systems by Kalman (Ref. [15])
in 1960. However, Kalman’s filtering result cannot be applied directly to the state
and observation systems (26)–(27). Now, we will use the filtering results developed
in Liptser and Shiryayev (Ref. [16]). Let x̂(t) = E

u[x(t)|Yt ] be the filtering estimate
of the state x(t) depending on the observable filtration Yt . From Theorem 12.1 in
Liptser and Shiryayev (Ref. [16]), we get

˙̂x(t) = Ax̂(t) + B1u1(t) + B2u2(t), x̂(0) = m0. (30)

In light of Theorem 2.5 in Hamadène (Ref. [13]) or Theorem 2 in Wu and Yu
(Ref. [14]), it is natural to conjecture that ui(·), i = 1, 2, are the linear feedbacks of
the state filtering estimate, i.e.,

ui(t) = −N−1
i Biπi(t)x̂(t), i = 1,2. (31)

Here, πi(·), i = 1, 2, are determined by

π̇1(t) + 2Aπ1(t) − N−1
2 B2

2π1(t)π2(t) − N−1
1 B2

1π2
1 (t) = 0, (32a)

π1(T ) = Q1, (32b)

π̇2(t) + 2Aπ2(t) − N−1
1 B2

1π1(t)π2(t) − N−1
2 B2

2π2
2 (t) = 0, (33a)

π2(T ) = Q2, (33b)

and x̂(·) is the solution of (30).
We notice that (32) and (33) are coupled. To prove the existence of solutions, we

need an additional assumption, N−1
1 B2

1 = N−1
2 B2

2 . Introduce the following ordinary
differential equations (ODEs):

π̇(t) + 2Aπ(t) − N−1
1 B2

1π2(t) = 0, π(T ) = Q1 + Q2, (34)

˙̄π1(t) + (2A − N−1
2 B2

2π(t))π̄1(t) = 0, π̄1(T ) = Q1, (35)

˙̄π2(t) + (2A − N−1
1 B2

1π(t))π̄2(t) = 0, π̄2(T ) = Q2. (36)

It is well known that (34) is a standard Riccati differential equation, which admits
a unique nonnegative solution. Therefore (35) and (36) also admit unique solutions,
respectively. If we let π̄(·) = π̄1(·) + π̄2(·), it is easy to check that π̄(·) satisfies (33),
i.e., π̄ (·) = π(·). Substituting π(·) = π̄1(·) + π̄2(·) into (35) and (36), we know
that (32) and (33) admit unique solutions, respectively.
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The remaining task is to verify that our conjecture (31) holds. We define

ui(t) = −Ki(t)x̂(t), i = 1,2, (37)

where Ki(·), i = 1, 2, are deterministic functions defined later on. Let �(s, t) be the
fundamental matrix solution of

Ẋs =
(

A − B1K1(s) − B2K2(s) 0
−B1K1(s) − B2K2(s) A

)
Xs. (38)

From (26), (30), (37), (38), we derive(
x̂(T )

x(T )

)
= �(T , t)

(
x̂(t)

x(t)

)
+

∫ T

t

�(T , s)

(
0 0
0 C

)
d

(
V (s)

W(s)

)
.

By a property of conditional expectation, it follows that

E
u[ϕi(t)|Yt ] = eA(T −t)QiE

u[x(T )|Yt ]

= eA(T −t)Qi

(
0 1

)
�(T , t)

(
1
1

)
x̂(t)

= Qie
∫ T
t (2A−B1K1(s)−B2K2(s))ds x̂(t), i = 1,2.

Set Ki(t) = N−1
i Biπi(t), i = 1, 2. In light of (32) and (33), it is clear that

E
u[ϕi(t)|Yt ] = πi(t)x̂(t), i = 1,2.

From (29) and (37), we know that our conjecture (31) holds.
Step 3 Now, we prove that (u1(·), u2(·)) defined by (31) is an observable Nash

equilibrium point. Combining Wohnam’s separation theorem (Ref. [17]) with usual
techniques for LQ problems (see e.g. [13] or [14]), we can prove that (u1(·), u2(·))
defined by (31) satisfies

J1(u1(·), u2(·)) ≤ J1(v1(·), u2(·)), ∀v1(·) ∈ Uad ,

J2(u1(·), u2(·)) ≤ J1(u1(·), v2(·)), ∀v2(·) ∈ Uad .

Therefore, we have the following proposition.

Proposition 3.1 Let all the hypotheses in Example 3.1 hold. Then, the pair
(u1(·), u2(·)) defined by (31) is an observable Nash equilibrium point of the par-
tially observed game problem.

Remark 3.1 To guarantee that (32) and (33) admit solutions, we need an additional
assumption, N−1

1 B2
1 = N−1

2 B2
2 . But, if A = 0 in (26), the restriction condition can be

eliminated. In fact, let us introduce the following ODEs:

�̇(t) − �2(t) = 0, �(T ) = N−1
1 B2

1Q1 + N−1
2 B2

2Q2, (39)

�̇1(t) − �1(t)�(t) = 0, �1(T ) = Q1, (40)

�̇2(t) − �2(t)�(t) = 0, �2(T ) = Q2. (41)
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Clearly, there exist solutions to (39)–(41). If we define �̄(·) = N−1
1 B2

1�1(·) +
N−1

2 B2
2�2(·), then �̄(·) is the solution of (39). Noticing (40) and (41), we easily

get the desired result.

The rest of this section is related to a partially observed risk-sensitive optimization
problem. Since the control has entered into the diffusion, Wonham’s separation the-
orem does not work in this setting. However, the maximum principle (Theorem 2.1)
developed in Sect. 2 is still an alternative tool. From the maximum principle, an op-
timal control of the aforementioned optimization problem can be obtained. But we
will try to use another direct construction technique to solve this problem.

Example 3.2 Consider the 1-dimensional risk-sensitive optimal control problem

J (u(·)) = min
v(·)∈Uad

J (v(·)), J (v(·)) = 1

γ
E

v[xv(T )]γ , γ ≥ 2, (42)

subject to

dxv(t) = (A(t)xv(t) + B(t)v(t))dt + (C(t)xv(t) + F(t)v(t))dW(t), (43a)

xv(0) = x0, (43b)

and the observation (27). Here A(·), B(·), C(·), F(·), F−1(·) are bounded determin-
istic in [0, T ].

Applying Itô’s formula, we get easily

d[xv(t)]γ = γ

{[
A(t) + 1

2
(γ − 1)C2(t)

]
[xv(t)]γ

+ [B(t) + (γ − 1)C(t)F (t)][xv(t)]γ−1v(t)

+ 1

2
(γ − 1)F 2(t)[xv(t)]γ−2v2(t)

}
dt

+ γ (C(t)xv(t) + D(t)v(t))[xv(t)]γ−1dW(t).

For convenience, we set X̂(t, v;γ ) = E
v{[xv(t)]γ |Yt }. By Theorem 8.1 in Liptser

and Shiryayev (Ref. [16]), it follows that

X̂(t, v;γ ) =x
γ

0 + γ

∫ t

0

{
[A(s) + 1

2
(γ − 1)C2(s)]X̂(s, v;γ )

+ [B(s) + (γ − 1)C(s)F (s)]X̂(s, v;γ − 1)v(s)

+ 1

2
(γ − 1)F 2(s)X̂(s, v;γ − 2)v2(s)

}
ds. (44)

On the other hand, it is clear that

J (v(·)) = 1

γ
E

v{Ev{[xv(T )]γ |YT }} = 1

γ
E

v[X̂(T , v;γ )]. (45)
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Thus, (45) subject to (44) yields a fully observed optimization problem. To obtain
an optimal control, we need an additional assumption, (γ − 1)X̂(T , v;γ − 2) > 0.
Noticing that the integrand in (44) is quadratic with respect to v(·), we get easily the
following result.

Proposition 3.2 The optimal control of (42) subject to (43) and (27) is given by

u(t) = − B(t) + (γ − 1)C(t)F (t)

(γ − 1)F 2(t)X̂(t, u;γ − 2)
X̂(t, u;γ − 1).

Remark 3.2 Generally, it is difficult to get an explicitly observable optimal control for
the partially observed risk-sensitive problem. To our knowledge, this is still an open
problem. But, if we let γ = 2, the cost functional (42) reduces to an indefinite control
weight cost. From (44) and Proposition 3.2, the following corollary is obvious.

Corollary 3.1 The optimal control is

u(t) = −(B(t) + C(t)F (t))F−2(t)x̂(t),

where x̂(·) = X̂(·, u;1) is the solution of

˙̂x(t) = A(t)x̂(t) + B(t)u(t), x̂(0) = m0.

Remark 3.3 The optimal control obtained in Corollary 3.1 is a linear feedback of the
state filtering estimate. If the diffusion C(·)xv(·) + F(·)v(·) in (43) is displaced by
the aforementioned F(·), the corresponding optimal control problem reduces to the
classical one in Liptser and Shiryayev (Ref. [16]).

4 Fully Observed Maximum Principle

As a natural deduction of the results in Sect. 2, we now desire to get a maximum
principle for a fully observed risk-sensitive optimal control problem. Then, we apply
the maximum principle to study a risk-sensitive optimal portfolio problem in next
section.

Set F W
t = σ {W(s);0 ≤ s ≤ t}. Suppose that we can fully observe the filtration

F W
t at time t , 0 ≤ t ≤ T . For m = 2,3,4, . . ., a control variable v(·) is called admissi-

ble if v(t) : [0, T ] × � → U ⊆ Rk is F W
t -adapted and satisfies sup0≤t≤T E|v(t)|m <

+∞, a.e., a.s. The set of admissible controls is denoted by Aad . For any v(·) ∈ Aad ,
we let xv(·) be the trajectory corresponding to (1).

In this setting, (6) subject to (1) and (3) reduces to minimizing the cost functional

J (v(·)) = 1

γ
E[�(xv(T ))]γ , γ > 0, (46)

subject to (1) and v(·) ∈ Aad .
Combining Lemma 2.2 with Theorem 2.1, we get the following corollary.
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Corollary 4.1 Let (H1), (H2), (H3) hold. If u(·) is optimal, the maximum principle,

H̄ (t, x(t), v, p̄(t), q̄(t)) − H̄ (t, x(t), u(t), p̄(t), q̄(t))

+ 1

2
Tr[(σ (v) − σ(u(t)))∗P̄ (t)(σ (v) − σ(u(t)))] ≥ 0, ∀v ∈ U, a.e., a.s.,

holds, where (p̄(·), q̄(·)), (P̄ (·), Q̄(·)) are the solutions of the following BSDEs:

−dp̄(t) = H̄ ∗
x (t, x(t), u(t), p̄(t), q̄(t))dt − q̄(t)dW(t),

p̄(T ) = [�(x(T ))]γ−1�∗
x(x(T )),

−dP̄ (t) =
[
b∗
x(u(t))P̄ (t) + P̄ (t)b∗

x(u(t)) +
d∑

i=1

σ ∗
i,x(u(t))P̄ (t)σi,x(u(t))

+
d∑

i=1

σ ∗
i,x(u(t))Q̄i(t) +

d∑
i=1

Q̄i(t)σi,x(u(t))

+ H̄xx(t, x(t), u(t), p̄(t), q̄(t))

]
dt − Q̄(t)dW(t),

P̄ (T ) = (γ − 1)[�(x(T ))]γ−2�x(x(T ))�∗
x(x(T )) + [�(x(T ))]γ−1�xx(x(T )),

and the Hamiltonian function H̄ : [0, T ] × Rn × U × Rn × Rn×d → R is defined by

H̄ (t, xv, v, p̄, q̄) = 〈p̄, b(t, xv, v)〉 +
d∑

i=1

〈q̄i , σi(t, x
v, v)〉.

Remark 4.1 If F W
t is fully observable at time t , the general cost functional (18) sub-

ject to (1) and (3) reduces to the fully observed case. Using the techniques presented
in Theorem 2.2 and Corollary 4.1, a similar maximum principle can also be derived.

5 Applications to Finance

In this section, we will apply Corollary 4.1 to study a fully observed risk-sensitive
optimal portfolio problem.

Let us consider a financial market in which two securities can be continuously
traded. One is a risk-free asset (bond), whose price is defined by the ODE

dS0(t) = r(t)S0(t)dt,

where r(t) is the risk-free interest rate at time t . Without loss of generality, we set
S0(0) = 1. Generally speaking, a change of the risk-free interest rate can affect the
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price of a risky security (stock). For simplification, we assume that the riskysecurity
price satisfies the following SDE:

dS1(t) = S1(t)[(r(t) + μ(t))dt + σ(t)dW(t)].
Here, r(·) + μ(·) is the instantaneous expected rate of return and σ(·) is the instan-
taneous volatility rate. W(·) is a standard 1-dimensional Brownian motion defined
on (�, F W, (F W

t ),P ) equipped with the filtration F W
t = σ {W(s);0 ≤ s ≤ t} and

F W = F W
T . The coefficients r(·), μ(·), σ(·), σ−1(·) are bounded and deterministic

in [0, T ].
We denote by x(t) the wealth of an investor at time t , by π(t) the amount that

she/he invests in the stock. It is well known that, under a so called self-financing
portfolio, the wealth process of the investor, starting with some initial endowment
x0 > 0, satisfies the following wealth equation (see e.g. Karatzas and Shreve [18])

dx(t) = (r(t)x(t) + μ(t)π(t))dt + σ(t)π(t)dW(t),

x(0) = x0.

Define x̄(t) = x(t)e− ∫ t
0 r(s)ds . It follows from the Itô’s formula that

dx̄(t) = μ(t)π(t)e− ∫ t
0 r(s)dsdt + σ(t)π(t)e− ∫ t

0 r(s)dsdW(t), (47a)

x̄(0) = x0. (47b)

Let

Āad =
{
π(·)|π(t) : [0, T ] × � → U ⊆ R is F W

t -adapted and satisfies

sup
0≤t≤T

Eπ2(t)dt < +∞ and x̄(t) ≥ 0, a.e., a.s.
}
.

An element of Āad is called an admissible portfolio. Here, we must point out that U

is not necessarily convex. For any π(·) ∈ Āad , (47) admits a unique solution denoted
by x̄x0;π (·). The target of the investor is to choose an appropriate π∗(·) ∈ Āad such
that

J (π∗(·);x0) = max
π(·)∈Āad

1

γ
E[x̄x0;π (T )]γ , 0 < γ < 1. (48)

To be mathematically rigorous, we assume also that E[x̄x0;π (T )]2γ−4 < +∞ holds.
Here, 0 < γ < 1 is a constant. If we let β = 1 − γ , then 0 < β < 1 and it is the so
called Arrow-Pratt risk aversion index (see e.g. Karatzas and Shreve [18]). π∗(·) is
called an optimal portfolio and x̄x0;π∗

(·) is the corresponding optimal wealth process.
Clearly, (48) subject to (47) is equivalent to

J (π∗(·);x0) = − min
π(·)∈Āad

1

γ
E[x̄x0;π (T )]γ . (49)
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To solve this problem, we write the Hamiltonian function, which is similar to that
in Peng (Ref. [12]),

H̄ (t, x̄x0;π∗
(t),π(t), p̄(t), q̄(t) − P̄ (t)π∗(t)σ (t)e− ∫ t

0 r(s)ds)

+ 1

2
π2(t)σ 2(t)e−2

∫ t
0 r(s)dsP̄ (t)

= π(t)μ(t)p̄(t)e− ∫ t
0 r(s)ds + π(t)σ (t)e− ∫ t

0 r(s)ds(q̄(t)

− P̄ (t)π∗(t)σ (t)e− ∫ t
0 r(s)ds) + 1

2
π2(t)σ 2(t)e−2

∫ t
0 r(s)ds P̄ (t),

where (p̄(·), q̄(·)), (P̄ (·), Q̄(·)) are the solutions of

p̄(t) = −[x̄x0;π∗
(T )]γ−1 −

∫ T

t

q̄(s)dW(s), (50a)

P̄ (t) = (1 − γ )[x̄x0;π∗
(T )]γ−2 −

∫ T

t

Q̄(s)dW(s). (50b)

Under the hypotheses above, from Corollary 4.1 we get easily

μ(t)p̄(t) + σ(t)q̄(t) = 0. (51)

We try to conjecture π∗(·) = m∗(·)x̄x0;π∗
(·). Here and below, m∗(·) and n(·) are

bounded and deterministic functions, which are defined later on. Substituting π∗(·)
into (47) and noticing the terminal condition of (50), it is natural to set

p̄(t) = −[xx0;π∗
(t)]γ−1e

∫ T
t n(s)ds .

Applying Itô’s formula to p̄(t), we have

−dp̄(t) =
[
(1 − γ )m∗(t)μ(t) − 1

2
(γ − 1)(γ − 2)(m∗(t))2σ 2(t) + n(t)

]
p̄(t)dt

− (γ − 1)m∗(t)σ (t)p̄(t)dW(t). (52)

Comparing the drift and the diffusion terms of (52) with (50), we derive

q̄(t) = (γ − 1)m∗(t)σ (t)p̄(t), (53a)

(1 − γ )m∗(t)μ(t) − 1

2
(γ − 1)(γ − 2)(m∗(t))2σ 2(t) + n(t) = 0. (53b)

Noticing (51) and (53), we get

m∗(t) = μ(t)

σ 2(t)(1 − γ )
, n(t) = γμ2(t)

2(1 − γ )σ 2(t)
.

Therefore, we have

π∗(t) = μ(t)

σ 2(t)(1 − γ )
xx0;π∗

(t), (54)
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Fig. 1 The relationship
between m(·) and γ

where xx0;π∗
(t) is the solution of the following optimal wealth equation

dxx0;π∗
(t) =

(
r(t) + μ2(t)

σ 2(t)(1 − γ )

)
xx0;π∗

(t)dt + μ(t)

σ (t)(1 − γ )
xx0;π∗

(t)dW(t),

(55a)

xx0;π∗
(0) = x0. (55b)

Clearly, xx0;π∗
(t) > 0 and E[xx0;π∗

(t)]2γ−4 < +∞, 0 ≤ t ≤ T . The optimal cost
functional is

J (π∗(·);x0) = 1

γ
x

γ

0 e
γ

∫ T
0 [r(s)+ μ2(s)

2σ2(s)(1−γ )
]ds

. (56)

We conclude the discussion above with the following proposition.

Proposition 5.1 The optimal investment amount in the stock, the corresponding
wealth equation and the optimal cost functional are given by (54), (55), (56), re-
spectively.

From (54), it is easy to see that m∗(·) = π∗(·)
xx0;π∗

(·) , which is called the optimal in-

vestment proportion in the stock. Obviously, m∗(·) does not depend on r(·) and it is
increasing with respect to μ(·) and decreasing with respect to σ(·) and β = 1 − γ .
Generally speaking, we are more interested in the influence of the risk-sensitive para-
meter γ to the optimal investment proportion m∗(·). To show explicitly the relation-
ship between them, we give a numerical simulation example and plot the following
Fig. 1, where the time unit is one year, σ = 0.25, μ = 0.0125 and 0.1 ≤ γ ≤ 0.9.

In Fig. 1, we notice that m∗(·) is larger than 0.2 and it is increasing with respect
to γ . The optimal investment proportion curve is divided into three parts according
to the different γ value intervals. When 0.1 ≤ γ ≤ 0.6, we have 0.2 < m∗(·) ≤ 0.5.
This means that the investor invests the most part of her/his wealth in the bond and
smaller part in the stock. When 0.6 < γ ≤ 0.8, we get 0.5 < m∗(·) ≤ 1. This means
that the investor invests the most part of her/his wealth in the stock and smaller part
in the bond. When 0.8 < γ ≤ 0.9, we obtain 1 < m∗(·) ≤ 2. This means that the
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investor always borrows money from a bank and invests all her/his wealth in the
stock.

Those illustrations mentioned above also interpret the meaning of the risk-
sensitive parameter γ . In details, we assume 0 < γ < 1, then β = 1 − γ denotes
the Arrow-Pratt risk aversion index. From Fig. 1, we know that the higher the risk-
sensitive parameter γ , the bigger the optimal investment proportion m∗(·), the smaller
the risk aversion index β . This means that, if the risk-seeking degree of the in-
vestor increases, then the risk-aversion degree decreases. Reversely, the lower the
risk-sensitive parameter γ , the smaller the optimal investment proportion m∗(·), the
bigger the risk aversion index β . This means that, if the risk-aversion degree of the
investor increases, then the risk-seeking degree decreases. These coincide with our
theoretical results and the economic meaning of the risk-sensitive parameter γ .

6 Comparison with Existing Results

The subject of stochastic maximum principles for optimal control problems has been
discussed by many researchers, such as Bensoussan (Ref. [6]), Haussmann (Ref. [7]),
Baras et al. (Ref. [8]), Zhou (Ref. [9]), Li and Tang (Ref. [10]), etc. Compared with
the papers above, our work is a generalization of their results. Similar to Li and Tang
(Ref. [10]), a boundedness condition on the observation h is imposed. We hope that
the condition can be improved in our future works.

Three points are worth while pointing out:

(a) In our context, by a conventional method used in the fully observed risk-neutral
situation, we derive some stochastic maximum principles for the partially ob-
served risk-sensitive (neutral) optimal control problems. The related adjoint
processes are characterized by solutions of some finite-dimensional BSDEs. Our
method does not involve the Zakai equations; thus we can get rid of lots of com-
plicated stochastic calculus in infinite dimensional spaces, in contrast with Ben-
soussan (Ref. [6]), Haussmann (Ref. [7]) and Zhou (Ref. [9]).

(b) Our Theorem 2.3 coincides with Theorem 2.1 of Li and Tang (Ref. [10]). If we
let γ = 1 in our Corollary 2.1, it includes the result of Baras et al. (Ref. [8]) as
a special case, where the control variable v(·) is not in the diffusion and the ob-
servation. Even in the risk-neutral case (see e.g. [6–10], etc.), some theoretical
results of maximum principles were obtained by different methods. However, lit-
tle attention was paid to applications of these theoretical results. In Sect. 3 of this
paper, we work out two examples to illustrate the applications of our theoretical
results.

(c) Under our framework, the form of the maximum principles is similar to its risk-
neutral counterpart, but the corresponding variational inequalities and the adjoint
equations depend strongly on the risk-sensitive parameter γ . In Sect. 5, we apply
the fully observed maximum principle (Corollary 4.1) to study a risk-sensitive
optimal portfolio problem and get an explicit optimal solution. A numerical sim-
ulation result clearly illustrates the influence of the risk-sensitive parameter γ on
the optimal investment proportion, which coincides with its economic meaning
and theoretical results.
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