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Abstract We consider the problem of minimizing the weighted sum of a smooth
function f and a convex function P of n real variables subject to m linear equality
constraints. We propose a block-coordinate gradient descent method for solving this
problem, with the coordinate block chosen by a Gauss-Southwell-q rule based on suf-
ficient predicted descent. We establish global convergence to first-order stationarity
for this method and, under a local error bound assumption, linear rate of conver-
gence. If f is convex with Lipschitz continuous gradient, then the method terminates
in O(n2/ε) iterations with an ε-optimal solution. If P is separable, then the Gauss-
Southwell-q rule is implementable in O(n) operations when m = 1 and in O(n2)

operations when m > 1. In the special case of support vector machines training, for
which f is convex quadratic, P is separable, and m = 1, this complexity bound is
comparable to the best known bound for decomposition methods. If f is convex,
then, by gradually reducing the weight on P to zero, the method can be adapted to
solve the bilevel problem of minimizing P over the set of minima of f + δX, where
X denotes the closure of the feasible set. This has application in the least 1-norm
solution of maximum-likelihood estimation.
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1 Introduction

We consider a class of constrained nonsmooth optimization problems of the form

min
x∈�n

Fc(x)
def= f (x) + cQ(x), (1)

where c > 0,

Q(x)
def=

{
P(x), if Ax = b,
∞, else,

P : �n → (−∞,∞] is a proper, convex, lower semicontinuous (lsc) function [1], A ∈
�m×n, b ∈ �m, and f is real-valued and smooth (i.e., continuously differentiable) on
an open subset of �n containing domQ = {x | Q(x) < ∞}. We assume domQ �= ∅.
Then Q is proper, convex, lsc, and Q is polyhedral whenever P is polyhedral. The
objective function Fc is in general nonsmooth and nonconvex. Of particular interest
is the case when m is small, n is large, and P is separable, i.e.,

P(x) =
n∑

j=1

Pj (xj ), (2)

for some proper, convex, lsc functions Pj : � → (−∞,∞]. However, Q is not sepa-
rable due to the constraints Ax = b (unless m = 0).

The problem (1) with P separable is quite general and includes as special cases
problems of box-constrained smooth optimization and, more generally, nonsmooth
separable optimization (m = 0) [2–6], as well as monotropic optimization (f ≡ 0)
[7], and linearly constrained smooth optimization (P is the indicator function for a
box) [8–11]. In applications arising in signal denoising, image processing, and data
classification, the problem is often large scale (n ≥ 10000) and P may be nonsmooth
to induce solution sparsity; see [12–19] and references therein. Such applications in-
clude Basis Pursuit/Lasso (f is convex quadratic, P is the 1-norm, m = 0) [13, 14,
16] and support vector machine (SVM) training (f is quadratic, P is the indicator
function for a box, m = 1) [20, 21]. Methods that update x one coordinate block at
a time are well suited to solve these problems, due to their low computational cost
per iteration and ease of implementation and parallelization. Such methods include
(block) SOR methods for finding sparse representation of signals and decomposition
methods for SVM training; see [8, 16, 17, 19–28] and references therein. Recently,
block-coordinate gradient descent (CGD) methods were proposed in [6] for solving
the case of m = 0 and then extended in [29] for linearly constrained smooth opti-
mization. These methods approximate f by a quadratic at the current iterate x, apply
block-coordinate descent to generate a feasible descent direction d , and then update
x by performing an inexact line search along d . Numerical experiences in [6, 29, 30]
suggest that the CGD methods can be effective in practice.

In this paper, we extend the CGD methods in [6, 29] to solve the general prob-
lem (1). As in [6, 29], we choose the coordinate block according to a Gauss-
Southwell-q rule and choose the stepsize according to an Armijo-like rule; see (7)
and (10). (In [6], a Gauss-Seidel rule and a Gauss-Southwell-r rule for choosing the
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coordinate block are also considered. We do not consider them here for reasons to
be explained in Sect. 8.) Our main contributions are three-fold. First, we show that,
in the case where P is separable and piecewise-linear/quadratic with O(1) pieces,
the Gauss-Southwell-q rule is implementable in O(n) operations when m = 1 and in
O(n2) operations when m > 1; see Sect. 6. This is based on conformal realization [7,
Sect. 10B], [31] of a diagonally scaled gradient “projection” direction, and extends
the procedure in [29, Sect. 6] for linearly constrained smooth optimization. The re-
sulting method uses only O(n) operations per iteration when m = 1, P is separable
and piecewise-linear/quadratic with O(1) pieces (e.g., 1-norm), and f is quadratic
or has a partially separable structure; see the end of Sect. 6. Second, we show that,
for any ε > 0, the CGD method terminates in O(n2/ε) iterations with an ε-optimal
solution, assuming f is convex with Lipschitz continuous gradient; see Theorem 5.1.
This is the first complexity bound for a CGD method. When specialized to the train-
ing of SVM (m = 1, P is the indicator function for a box

∏n
j=1[lj , uj ], and f is

quadratic), the resulting complexity bound of

O

(
n3�b2

max

ε
+ n2�max

{
0, log

(
(Fc(x

init) − minx Fc(x))

nbmax

)})

operations for achieving ε-optimality, where bmax = max1≤j≤n(uj − lj ) and � is the
maximum norm of the 2 × 2 principal submatrices of ∇2f (x), is comparable to the
currently best bounds for decomposition methods [26, 32, 33]; see Sect. 6 for details.
In addition, the method achieves global convergence to first-order stationarity and,
under a local error bound assumption, linear rate of convergence; see Theorems 4.1
and 4.2. This generalizes [6, Theorem 3] and [29, Theorem 5.1] for the cases of m = 0
and linearly constrained smooth optimization. Third, when f is convex and under a
mild assumption on Q, we show that, by gradually decreasing c towards zero at a
suitable rate during the execution of the CGD method, we can solve the following
bilevel problem:

min
x∈Sf

Q(x), (3)

where Sf denotes the set of minima of f over X, where X denotes the closure of
domQ. This problem arises, for example, in the least 1-norm solution of a least
square problem or a maximum likelihood estimation problem [16, 17].

In our notation, �n denotes the space of n-dimensional real column vectors, T de-
notes transpose. For any x ∈ �n, xj denotes the j th component of x, xJ denotes the
subvector of x comprising xj , j ∈ J , and ‖x‖p = (

∑n
j=1 |xj |p)1/p for 1 ≤ p < ∞

and ‖x‖∞ = maxj |xj |. For simplicity, we write ‖x‖ = ‖x‖2. For any nonempty
J ⊆ N = {1, . . . , n}, |J | denotes the cardinality of J . For any symmetric matrices
H,D ∈ �n×n, we write H � D (respectively, H � D) to mean that H −D is positive
semidefinite (respectively, positive definite). HJ J = [Hij ]i,j∈J denotes the princi-
pal submatrix of H indexed by J . λmin(H) and λmax(H) denote the minimum and
maximum eigenvalues of H . We denote by I the identity matrix and by 0 the matrix
of zero entries. Unless otherwise specified, {xk} denotes the sequence x0, x1, . . . .
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2 (Block) Coordinate Gradient Descent Method

In this section, we describe our method for solving (1). As in [6, 29], we use ∇f (x) to
build a quadratic approximation of f at x and apply coordinate descent to generate
a feasible descent direction d at x. More precisely, we choose a nonempty subset
J ⊆ N , a symmetric matrix H ∈ �n×n, and move x along the direction

dH (x; J )
def= arg min

d∈�n

{
∇f (x)T d + 1

2
dT Hd + cQ(x + d) | dj = 0 ∀j /∈ J

}
. (4)

Here dH (x; J ) depends on H through HJ J only. To ensure that dH (x; J ) is well
defined, we assume that HJ J is positive definite on Null(AJ ) (the null space of AJ )
or, equivalently, BT

J HJ J BJ � 0, where AJ denotes the submatrix of A comprising
columns indexed by J and BJ is a matrix whose columns form an orthonormal basis
for Null(AJ ). The direction (4) reduces to those used in [6, 29] when m = 0 or P is
the indicator function for a box.

First, we have the following generalization of [6, Lemma 1] and [29, Lemma 2.1],
showing that a nonzero dH (x; J ) is a descent direction of Fc at x. We include its
proof for completeness.

Lemma 2.1 For any x ∈ domQ, nonempty J ⊆ N and symmetric H ∈ �n×n with
BT

J HJ J BJ � 0, let d = dH (x; J ) and g = ∇f (x). Then,

Fc(x + αd) ≤ Fc(x) + α(gT d + cQ(x + d) − cQ(x)) + o(α), ∀α ∈ (0,1], (5)

gT d + cQ(x + d) − cQ(x) ≤ −dT Hd ≤ −λmin(B
T

J HJ J BJ )‖d‖2. (6)

Proof Inequality (5) and the first inequality in (6) follow from [6, Lemma 1]. Since
dJ ∈ Null(AJ ), so that dJ = BJ y for some vector y, we have

dT Hd = yT BT
J HJ J BJ y ≥ ‖y‖2λmin(B

T
J HJ J BJ ) = ‖d‖2λmin(B

T
J HJ J BJ ),

where the second equality uses BT
J BJ = I . This proves the second inequality

in (6). �

We now describe formally the block-coordinate gradient descent (abbreviated as
CGD) method.

CGD Method
Choose x0 ∈ domQ. For k = 0,1,2, . . . , generate xk+1 from xk according to the

following iteration:

Step 1. Choose a nonempty J k ⊆ N and a symmetric Hk ∈ �n×n with
BT

J kH
k

J k J kBJ k � 0.

Step 2. Solve (4) with x = xk, J = J k, H = Hk to obtain dk = dHk (xk; J k).
Step 3. Choose a stepsize αk > 0 and set xk+1 = xk + αkdk .
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Various stepsize rules for smooth optimization [8, 9, 11] can be adapted to our
setting. The following Armijo rule, used in [6, 29], is simple, requires only function
evaluations, and seems effective in theory and practice.

Armijo Rule
Choose αk

init > 0 and let αk be the largest element of {αk
initβ

j }j=0,1,... satisfying

Fc(x
k + αkdk) ≤ Fc(x

k) + αkσ
k, (7)

where 0 < β < 1, 0 < σ < 1, 0 ≤ γ < 1, and


k def= ∇f (xk)T dk + γ dkT
Hkdk + cQ(xk + dk) − cQ(xk). (8)

Since BT
J kH

k
J k J kBJ k � 0 and 0 ≤ γ < 1, we see from Lemma 2.1 that

Fc(x
k + αdk) ≤ Fc(x

k) + α
k + o(α), ∀α ∈ (0,1],
and 
k ≤ (γ − 1)dkT

Hkdk < 0, whenever dk �= 0. Since 0 < σ < 1, this shows that
αk given by the Armijo rule is well defined and positive. By choosing αk

init based on
the previous stepsize αk−1, the number of function evaluations can be kept small in
practice. Notice that 
k increases with γ , so larger stepsizes will be accepted if we
choose either σ near 0 or γ near 1.

For convergence, the index subset J k must be chosen judiciously. We will choose
J k according to the Gauss-Southwell-q rule, which was introduced in [6] for the
case of m = 0 and was shown in [6], [29] to be effective in theory and practice.
Specifically, let

qH (x; J )
def=

{
∇f (x)T d + 1

2
dT Hd + cQ(x + d) − cQ(x)

}
d=dH (x;J )

, (9)

which is the predicted descent when x is moved along the direction dH (x; J ). The
Gauss-Southwell-q rule chooses the index subset J k to achieve sufficient predicted
descent, i.e.,

qDk (xk; J k) ≤ υqDk (xk; N ), (10)

where Dk � 0 (typically diagonal) and 0 < υ ≤ 1. In fact, it suffices that BT
N DkBN �

0 for our analysis. We will discuss in Sect. 6 how to efficiently implement this rule
when P is separable and piecewise-linear/quadratic.

3 Properties of Search Direction

In this section we derive various properties of the search direction dH (x; J ) and
the corresponding predicted descent qH (x; J ). These properties will be used in later
sections to analyze the convergence rate and the complexity of the CGD method.

Formally, we say that x ∈ �n is a stationary point of Fc if x ∈ domFc and
Fc

′(x;d) ≥ 0 for all d ∈ �n. The following lemma gives an alternative characteri-
zation of stationarity.
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Lemma 3.1 For any symmetric matrix H ∈ �n×n satisfying BT
N HN N BN � 0, an

x ∈ domQ is a stationary point of Fc if and only if dH (x; N ) = 0.

Proof Let C be a matrix whose columns form an orthonormal basis for the column
span of AT . Then, dH (x; N ) is unchanged when H is replaced by H + θCCT for
any θ ∈ �. Moreover, H + θCCT � 0 for all θ sufficiently large. Then, we apply
Lemma 2 in [6] to (1) to obtain the desired result. �

The following lemma shows that ‖dH (x; J )‖ changes not too fast with the
quadratic coefficients H . It will be used to prove Theorem 4.2. We give its proof
for completeness, which is similar to those of [6, Lemma 3] and [29, Lemma 3.1].

Lemma 3.2 Fix any x ∈ domQ, nonempty J ⊆ N , and symmetric matrices H,H̃ ∈
�n×n satisfying U � 0 and Ũ � 0, where U = BT

J HJ J BJ and Ũ = BT
J H̃J J BJ .

Let d = dH (x; J ) and d̃ = d
H̃

(x; J ). Then,

‖d̃‖ ≤ 1 + λmax(S) + √
1 − 2λmin(S) + λmax(S)2

2

λmax(U)

λmin(Ũ)
‖d‖, (11)

where S = U−1/2ŨU−1/2.

Proof Since dj = d̃j = 0 for all j /∈ J , it suffices to prove the lemma for the case
of J = N . Let g = ∇f (x). By the definition of d and d̃ and applying [34, Theo-
rem 10.1] to (1), we have

d ∈ arg min
u

(g + Hd)T u + cQ(x + u) − cQ(x),

d̃ ∈ arg min
u

(g + H̃ d̃)T u + cQ(x + u) − cQ(x).

Thus,

(g + Hd)T d + cQ(x + d) − cQ(x) ≤ (g + Hd)T d̃ + cQ(x + d̃) − cQ(x),

(g + H̃ d̃)T d̃ + cQ(x + d̃) − cQ(x) ≤ (g + H̃ d̃)T d + cQ(x + d) − cQ(x).

Adding the above two inequalities and rearranging terms yield

dT Hd − dT (H + H̃ )d̃ + d̃T H̃ d̃ ≤ 0.

Since d, d̃ ∈ Null(A), we have d = BN y and d̃ = BN ỹ for some vectors y, ỹ. Sub-
stituting these into the above inequality and using the definitions of U, Ũ yield

yT Uy − yT (U + Ũ )ỹ + ỹT Ũ ỹ ≤ 0.

Then proceeding as in the proof of [6, Lemma 3] and using ‖d‖ = ‖y‖, ‖d̃‖ = ‖ỹ‖
(since BT

N BN = I ), we obtain (11). �
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The next lemma bounds ∇f (x)T (x′ − x̄) + cQ(x′) − cQ(x̄) from above by a
weighted sum of ‖x− x̄‖2 and −qD(x; J ), where x′ = x+αd , d = dH (x; J ), and J
satisfies a condition analogous to (10). This lemma, which extends [29, Lemma 3.3]
for the case of linearly constrained smooth optimization, will be used to prove Theo-
rem 4.2.

Lemma 3.3 Fix any x ∈ domQ, nonempty J ⊆ N , symmetric matrices H,D ∈
�n×n satisfying BT

J HJ J BJ � 0, δ̄I � D � 0, and

qD(x; J ) ≤ υ qD(x; N ), (12)

with δ̄ > 0, 0 < υ ≤ 1. Then, for any x̄ ∈ domQ, 0 ≤ α ≤ 1, we have

gT (x′ − x̄) + cQ(x′) − cQ(x̄) ≤ δ̄

2
‖x̄ − x‖2 − 1

υ
qD(x; J ), (13)

where g = ∇f (x), x′ = x + αd , d = dH (x; J ).

Proof Since x̄ − x is a feasible solution of the minimization subproblem (4) corre-
sponding to N and D, we have

qD(x; N ) ≤ gT (x̄ − x) + 1

2
(x̄ − x)T D(x̄ − x) + cQ(x̄) − cQ(x).

Since δ̄I � D, we have (x̄ − x)T D(x̄ − x) ≤ δ̄‖x̄ − x‖2. This together with (12)
yields

1

υ
qD(x; J ) ≤ gT (x̄ − x) + δ̄

2
‖x̄ − x‖2 + cQ(x̄) − cQ(x).

Rearranging terms, we have

gT (x − x̄) + cQ(x) − cQ(x̄) ≤ δ̄

2
‖x̄ − x‖2 − 1

υ
qD(x; J ). (14)

Also, by the definition of d and (6) in Lemma 2.1, for any α ≥ 0 we have

α(gT d + cQ(x + d) − cQ(x)) ≤ 0.

Since Q is convex so that cQ(x+αd)−cQ(x) ≤ α(cQ(x+d)−cQ(x)), this implies

αgT d + cQ(x + αd) − cQ(x) ≤ 0.

Adding this to (14) yields (13). �

The next lemma shows that 
 is bounded above by a constant multiple of
qH (x; J ). It also bounds qH (x; J ) from above by a constant multiple of qD(x; J ).
This lemma is new and will be used to analyze the complexity of the CGD method
when f is convex; see Theorem 5.1.
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Lemma 3.4 For any x ∈ domQ, nonempty J ⊆ N , and symmetric matrix H ∈ �n×n

satisfying BT
J HJ J BJ � 0, the following results hold with d = dH (x; J ) and g =

∇f (x).

(a) For any 0 ≤ γ < 1,


 ≤ min{1,2 − 2γ }qH (x; J ),

where 
 = gT d + γ dT Hd + cQ(x + d) − cQ(x).
(b) For any symmetric matrix D ∈ �n×n satisfying BT

J DJ J BJ � BT
J HJ J BJ and

any 0 < ω ≤ 1,

qH (x; J ) ≤ qD(x; J ) ≤ ωqωD(x; J ).

Proof (a) If γ ≤ 1/2, then dT Hd ≥ 0 by (6) in Lemma 2.1, so that


 = qH (x; J ) +
(

γ − 1

2

)
dT Hd ≤ qH (x; J ).

Otherwise, 1/2 < γ < 1 and we have from (6) in Lemma 2.1 that


 = gT d + cQ(x + d) − cQ(x) + (2γ − 1)dT Hd + (1 − γ )dT Hd

≤ gT d + cQ(x + d) − cQ(x) + (2γ − 1)(−gT d − cQ(x + d) + cQ(x))

+ (1 − γ )dT Hd

= (2 − 2γ )qH (x; J ).

Thus 
 ≤ min{1,2 − 2γ }qH (x; J ).
(b) Let d̄ = dD(x; J ). Then

qH (x; J ) = gT d + 1

2
dT Hd + cQ(x + d) − cQ(x)

≤ gT d̄ + 1

2
d̄T H d̄ + cQ(x + d̄) − cQ(x)

≤ gT d̄ + 1

2
d̄T Dd̄ + cQ(x + d̄) − cQ(x)

= qD(x; J ),

where the third step uses BT
J HJ J BJ � BT

J DJ J BJ and AJ d̄J = 0. This proves
the first inequality. To prove the second inequality, we note that

qωD(x; J ) = min
uj =0 ∀j /∈J

{
gT u + ω

2
uT Du + cQ(x + u) − cQ(x)

}

= 1

ω
min

uj =0 ∀j �∈J

{
gT (ωu) + 1

2
(ωu)T D(ωu) + ω(cQ(x + u) − cQ(x))

}

≥ 1

ω
min

uj =0 ∀j /∈J

{
gT (ωu) + 1

2
(ωu)T D(ωu) + cQ(x + ωu) − cQ(x)

}
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= 1

ω
qD(x; J ),

where the inequality uses the convexity of Q. �

Corollary 3.1 For any x ∈ domQ, nonempty J ⊆ N , and symmetric matrices
H,D ∈ �n×n satisfying 0 ≺ BT

J HJ J BJ � λ̄I and BT
J DJ J BJ � δI , we have

qH (x; J ) ≤ min

{
1,

δ

λ̄

}
qD(x; J ).

Proof We have BT
J HJ J BJ � λ̄

δ
BT

J DJ J BJ . If λ̄
δ

≤ 1, then BT
J HJ J BJ �

λ̄
δ
BT

J DJ J BJ � BT
J DJ J BJ , so Lemma 3.4(b) yields qH (x; J ) ≤ qD(x; J ). If

λ̄
δ

> 1, then Lemma 3.4(b) again yields

qH (x; J ) ≤ q λ̄
δ
D

(x; J ) ≤ δ

λ̄
qD(x; J ).

This proves the desired result. �

4 Global Convergence and Convergence Rate Analysis

In this section, we analyze the global convergence and asymptotic convergence rate
of the CGD method using the Gauss-Southwell-q rule, analogous to those obtained
for the cases of m = 0 [6, Theorems 1 and 3] and linearly constrained smooth op-
timization [29, Theorems 4.1 and 5.1]. Analogous to [29], we make the following
assumption on {Hk} in the CGD method.

Assumption 4.1 λ̄I � BT
J kH

k
J k J kBJ k � λI for all k, where 0 < λ ≤ λ̄.

Assumption 4.1 allows Hk to closely approximate ∇2f (xk) provided ∇2f (xk)J kJ k

is positive definite over Null(AJ k ). The following theorem states the global conver-
gence properties of the CGD method. Its proof is omitted since it is nearly identical to
that of [6, Theorem 1(a), (b), (d), (f)] for the case of m = 0, with minor modification
to account for [6, Assumption 1] being relaxed to Assumption 4.1.

Theorem 4.1 Let {xk}, {J k}, {Hk}, {dk} be sequences generated by the CGD
method, where {Hk} satisfies Assumption 4.1 and {αk} is chosen by the Armijo rule
with infk αk

init > 0. Then, the following results hold.

(a) {Fc(x
k)} is nonincreasing and 
k given by (8) satisfies

−
k ≥ (1 − γ )dkT
Hkdk ≥ (1 − γ )λ‖dk‖2, ∀k, (15)

Fc(x
k+1) − Fc(x

k) ≤ σαk
k ≤ 0, ∀k. (16)
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(b) If {J k} satisfies (10), δ̄I � Dk � δI for all k, where 0 < δ ≤ δ̄, and either (1) Q

is continuous on domQ or (2) infk αk > 0 or (3) αk
init = 1 for all k, then every

cluster point of {xk} is a stationary point of Fc.
(c) If, for any � ∈ {1, . . . , n}, there exists L� ≥ 0 such that

‖∇f (y) − ∇f (z)‖ ≤ L�‖y − z‖,
∀y, z ∈ domQ with yj = zj ∀j /∈ J , ∀J ⊆ N with |J | ≤ �, (17)

then αk ≥ min{αk
init, β min{1,2λ(1−σ +σγ )/L�} for all k. If limk→∞ Fc(x

k) >

−∞ also, then {
k} → 0 and {dk} → 0.

If P is separable, then Q is automatically continuous on domQ [34, Corol-
lary 2.37]. The next theorem establishes the convergence rate of the CGD method
under Assumption 4.1 and the following assumption that is analogous to [6, Assump-
tion 2]. In what follows, X̄ denotes the set of stationary points of Fc and

dist(x, X̄) = min
x̄∈X̄

‖x − x̄‖, ∀x ∈ �n.

Assumption 4.2

(a) X̄ �= ∅ and, for any ζ ≥ minx Fc(x), there exist scalars τ > 0 and ε > 0 such that

dist(x, X̄) ≤ τ‖dI (x; N )‖ whenever Fc(x) ≤ ζ, ‖dI (x; N )‖ ≤ ε.

(b) There exists a scalar ρ > 0 such that

‖x − y‖ ≥ ρ, whenever x ∈ X̄, y ∈ X̄, Fc(x) �= Fc(y).

Assumption 4.2(a) is a local Lipschitzian error bound assumption, saying that the
distance from x to X̄ is locally in the order of the norm of the residual at x; see [27,
35, 36] and references therein. Assumption 4.2(b) says that the isocost surfaces of
Fc restricted to the solution set X̄ are “properly separated.” Assumption 4.2(b) holds
automatically if f is convex or f is quadratic and P is polyhedral; see [6, 36] for
further discussions. Upon applying [6, Theorem 4] to the problem (1), we obtain the
following sufficient conditions for Assumption 4.2(a) to hold.

Proposition 4.1 Suppose that X̄ �= ∅ and any of the following conditions hold.

(C1) f is strongly convex and satisfies (17) with � = n for some Ln ≥ 0.
(C2) f is quadratic. P is polyhedral.
(C3) f (x) = g(Ex) + qT x for all x ∈ �n, where E ∈ �p×n, q ∈ �n, and g is a

strongly convex differentiable function on �p with ∇g Lipschitz continuous on
�p . P is polyhedral.

(C4) f (x) = maxy∈Y {(Ex)T y−g(y)}+qT x for all x ∈ �n, where Y is a polyhedral
set in �p , E ∈ �p×n, q ∈ �n, and g is a strongly convex differentiable function
on �p with ∇g Lipschitz continuous on �p . P is polyhedral.

Then Assumption 4.2(a) holds.
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The next theorem establishes, under Assumptions 4.1 and 4.2, the linear rate
of convergence of the CGD method using (10) to choose {J k}. Its proof, which
uses Theorem 4.1 and Lemmas 2.1, 3.2, 3.3, is similar to the proof of [29, The-
orem 5.1], except that “f ” is replaced by “Fc” and “cQ” is added in some
places. The full proof can be found in the Appendix of the original report:
http://www.math.washington.edu/~tseng/papers/cgd_cnobi.pdf. In what follows, by
Q-linear and R-linear convergence, we mean linear convergence in the quotient and
the root sense, respectively [37, Chapt. 9].

Theorem 4.2 Assume that f satisfies (17) with � = n for some Ln ≥ 0. Let {xk},
{Hk}, {dk} be sequences generated by the CGD method, where {Hk} satisfies As-
sumption 4.1, {J k} satisfies (10) with δ̄I � Dk � δI for all k (0 < δ ≤ δ̄). If Fc

satisfies Assumption 4.2 and {αk} is chosen by the Armijo rule with supk αk
init ≤ 1 and

infk αk
init > 0, then either {Fc(x

k)} ↓ −∞ or {Fc(x
k)} converges at least Q-linearly

and {xk} converges at least R-linearly to a point in X̄.

Theorem 4.2 generalizes [6, Theorem 3] by relaxing [6, Assumption 1] to Assump-
tion 4.1 and, more significantly, not assuming Q is block-separable. The assumption
(17) with � = n in Theorem 4.2 can be relaxed to ∇f being Lipschitz continuous on
domQ ∩ (X0 + �B) for some � > 0, where B denotes the unit Euclidean ball in �n

and X0 denotes the convex hull of the level set {x | Fc(x) ≤ Fc(x
0)}. For simplicity,

we do not consider this more relaxed assumption here.

5 Complexity Analysis for f Convex

The following theorem is the main result of this section, giving an upper bound on the
number of iterations for the CGD method to achieve ε-optimality when f is convex
with Lipschitz continuous gradient. Its proof uses Lemmas 2.1, 3.4(a), Corollary 3.1,
and Theorem 4.1(c). In what follows, �·� denotes the ceiling function.

Theorem 5.1 Suppose that f is convex and satisfies (17) for some L� ≥ 0 (� ≥ 1).
Suppose that infx Fc(x) > −∞. Let {xk}, {J k}, {Hk} be sequences generated by the
CGD method, where {Hk} satisfies Assumption 4.1, {J k} satisfies (10) with δ̄I �
Dk � δI and |J k| ≤ � for all k (0 < δ ≤ δ̄, � ≥ 1), and {αk} is chosen by the Armijo
rule with infk αk

init > 0. Let ek = Fc(x
k)− infx Fc(x) for all k. Then, ek ≤ ε whenever

k ≥
⎧⎨
⎩

max{0, � 2
Cσα

log( e0

ε
)�}, if ε > δ̄r0;

max{0, � 2
Cσα

log( e0

δ̄r0 )�} + � δ̄r0

Cσαε
�, else,

where r0= maxx{dist(x, X̄)2 | Fc(x) ≤ Fc(x
0)}, X̄ =arg minx Fc(x), C= min{1,2−

2γ }min{1, δ/λ̄}υ , α = min{infk αk
init, β min{1,2λ(1 − σ + σγ )/L�}.

http://www.math.washington.edu/~tseng/papers/cgd_cnobi.pdf
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Proof For each k = 0,1, . . . , by (7), we have

ek+1 − ek = Fc(x
k+1) − Fc(x

k)

≤ σαk
k

≤ σαk min{1,2 − 2γ }qHk (x
k; J k)

≤ CσαkqDk (x
k; N )

≤ CσαqDk (xk; N ), (18)

where the second inequality uses Assumption 4.1 and Lemma 3.4(a), the third in-
equality uses Corollary 3.1 and (10), and the last inequality uses Theorem 4.1(c),
implying that αk ≥ α.

For each k = 0,1, . . . , and t ∈ [0,1], let gk = ∇f (xk) and let x̄k ∈ X̄ satisfy
‖xk − x̄k‖ = dist(xk, X̄). Then,

qDk (x
k; N )

= min
d∈�n

gkT
d + 1

2
dT Dkd + cQ(xk + d) − cQ(xk)

≤ gkT
t (x̄k − xk) + t2

2
(x̄k − xk)T Dk(x̄k − xk) + cQ(xk + t (x̄k − xk)) − cQ(xk)

≤ gkT
t (x̄k − xk) + t2

2
(x̄k − xk)T Dk(x̄k − xk) + tcQ(x̄k) − tcQ(xk)

≤ t (f (x̄k) − f (xk)) + tcQ(x̄k) − tcQ(xk) + t2

2
δ̄ dist(xk, X̄)2

= −tek + t2

2
δ̄ dist(xk, X̄)2

≤ −tek + t2

2
δ̄r0,

where the second inequality uses the convexity of Q and the third inequality uses
the convexity of f . This holds for all t ∈ [0,1]. Minimizing the right-hand side with
respect to t yields

qDk (x
k; N ) ≤ − (ek)2

2δ̄r0

if ek ≤ δ̄r0; else,

qDk (xk; N ) ≤ −ek + 1

2
δ̄r0 < −1

2
ek.

This together with (18) yields

ek+1 ≤ ek − Cσα

δ̄r0
(ek)2 = ek

(
1 − Cσα

δ̄r0
(ek)

)
(19)
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if ek ≤ δ̄r0; else,

ek+1 ≤ ek − Cσα

2
ek. (20)

Case (1): If ε > δ̄r0, then (20) implies ek ≤ ε whenever

e0
(

1 − Cσα

2

)k

< e0 exp(−kCσα/2) ≤ ε,

or equivalently,

k ≥ max

{
0,

⌈
2

Cσα
log

(
e0

ε

)⌉}
.

Case (2): If ε ≤ δ̄r0, then (20) implies ek ≤ δ̄r0 whenever

e0
(

1 − Cσα

2

)k

< e0 exp(−k0Cσα/2) ≤ δ̄r0,

or equivalently,

k ≥ k0
def= max

{
0,

⌈
2

Cσα
log

(
e0

δ̄r0

)⌉}
.

For each k ≥ k0, ek ≤ δ̄r0. If ek = 0, then ek ≤ ε. Otherwise ek > 0. Then, ej > 0 for
j = k0, k0 + 1, . . . , k and we consider the reciprocals ξj = 1/ej . By (19) and ek > 0,
we have 0 ≤ C1e

j < 1 for j = k0, k0 + 1, . . . , k − 1, where C1 = Cσα/(δ̄r0). Thus,
(19) yields

ξj+1 − ξj ≥ 1

ej (1 − C1ej )
− 1

ej
= C1

1 − C1ej
≥ C1, j = 0,1, . . . , k − 1.

Therefore ξk = ξk0 + ∑k−1
j=k0

(ξj+1 − ξj ) ≥ C1(k − k0) and consequently

ek = 1

ξk

≤ 1

C1(k − k0)
.

It follows that ek ≤ ε whenever

k ≥ k0 +
⌈

1

C1ε

⌉
= max

{
0,

⌈
2

Cσα
log

(
e0

δ̄r0

)⌉}
+

⌈
δ̄r0

Cσαε

⌉
. �

If we take γ = 1/2, Dk = Hk = I and αk
init = 1 for all k, then δ = δ̄ = λ = λ̄ = 1

and C = υ , and the iteration bounds in Theorem 5.1 reduce to

O

(
L�

υ
max

{
0, log

(
e0

ε

)})
, if ε > r0;

O

(
L�

υ
max

{
0, log

(
e0

r0

)}
+ L�r

0

υε

)
, else.

(21)
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Notice that r0 = 0 whenever x0 ∈ X̄. If X̄ is bounded, then it can be seen that r0 → 0
as dist(x0, X̄) → 0.

6 Index Subset Selection for P Separable

In this section, we study efficient ways to find an index subset J k satisfying (10) for
some constant 0 < υ ≤ 1. One obvious choice is J k = N , which satisfies (10) with
υ = 1. However, the corresponding search direction (4) may be expensive to compute
and, for SVM applications, the gradient ∇f would be expensive to update. We will
extend the procedure developed in [29] for linearly constrained smooth optimization
to use a conformal realization of dDk (xk; N ) [7, Sect. 10B], [31] to find J k of small
size when P is separable. Our main result is Proposition 6.1, showing the existence
of such J k by construction.

For any d ∈ �n, the support of d is supp(d)
def= {j ∈ N | dj �= 0}. We say d ′ ∈ �n

is conformal to d ∈ �n if

supp(d ′) ⊆ supp(d), d ′
j dj ≥ 0 ∀j ∈ N , (22)

i.e., the nonzero components of d ′ have the same signs as the corresponding com-
ponents of d . A nonzero d ∈ �n is an elementary vector of Null(A) if d ∈ Null(A)

and there is no nonzero d ′ ∈ Null(A) that is conformal to d and supp(d ′) �= supp(d).
Each elementary vector d satisfies | supp(d)| ≤ rank(A) + 1 (since any subset of
rank(A) + 1 columns of A are linearly dependent) [7, Exercise 10.6].

First, we derive a lower bound on P(x + d) − P(x), based on a conformal re-
alization of d , for the case when P is separable. This bound will be used to prove
Proposition 6.1.

Lemma 6.1 Suppose P is separable, i.e., has the form (2). For any x, x +d ∈ domP ,
let d be expressed as d = d1 + · · · + dr , for some r ≥ 1 and some nonzero dt ∈ �n

conformal to d for t = 1, . . . , r . Then

P(x + d) − P(x) ≥
r∑

t=1

(
P(x + dt ) − P(x)

)
.

Proof Since P is separable, it suffices to prove that, for each j ∈ N ,

Pj (xj + d1
j + · · · + dr

j ) − Pj (xj ) ≥
r∑

t=1

(
Pj (xj + dt

j ) − Pj (xj )
)
. (23)

We prove this by induction on r . This clearly holds for r = 1. Suppose (23) holds
for r < s, where s ≥ 2. We show below that (23) holds for r = s. If d1

j + · · · +
ds−1
j = 0, then (23) reduces to the case of r = 1 and hence holds. If ds

j = 0, then (23)
reduces to the case of r < s and hence holds. Thus it remains to consider the case
of d1

j + · · · + ds−1
j �= 0 and ds

j �= 0. Since d1
j , d2

j , . . . , ds
j are conformal to dj , either



J Optim Theory Appl (2009) 140: 513–535 527

(i) d1
j + · · ·+ ds−1

j > 0 and ds
j > 0 or (ii) d1

j + · · ·+ ds−1
j < 0 and ds

j < 0. In case (i),

we have xj + d1
j + · · · + ds−1

j < xj + dj and xj + ds
j < xj + dj , so the convexity of

Pj [34, Lemma 2.12] implies

Pj (xj + d1
j + · · · + ds−1

j ) − Pj (xj )

d1
j + · · · + ds−1

j

≤ Pj (xj + dj ) − Pj (xj )

dj

,

Pj (xj + ds
j ) − Pj (xj )

ds
j

≤ Pj (xj + dj ) − Pj (xj )

dj

.

Multiplying the above two inequalities by, respectively, d1
j + · · · + ds−1

j > 0 and
ds
j > 0 and summing, we have

Pj (xj + d1
j + · · · + ds−1

j ) − Pj (xj ) + Pj (xj + ds
j ) − Pj (xj )

≤ Pj (xj + dj ) − Pj (xj ). (24)

In case (ii), we have xj + d1
j + · · · + ds−1

j > xj + dj and xj + ds
j > xj + dj , so the

convexity of Pj implies

Pj (xj + d1
j + · · · + ds−1

j ) − Pj (xj )

d1
j + · · · + ds−1

j

≥ Pj (xj + dj ) − Pj (xj )

dj

,

Pj (xj + ds
j ) − Pj (xj )

ds
j

≥ Pj (xj + dj ) − Pj (xj )

dj

.

Multiplying the above two inequalities by, respectively, d1
j + · · · + ds−1

j < 0 and
ds
j < 0 and summing, we again obtain (24). Since (23) holds for r < s, we also have

Pj (xj + d1
j + · · · + ds−1

j ) − Pj (xj ) ≥
s−1∑
t=1

(
Pj (xj + dt

j ) − Pj (xj )
)
.

Combining this with (24) proves that (23) holds for r = s. �

Lemma 6.1 is false if we drop the assumption that P is separable. For example,
take P(x) = ‖x‖, x = 0, and d = (1,1,−2)T . Then, d can be expressed as d = d1 +
d2 = (1,0,−1)T + (0,1,−1)T , but P(x + d) − P(x) = √

6 < 2
√

2 = ∑2
t=1(P (x +

dt ) − P(x)).
By using Lemma 6.1 and generalizing the proof of [29, Proposition 6.1], we obtain

the following main result of this section.

Proposition 6.1 For any x ∈ domQ, � ∈ {rank(A) + 1, . . . , n}, and diagonal D � 0,
if P is separable, then there exists a nonempty J ⊆ N satisfying |J | ≤ � and

qD(x; J ) ≤ 1

n − � + 1
qD(x; N ). (25)
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Proof Let d = dD(x; N ). We divide our argument into three cases.
Case (i) d = 0: Then qD(x; N ) = 0. Thus, for any nonempty J ⊆ N with |J | ≤ �,

we have from (9) and Lemma 2.1 with H = D that qD(x; J ) ≤ 0 = qD(x; N ), so
(25) holds.

Case (ii) d �= 0 and | supp(d)| ≤ �: Then J = supp(d) satisfies qD(x; J ) =
qD(x; N ) and hence (25), as well as |J | ≤ �.

Case (iii) d �= 0 and | supp(d)| > �: Since d ∈ Null(A), it has a conformal realiza-
tion [7, Sect. 10B], [31], namely,

d = v1 + · · · + vs,

for some s ≥ 1 and some nonzero elementary vectors vt ∈ Null(A), t = 1, . . . , s,
conformal to d . Then, for some α > 0, supp(d ′) is a proper subset of supp(d) and
d ′ ∈ Null(A), where d ′ = d −αv1. (Note that αv1 is an elementary vector of Null(A),
so that | supp(αv1)| ≤ rank(A) + 1 ≤ �.) We repeat the above reduction step with d ′
in place of d . Since | supp(d ′)| ≤ | supp(d)|−1, after at most | supp(d)|−� reduction
steps, we obtain

d = d1 + · · · + dr, (26)

for some r ≤ | supp(d)| − � + 1 and some nonzero dt ∈ Null(A) conformal to d with
| supp(dt )| ≤ �, t = 1, . . . , r . Since | supp(d)| ≤ n, we have r ≤ n − � + 1.

Since Adt = 0, this implies A(x + dt ) = b, t = 1, . . . , r . Also (9) and (26) imply
that

qD(x; N ) = gT d + 1

2
dT Dd + cQ(x + d) − cQ(x)

= gT d + 1

2
dT Dd + cP (x + d) − cP (x)

=
r∑

t=1

gT dt + 1

2

r∑
s=1

r∑
t=1

(ds)T Ddt + cP (x + d) − cP (x)

≥
r∑

t=1

gT dt + 1

2

r∑
t=1

(dt )T Ddt + cP (x + d) − cP (x)

≥
r∑

t=1

gT dt + 1

2

r∑
t=1

(dt )T Ddt +
r∑

t=1

(cP (x + dt ) − cP (x))

≥ r min
t=1,...,r

{
gT dt + 1

2
(dt )T Ddt + cP (x + dt ) − cP (x)

}

= r min
t=1,...,r

{
gT dt + 1

2
(dt )T Ddt + cQ(x + dt ) − cQ(x)

}
,

where g = ∇f (x) and the first inequality uses (22) and D � 0 being diagonal, so that
(ds)T Ddt ≥ 0 for all s, t ; the second inequality uses Lemma 6.1. Thus, if we let t̄ be
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an index t attaining the above minimum and let J = supp(dt̄ ), then |J | ≤ � and

1

r
qD(x; N ) ≥ gT dt̄ + 1

2
(dt̄ )T Ddt̄ + cQ(x + dt̄ ) − cQ(x) ≥ qD(x; J ),

where the second inequality uses A(x + dt̄ ) = b and dt̄
j = 0 for j �∈ J . �

It can be seen from its proof that Proposition 6.1 still holds if the diagonal matrix
D is only positive semidefinite, provided that qD(x; N ) > −∞ (such as when domQ

is bounded). However, Proposition 6.1 is false if we drop the assumption that P is
separable. Take

m = 1, n = 3, f (x) = x1 + x2 + x3, P (x) =
√

x2
1 + x2

2 + |x3|,
A = [1 1 − 1], b = 0.

Then, x = 0 is not a stationary point (d = (−1,−1,−2)T is a feasible descent direc-
tion), so qD(x; N ) < 0 for any D � 0. However, it is straightforward to check that
qD(x; J ) ≥ 0 whenever |J | ≤ 2.

The proof of Proposition 6.1 suggests, for any � ∈ {rank(A)+1, . . . , n}, an O(n−
�)-step reduction procedure for finding a conformal realization (26) of dD(x; N )

with r ≤ n − � + 1 and a corresponding J satisfying |J | ≤ � and (25). In the case
of m = 1 and � = 2, such a conformal realization can be found in O(n) operations,
as is discussed in [29, Sect. 7]. In the case of m = 2 and � = 3, such a conformal
realization can be found in O(n logn) operations. For m ≥ 3, the currently best time
complexity of finding such a conformal realization is O(m3(n − �)2) operations. See
[29, Sect. 7] for more detailed discussions.

There remains the question of how to find dD(x; N ) with D � 0 diagonal. In
the linearly constrained case of Pj = δ[lj ,uj ] for all j , as is considered in [29], this
reduces to a quadratic program with separable convex objective function of the form

min
d

{
∇f (x)T d + 1

2
dT Dd | Ad = 0, l − x ≤ d ≤ u − x

}
, (27)

which is solvable in O(n) operations for m fixed [38, 39]; also see [40, 41] and refer-
ences therein for the special case of m = 1. For general Pj , finding dD(x; N ) reduces
to a monotropic optimization problem which can be solved using various methods;
see [7, 42] and references therein. However, these methods in general do not run in
linear time. If each Pj is polyhedral or, more generally, piecewise-linear/quadratic
with νj pieces, then, as we show below, finding dD(x; N ) is reducible to a problem
of the form (27) with ν1 +· · ·+νn variables, and hence is solvable in O(ν1 +· · ·+νn)

operations for m fixed. Here we assume without loss of generality that domPj is not
a singleton, so that νj ≥ 1. In particular, since D is diagonal, dD(x; N ) is the optimal
solution of a problem of the form

min
d

{
n∑

j=1

�j(dj )

∣∣∣ Ad = 0

}
, (28)
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where each �j is strictly convex, piecewise-linear/quadratic with νj pieces. Let the
breakpoints of �j be denoted by −∞ ≤ a0

j < a1
j < · · · < a

νj

j ≤ ∞ (so a0
j and a

νj

j are
the endpoints of dom�j ). Let

�1
j (d

1
j )

def=
{

�j(a
1
j + d1

j ), if 0 ≥ d1
j ≥ a0

j − a1
j ;

∞, else,

��
j (d

�
j )

def=
{

�j(a
�−1
j + d�

j ), if 0 ≤ d�
j ≤ a�

j − a�−1
j ,

∞, else,
� = 2, . . . , νj .

We consider the following problem

min
d�
j

{
n∑

j=1

νj∑
�=1

��
j (d

�
j )

∣∣∣
n∑

j=1

νj∑
�=1

Ajd
�
j = 0

}
. (29)

This problem, with ν1 +· · ·+ νn variables, has the same form as (27) since the objec-
tive function is separable and each component function is strictly convex quadratic
over its domain. Moreover, the optimal solution of (29) must satisfy

d1
j d2

j = 0, d�+1
j > 0 ⇒ d�

j = a�
j − a�−1

j , � = 2, . . . , νj , j = 1, . . . , n. (30)

If d1
j d2

j �= 0, then d1
j < 0, d2

j > 0, and the strict convexity of �j would imply

�j(a
1
j + d1

j + d2
j ) − �j(a

1
j + d1

j )

d2
j

<
�j (a

1
j + d2

j ) − �j(a
1
j )

d2
j

and hence �j(a
1
j +d1

j +d2
j )+�j(a

1
j ) < �j (a

1
j +d1

j )+�j(a
1
j +d2

j ). Then replacing

d1
j , d2

j by d1
j + d2

j , 0 when d1
j + d2

j < 0 (and replacing d1
j , d2

j by 0, d1
j + d2

j when

d1
j + d2

j ≥ 0) would yield another feasible solution of (29) with a lower objective
value. The second condition in (30) can be argued similarly. Hence, by using

dj = a1
j + d1

j + · · · + d
νj

j , j = 1, . . . , n, (31)

we can construct from the optimal solution of (29) a feasible solution of (28) with the
same objective value. Conversely, we can construct from the optimal solution of (28)
a feasible solution of (29) that has the same objective value and satisfies (30), (31).

By combining the above observations, we can conclude the following about find-
ing an index subset J satisfying |J | ≤ � and (25) when each Pj is piecewise-
linear/quadratic with O(1) pieces: For m = 1 and � = 2, J can be found in O(n)

operations and, for m ≥ 2 and � ∈ {rank(A) + 1, . . . , n}, J can be found in O(n2)

operations, where the constant in O(·) depends on m. It is an open question whether
this can be improved to O(n) operations.

Note that r0 ≤ nb2
max, where bmax = max1≤j≤n(uj − lj ) and lj ≤ uj denote the

endpoints of domPj , which we assume to be bounded. Thus, if f is convex and
satisfies (17) for some �, then it follows from (21) that, for m = 1 and � = 2, the
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CGD method can be implemented to achieve ε-optimality in

O

(
n2L2b

2
max

ε
+ nL2 max

{
0, log

(
e0

nbmax

)})
· O(n + Nf )

operations, where Nf is the number of operations for evaluating f and ∇f at the
current iterate. If in addition f is quadratic or has the partially separable form

f (x) = g(Ex) + qT x,

where g : �p → (−∞,∞] is convex block-separable with O(1) size blocks, q ∈
�n, and each column of E ∈ �p×n has O(1) nonzeros, then Nf = O(n). When
specialized to the training of SVM, for which Pj = δ[lj ,uj ], A = [1 · · · 1], and f is
quadratic, the preceding complexity bound reduces to

O

(
n3�b2

max

ε
+ n2�max

{
0, log

(
e0

nbmax

)})

operations, where � = maxi �=j

√
(Hii − Hij )2 + (Hjj − Hij )2/

√
2 and H =∇2f (x).

For this same problem, Hush and Scovel [32] proposed a decomposition method,
based on block-coordinate descent, and proved that, for any ε > 0, the method finds
an ε-optimal solution in O(b2

maxn
3 logn(e0 + n2�)/ε) operations. This method was

extended by List and Simon [26] to problems with general linear constraints, and

the overall complexity bound was improved to O(
n3�b2

max
ε

+n2 max{0, log( e0

n�bmax
)})

operations. Hush et al. [33] later proposed a more practical decomposition method
that achieves the same complexity bounds as in [26]. Our complexity bound for the
CGD method on this problem is comparable to the above bound when m = 1 (which
covers SVM), and is off by a factor of logn when m = 2 and by a factor of n when
m ≥ 3, due to the extra cost of finding a conformal realization of dD(x; N ). This
extra cost is the price for achieving linear convergence shown in Theorem 4.2.

7 Bilevel Optimization

In this section, we show that when f is convex, we can apply the CGD method
to solve the bilevel problem (3) by decreasing c towards zero whenever the current
iterate xk is an approximate stationary point of (1). In particular, by Lemma 3.1,
‖dDk (xk; N )‖ acts as a “residual” function, measuring how close xk comes to being
stationary for (1). We will use the following measure of approximate stationarity:

‖dDk (xk; N )‖ ≤ εk, ‖DkdDk (xk; N )‖ ≤ εk, (32)

−(Dkxk + ∇f (xk))T dDk (xk; N ) ≤ εk, (33)

with εk > 0 to be specified. Notice that if J k is chosen as described in Sect. 6, then
dDk (xk; N ) would be available as a byproduct and need not be computed addition-
ally.
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Our method for solving (3) uses similar idea as in [17] for a primal-dual interior-
point method. At each outer iteration k (k = 0,1,2, . . .), a regularization parameter
ck > 0 and an accuracy tolerance εk are chosen, and the CGD method is applied to
solve (1) with c = ck until it finds an approximate solution xk satisfying the con-
ditions (32) and (33). Since the idea of decreasing c is reminiscent of homotopy
methods for equation solving, we call this the CGD-homotopy method.

CGD-Homotopy Method
Choose x0 ∈ domQ. For k = 1,2, . . . , generate xk from xk−1 according to the

following outer iteration:

Step 1. Choose ck > 0 and εk > 0.
Step 2. Compute an xk ∈ domQ satisfying (32) and (33) for some Dk � 0 by

applying the CGD method to (1) with c = ck and initial iterate x = xk−1.

The following theorem shows that, by letting ck → 0 and εk → 0 at suitable rates
in the CGD-homotopy method, every cluster point of the approximate solutions {xk}
solves (3).

Theorem 7.1 Suppose f is convex, Sf ∩ domQ �= ∅, and (3) has an optimal solu-
tion. Consider any ck and εk , k = 1,2, . . . , satisfying

lim
k→∞ ck = 0, lim

k→∞
εk

ck
= 0. (34)

Consider any xk satisfying (32) and (33) with c = ck for k = 1,2, . . . . Then every
cluster point of {xk} is an optimal solution of (3). If Q is level-bounded, then {xk}
has a cluster point.

Proof Let x∗ be any optimal solution of (3), i.e., x∗ ∈ arg minx∈Sf
Q(x). By Fermat’s

rule [34, Theorem 10.1],

d̂k ∈ arg min
d

(gk + Dkd̂k)T d + ckQ(xk + d) − ckQ(xk),

where we let d̂k = dDk (xk; N ) and gk = ∇f (xk). Hence,

(gk + Dkd̂k)T d̂k + ckQ(xk + d̂k) − ckQ(xk)

≤ (gk + Dkd̂k)T (x∗ − xk) + ckQ(x∗) − ckQ(xk).

Using (d̂k)T Dkd̂k ≥ 0 and rearranging and canceling terms, we obtain

f (xk) + ckQ(xk + d̂k)

≤ f (xk) + (gk + Dkd̂k)T (x∗ − xk) + ckQ(x∗) − (gk)T d̂k

≤ f (x∗) + (Dkd̂k)T (x∗ − xk) + ckQ(x∗) − (gk)T d̂k

≤ f (x∗) + ‖Dkd̂k‖‖x∗‖ − (Dkxk + gk)T d̂k + ckQ(x∗)

≤ f (x∗) + εk‖x∗‖ + εk + ckQ(x∗), (35)
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where the second inequality follows from f being convex, so that f (xk) +
(gk)T (x∗ − xk) ≤ f (x∗), and the last inequality uses (32) and (33). Since x∗ ∈ Sf

and xk ∈ domQ, f (x∗) ≤ f (xk). This together with (35) implies

ckQ(xk + d̂k) ≤ εk‖x∗‖ + εk + ckQ(x∗).

Dividing both sides by ck yields

Q(xk + d̂k) ≤ εk

ck
‖x∗‖ + εk

ck
+ Q(x∗). (36)

By (34), {ck} → 0 and {εk} → 0, so that, by (32), {d̂k} → 0. This, together with (35)
and Q being convex (so Q is bounded below on any compact set), implies that any
cluster point x̄ of {xk} satisfies f (x̄) ≤ f (x∗). Since xk ∈ domQ for all k, x̄ ∈ X.
Moreover, (34), (36), {d̂k} → 0, and the lsc property of Q imply Q(x̄) ≤ Q(x∗).
Thus x̄ ∈ Sf and x̄ is an optimal solution of (3).

Suppose Q is level-bounded. By (34) and (36), {xk + d̂k} is bounded. This together
with {d̂k} → 0 implies that {xk} has cluster points. �

It is not known if Theorem 7.1 still holds if we replace “dDk (xk; N )” in (32) and
(33) by “dHk (xk; J k)” with J k satisfying (10), even though the latter is also avail-
able as a byproduct of the CGD method. Thus the notion of approximate stationarity
for (1) must be chosen with care. The following lemma shows that the bilevel problem
(3) has an optimal solution under a mild assumption on Q.

Lemma 7.1 Suppose Sf ∩ domQ �= ∅ and Q is level-bounded over Sf . Then the
minimum of Q over Sf is finite and attained on a nonempty compact subset of Sf .

Proof Let Q̃ ≡ δSf
+ Q, where δSf

is the indicator function of the set Sf . Then Q̃ is
proper because Sf ∩ domQ �= ∅, and it is lsc since its level sets Sf ∩ {x | Q(x) ≤ ξ},
with ξ < ∞, are closed (due to Sf being closed and Q being lsc). Since Q is level-
bounded over Sf , these level sets are bounded. Then the minimum of Q̃ is finite and
attained on a nonempty compact set. �

8 Conclusions and Extensions

We have extended a block-coordinate gradient descent method to linearly constrained
nonsmooth separable minimization, and have analyzed its global convergence and as-
ymptotic convergence rate. In the case where f is convex, we also analyzed its com-
putational complexity and presented a homotopy strategy to solve a bilevel version
of the problem.

There are many directions for extensions. Can the complexity bound in Sect. 5
be sharpened? Can the homotopy strategy be extended to handle nonconvex f ? The
Gauss-Southwell-r rule for choosing J k , studied in [6] for the case of m = 0, can
also be extended to the case of m ≥ 1. We did not consider it here because (i) we do
not have a convergence rate analysis analogous to Theorem 4.2 and (ii) our numerical
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experience in [6] suggests that this rule is not better than the Gauss-Southwell-q rule
in practice. The classical Gauss-Seidel rule for choosing J k , studied in [6] for the
case of m = 0, can also be extended to the case of m ≥ 1 provided P is separable.
However, this rule seems impractical since it would require cycling through

(
n

m+1

)
coordinate blocks of size m + 1 each.

Suppose P is not separable but block-separable of the form

P(x) =
∑

J ∈C
PJ (xJ ),

where J ∈ C form a partition of N . Then Lemma 6.1 and Proposition 6.1 are no
longer applicable as we saw in Sect. 6. This case is of practical interest as it arises
in group Lasso, for which PJ (xJ ) = ‖xJ ‖; see [30]. Can we still efficiently find
a small J k satisfying (10)? Can the Gauss-Seidel rule, used in [6, 30] for the case
of m = 0, be extended to the case of m ≥ 1? This is open even when m = 1 and
PJ (xJ ) = ‖xJ ‖.

Problem (1) can be generalized to the following problem:

min
x∈�n

{f (x) + cP (x) | f1(x) = 0, . . . , fm(x) = 0},

where f1, . . . , fm are twice continuously differentiable functions. Can the CGD
method be extended to solve this more general problem?
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