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Abstract Extending the approach initiated in Aussel and Hadjisavvas (SIAM J. Op-
tim. 16:358–367, 2005) and Aussel and Ye (Optimization 55:433–457, 2006), we
obtain the existence of a local minimizer of a quasiconvex function on the locally fi-
nite union of closed convex subsets of a Banach space. We apply the existence result
to some difficult nonconvex optimization problems such as the disjunctive program-
ming problem and the bilevel programming problem.
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1 Introduction

Let us consider the following mathematical programming problem:

min f (x),

s.t. min
j∈J

gj (x) ≤ 0,
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where f is a quasiconvex function defined from a Banach space X to R and
{gj : j ∈ J } is an infinite family of lower semicontinuous quasiconvex functions de-
fined on X. The simplicity of the formulation of this problem hides an important
difficulty: the constraint set is not convex in general. In fact, it is easy to observe that
the constraint set is the infinite union of closed convex sets. But, as shown in the se-
quel, this problem, known in the literature as the disjunctive programming problem,
is a particular case of a mathematical programming problem for which we prove the
existence of a local minimizer, under reasonable assumptions.

In Aussel-Hadjisavvas [2], thanks to the normal operator approach of quasicon-
vex analysis, an existence result for the minimization of a quasiconvex function on a
convex constraint set has been considered, while in Aussel-Ye [3] the case of a non-
convex constraint set has been considered for the particular case of the Mathematical
Programming with Equilibrium Problem by using the special conical structure of the
constraint set of such problems.

Our aim in this paper is to obtain the existence of local minimizers of another
class of quasiconvex minimization problems involving a nonconvex constraint: those
for which the constraint set is the locally finite union of closed convex sets. This class
includes, as a particular case, the disjunctive problem proposed at the beginning of
the section.

The paper is organized as follows. In Sect. 2, we define the basic concepts. Then,
we prove our main existence result in Sect. 3, while Sect. 4 is devoted to the applica-
tions to the disjunctive programming problem and the bilevel problem.

2 Preliminaries and Definitions

Along the paper, X stands for a real Banach space, X∗ for its topological dual
equipped with the weak∗ topology (denoted by w∗), and 〈·, ·〉 for the duality pair-
ing. For any x ∈ X and ε > 0, B(x, ε) and B(x, ε) are the open ball and the closed
ball of center x and radius ε. For any subset K of X, clK , int(K) and bd(K) stand
respectively for the closure, interior and boundary of K .

Finally, given a function f : X → R ∪ {+∞}, we consider the following sublevel
sets:

Sa(f ) = {x ∈ X : f (x) ≤ a}.

Let us recall that f : X → R ∪ {+∞} is said to be quasiconvex if the sublevel sets
Sa(f ) are convex, for any a ∈ R; or, in other words, for any x, y ∈ domf , we have

f (z) ≤ max{f (x), f (y)}, ∀z ∈ [x, y],

where [x, y] denotes the line segment joining x and y.

Definition 2.1 A subset C of X is said to be the locally finite union of (convex-
closed) sets if there exists a (possibly infinite) family {Cα : α ∈ A} of (convex-closed)
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subsets of X such that C = ⋃
α∈A Cα and for any x ∈ C, there exist ρ > 0 and a finite

subset Ãx of A such that

B(x,ρ) ∩ C = B(x,ρ) ∩
[ ⋃

α∈Ãx

Cα

]

. (1)

In this case, we denote C = ⋃lf
α∈A Cα . The locally finite union of convex sets has

been considered previously in the literature in numerous works (see e.g. [11, 15]) for
different purposes (fixed points, differential geometry). In quasiconvex optimization,
it provides a natural context to describe the constraint set of some interesting classes
of problems (see Sect. 4.1).

As emphasized in the following proposition, the concept of locally finite union of
subsets is dedicated to noncompact sets.

Proposition 2.1 If a compact subset C of X is the locally finite union of subsets, then
C is the union of a finite number of those subsets.

Proof Let C = ⋃lf
α∈A Cα . By classical compactness arguments, we can extract a fi-

nite open covering {B(xi, ρi)}ki=1 from the open covering provided by Definition 2.1.

Thus, by setting Ã = ⋃k
i=1 Ãxi

, clearly we have C = ⋃
α∈Ã

Cα . �

Lemma 2.1 If a subset C of X is the locally finite union of closed sets C = ⋃lf
α∈A Cα ,

then, for any x ∈ C, there exist ρx > 0 and a finite subset Ax of A such that

B(x,ρx) ∩ C = B(x,ρx) ∩
[ ⋃

α∈Ax

Cα

]

(2)

and

x ∈ Cα, ∀α ∈ Ax . (3)

Definition 2.2 For any subset C of X, the locally finite union of closed sets, a family
M = {(ρx,Ax) : x ∈ C}, with ρx > 0 and Ax a finite subset of A satisfying (2) and
(3), is called a local mapping of C.

It is clear that, in general, a given locally finite union of closed sets can admit more
than one local mapping.

Proof of Lemma 2.1 For any x element of C, let ρ > 0 and Ãx be a finite sub-
set of A be such that (1) holds. Let us denote by Ix the subset of A defined
by Ix = {α ∈ A : x ∈ Cα}. Then, for any α ∈ Ãx \ Ix , since Cα is closed, one
can find a strictly positive real ρα such that B(x,ρα) ∩ Cα = ∅. Thus, by setting
Ax = Ãx ∩ Ix and ρx = min{ρ, {ρα : α ∈ Ãx \ Ax}}, one obtains immediately (2)
and (3). �
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Remark 2.1

(a) Let us observe that the subset Ix = {α ∈ A : x ∈ Cα}, used in the above proof
corresponding roughly speaking to the subsets Cα touched by x, can be infinite,
even if C is the locally finite union of closed convex sets Cα . Indeed, (2) and
(3) say only that B(x,ρ) ∩ C can be described by a finite number of subsets Cα

which are touched by x; but x (and B(x,ρ)) can meet an infinite number of them.
(b) In the sequel, we assume sometimes that there exists a local mapping M =

{(ρx,Ax) : x ∈ C} of a set C such that the subset {x ∈ C : card(Ax) > 1} is
included in a weakly compact set. This assumption does not imply that other
local mappings M′ = {(ρ′

x,A
′
x) : x ∈ C} share this property or even that the set

{x ∈ C : card(A′
x) > 1} is bounded.

(c) A very simple example illustrating both remarks can be described in R
2 by C =

C0 ∪ C′
0

⋃
n≥1 Cn where C0 = [−1,0] × [−1,0], C′

0 = R
+ × R

+, and for n ≥ 1,
Cn = {(x, (1 + n)x) : x ∈ R}.

The concept of locally starshapedness of a subset, introduced in [3], is a natural
extension of the notion of starshapedness, which is itself a natural extension of con-
vexity. In [3], it has been shown that the constraint set of a quasiconvex-quasiaffine
MPEC problem is locally starshaped (but not starshaped in general).

Definition 2.3 A subset C of X is said to be starshaped at x̄ ∈ C (or with center x̄) if
[x̄, y] ⊆ C, for any y ∈ C. A subset C of X is said to be locally starshaped at x̄ ∈ C

if there exists a positive real δ such that C ∩ B(x̄, δ) is starshaped at x̄. Finally, C is
said to be locally starshaped if it is locally starshaped at any element x̄ of C.

Clearly, any convex set C is locally starshaped at any x̄ ∈ C. But the union of
convex sets need not be locally starshaped as one can observe by simply considering
in R

2 the subset C = ⋃
n∈N

Cn with C0 = R × {0} and Cn = R × {1/n} for n ≥ 1.
Obviously, the set C is not the locally finite union of convex sets and is not locally
starshaped at x̄ = (0,0).

Proposition 2.2 Any locally finite union of closed convex sets is locally starshaped.

Proof This is a direct consequence of Lemma 2.1 and the definitions. Indeed, if x is
an element of C = ⋃lf

α∈A Cα , then according to Lemma 2.1, there exists ρx > 0 and
Ax ⊂ A such that B(x,ρx) ∩ C = B(x,ρx) ∩ [⋃Ax

Cα] and x ∈ Cα , for any α ∈ Ax .
Now, for any y ∈ B(x,ρx) ∩ C, there exists α ∈ Ax such that y ∈ Cα , therefore,

the segment [x, y] is included in Cα , and hence in C, since Cα is convex. �

3 Main Existence Result

In [2], the existence of a global minimizer of a quasiconvex function over a convex,
possibly noncompact, constraint set has been obtained thanks to the use of the normal
operator. Then, in [3], an existence result was proved for a nonconvex and noncom-
pact constraint set which satisfies the so-called “union of separated convex cones”
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property, in particular for quasiconvex-quasiaffine MPEC problems. In this section,
our aim is to consider the case of constraint sets which are locally finite union of
closed convex sets.

Let us denote by (PC) the following optimization problem:

(PC) inf f (x),

s.t. x ∈ C,

where f : X → R ∪ {+∞} is a quasiconvex lower semicontinuous function and C is
a locally finite union of closed convex sets.

It is well known that, whenever f is quasiconvex, the convexity of the constraint
set C implies the convexity of arg minC f . In the following proposition, we show
that this link between the structure of the constraint set and the structure of the set of
minimizers still exists for locally finite union of convex sets.

Proposition 3.1

(i) The set of (global) minimizers of a quasiconvex function on the locally finite
union of convex sets is the locally finite union of convex sets.

(ii) The set of (global) minimizers of a lower semicontinuous quasiconvex function
on the locally finite union of closed convex sets is the locally finite union of closed
convex sets.

Proof We prove only (i) since (ii) follows from (i) easily. Let C be the locally finite
union of the family {Cα : α ∈ A} of convex subsets of X. Since f is quasiconvex,
each subset arg minCα

f is convex. Without loss of generality, we can assume that
arg minC f is nonempty. Therefore, the set

Aopt =
{
α ∈ A : inf

C
f = inf

Cα

f
}

is nonempty. Then

arg min
C

f = arg min
C

f ∩
[⋃

α∈A

Cα

]

=
⋃

α∈Aopt

[
arg min

C

f ∩ Cα

]

=
⋃

α∈Aopt

arg min
Cα

f. (4)

For any x ∈ arg minC f , there exists ρ > 0 and a finite set Ax such that

B(x,ρ) ∩ C = B(x,ρ) ∩
[ ⋃

α∈Ax

Cα

]

.
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Therefore,

B(x,ρ) ∩ arg min
C

f = arg min
C

f ∩ B(x,ρ) ∩ C

= arg min
C

f ∩ B(x,ρ) ∩
[ ⋃

α∈Ax

Cα

]

= B(x,ρ) ∩
[ ⋃

α∈Aopt∩Ax

arg min
Cα

f

]

.

Combining this with (4), we conclude that arg minC f is the locally finite union of
convex sets. �

First, we recall a classical existence result. Let f : X → R ∪ {+∞} be a lower semi-
continuous quasiconvex function. Let the following global coercivity condition holds
on C:

There exist ρ > 0 and y ∈ C ∩B(0, ρ) such that C ∩B(0, ρ) is weakly compact
and f (y) < f (x),∀x ∈ C \ B(0, ρ).

Then, f admits a global minimizer of f over C. Indeed, since f is lower semicontin-
uous and quasiconvex, f is weakly lower semicontinuous and thus attains its infimum
(at x̄) on the weakly compact set C ∩ B(0, ρ). Therefore x̄ is a global minimizer of
f over C, since

f (x̄) = inf
C∩B(0,ρ)

f ≤ f (y) ≤ inf
C\B(0,ρ)

f.

The above global coercivity condition is very strong for problem (PC) since the co-
ercivity condition is imposed on the whole constraint set C. The main result of this
section is the following existence result under local coercivity conditions imposed on
the subsets Cα .

Theorem 3.1 Let f : X → R ∪ {+∞} be a lower semicontinuous quasiconvex func-
tion and let C be the locally finite union of closed convex sets {Cα : α ∈ A}. Suppose
that one of the following conditions holds:

(i) f is radially continuous on domf , C ⊆ int(domf ), for every λ > infX f ,
int(Sλ(f )) �= ∅. For any α ∈ A, Cα ∩ B(0, n) is weakly compact for any n ∈ N

and the following local coercivity condition holds on Cα :

There exists ρ > 0 such that, ∀x ∈ Cα \ B(0, ρ),

∃yx ∈ Cα ∩ B(0,‖x‖) with f (yx) < f (x).

(ii) For any α ∈ A, the following global coercivity condition holds:

There exist ρ > 0 and y ∈ Cα ∩ B(0, ρ) such that Cα ∩ B(0, ρ) is weakly
compact and f (y) < f (x),∀x ∈ Cα \ B(0, ρ).

Then, if A is finite, f has a global minimizer on C; if A is not finite, but there exists a
local mapping M = {(ρx,Ax) : x ∈ C} of C such that the set {x ∈ C : card(Ax) > 1}
is included in a weakly compact subset of C, problem (PC) admits a local solution.
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Remark 3.1

(a) Note that in Theorem 3.1 the condition of weak compactness of Cα ∩ B(0, n) is
satisfied automatically if Cα is weakly compact or X is reflexive and Cα is closed
while the local (resp. global) coercivity conditions is automatically fulfilled if Cα

is bounded (resp. weakly compact and bounded). The main difference between
the coercivity conditions (i) and (ii) is that in (ii) the same y must work for any
x, while in (i), the point yx depends on x.

(b) As observed in Proposition 2.1, in the case of a compact set C, the locally finite
union reduces to a finite one. Let us observe that this is not the case if we only
assume (like in Theorem 3.1), that there exists a compact (or weakly compact)
subset D of C containing the subset {x ∈ C : card(Ax) > 1}. As an example, one
can simply consider, in R

2, the set C = ⋃
n∈N

Cn, where C0 = B(0,1) and, for
n ≥ 1,

Cn = {(ρ cos(π/2n),ρ sin(π/2n) : ρ ∈ [0,1] ∪ [n,n + 1]}.
The set C is a locally finite union of closed sets, but cannot be described by the
finite union of the sets Cn, although {x ∈ C : card(Ax) > 1} is included in B(0,1)

for any chosen local mapping.

Example 3.2 Let us note that the conclusion of the above theorem may fail with-
out the assumption on the set {x ∈ C : card(Ax) > 1}. Indeed, consider the linear
function f defined on R

2 by f (x, y) = −y and the subset C = ⋃∞
k=1 conv{(0, k),

(1, k − 1), (−1, k − 1)}, which is the locally finite union of closed convex sets. Then,
{x ∈ C : card(Ax) > 1} = {(0, k) : k ∈ N} is unbounded and f does not admit any
local minimizer on C.

The proof of Theorem 3.1 under condition (i) relies on the following existence
result from [2] with a slight modification in [3]. We sketch the proof for completeness.

Proposition 3.2 Let f : X → R ∪ {+∞} be a lower semicontinuous quasiconvex
function, radially continuous on domf . Assume that, int(Sλ(f )) �= ∅, for every λ >

infX f . Let K be a nonempty convex subset with K ⊆ int(domf ) such that K ∩
B(0, n) is weakly compact for any n ∈ N and the following local coercivity condition
holds:

There exists ρ > 0 such that, ∀x ∈ K \ B(0, ρ),

∃yx ∈ K ∩ B(0,‖x‖) such that f (yx) < f (x).

Then, f admits a global minimizer on K .

Proof Let us observe that, in [2, Corollary 4.4] the assumption “K⊥ = {0}” can be
replaced by “K ⊂ int(domf )”, if one replaces the use of [2, Proposition 4.1] by [3,
Proposition 3.2] in the proof of [2, Theorem 4.3 and Corollary 4.4]. �

Proof of Theorem 3.1 The existence of a global minimizer of f over each Cα under
condition (ii) follows from the classical existence theory stated before Theorem 3.1,
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while the one under condition (i) is a consequence of Proposition 3.2. Indeed, each
Cα is closed convex and the required coercivity condition is satisfied for any α. Now,
if A is finite, then let x̄ ∈ C be such that f (x̄) = minα∈A{minCα f (x)}. Then, x̄ is a
global minimizer of f on C.

We suppose now that A is infinite but the set {x ∈ C : card(Ax) > 1} is included
in D, which is a weakly compact subset of C. If [C \ D] ∩ [⋃α∈A arg minCα

f ] is
nonempty, then any point x of this intersection is a local minimizer of f over C.
Indeed, according to Lemma 2.1, there exists ρx > 0 such that

B(x,ρx) ∩ C = B(x,ρx) ∩ Cαx ,

where αx is the unique element of Ax ; hence, by the optimality of f on Cαx ,

f (x) ≤ f (y), ∀y ∈ B(x,ρx) ∩ C.

Now, let us suppose that [⋃α∈A arg minCα
f ] ⊆ D. Since D is weakly compact, f

attains its minimum on D, at a point x̄. Then,

inf
C

f ≤ f (x̄) = min
D

f ≤ inf⋃
α∈A arg minCα

f
f = inf⋃

α∈A Cα

f = inf
C

f.

Therefore, x̄ is a global minimizer of f on C in this case. �

4 Applications

4.1 Disjunctive Programming

In this section, we apply the existence result from Sect. 3 to the disjunctive quasicon-
vex programming problem having the following structure:

(DP) min f (x),

s.t. hi(x) ≤ 0, i = 1, . . . , l,

min
j∈J

gj (x) ≤ 0,

where J is a possibly infinite index set and f , hi , gj are lower semicontinuous qua-
siconvex functions defined from X to R ∪ {+∞}. For simplicity of notations, we
include only one inequality of the form minj∈Jgj (x) ≤ 0. The result can be extended
easily to the case where there are finitely many inequalities of this kind.

Starting from the pioneering work of Balas [4, 5], disjunctive optimization has
been studied extensively (see e.g. [6, 7, 14, 16] for theoretical aspect and [8, 12, 13]
for the computational point of view). Many important optimization problems can be
reformulated as disjunctive programming problems. For example, the mathematical
program with equilibrium constraints (MPECs) (see e.g. [3, 17, 18, 21] for details),
which has received a lot of attention in the last decade, the mathematical program
with vanishing constraints (see [1]), which has interesting applications and many of
the generalized semi-infinite programming (see [16]) can be reformulated as disjunc-
tive programming problems.
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From the formulation of (DP), one can observe easily that the constraint set C of
this problem is the union of closed convex sets, namely,

C =
[

l⋂

i=1

S0(hi)

]

∩
[⋃

j∈J

S0(gj )

]

.

In order to apply the existence result obtained in Sect. 3, in the following propo-
sition, we give conditions ensuring that the union defining this constraint set is
locally finite. To simplify the notations, let us define the function g : X → R by
g(x) = minj∈Jgj (x). Let us observe that, as usual, this definition implies that this
minimum is attained for any x ∈ X.

Proposition 4.1 Let (gj )j∈J be a family of lower semicontinuous quasiconvex func-

tions and let (hi)
l
i=1 be a finite family of lower semicontinuous quasiconvex functions

defined on X. Let the following hypothesis holds:

(H) ∀x ∈ C, there exist ρ > 0 and Jx finite ⊂ J such that

{j ∈ J : gj (u) = g(u)} ⊂ Jx, ∀u ∈ B(x,ρ).

Then, the constraint set C of problem (DP) is the locally finite union of closed convex
sets, namely,

C =
[

l⋂

i=1

S0(hi)

]

∩
[

lf⋃

j∈J

S0(gj )

]

.

Proof Without loss of generality, one can assume that C is nonempty. Since there
is a finite number of functions hi and since each of them is assumed to be lower
semicontinuous quasiconvex, it is sufficient to prove that the union C̃ = ⋃

j∈J
S0(gj )

is locally finite.
Let x be any element of C̃. From Hypothesis (H) there exist ρ > 0 and a finite

subset Jx of J such that, for any u ∈ B(x,ρ), we have

Ju = {j ∈ J : gj (u) = g(u)} ⊂ Jx. (5)

We claim that C̃ ∩ B(x,ρ) = [⋃j∈Jx
S0(gj )] ∩ B(x,ρ). First, it is clear that

[⋃j∈Jx
S0(gj )] ∩ B(x,ρ) is included in C̃ ∩ B(x,ρ). Now, let u be any element

of C̃ ∩ B(x,ρ). This implies that there exists j0 ∈ J such that gj0(u) ≤ 0; therefore,
gj (u) = g(u) ≤ 0, for any j ∈ Ju. Thus, together with (5), we have

u ∈
[ ⋃

j∈Ju

S0(gj )

]

⊂
[ ⋃

j∈Jx

S0(gj )

]

and the claim is proved, showing at the same time that C is the locally finite union of
closed convex sets. �



10 J Optim Theory Appl (2008) 139: 1–16

Let us recall that a function ϕ : X → R is said to be coercive if we have
lim‖x‖→∞ ϕ(x) = +∞.

Theorem 4.1 Let f : X → R ∪ {+∞} be a lower semicontinuous quasiconvex func-
tion, radially continuous on domf . Assume that the constraint set C of problem (DP)

is nonempty, included in int(domf ) and that:

(i) Hypothesis (H) holds and int(Sλ(f )) �= ∅, for every λ > infX f .
(ii) Let (gj )j∈J be a family of lower semicontinuous quasiconvex functions and, for

any j ∈ J , let gj be either coercive or satisfies the following coercivity condition:

There exists ρj > 0 such that, ∀x ∈ S0(gj ) ∩ [⋂l
i=1 S0(hi)] \ B(0, ρj ),

∃yx ∈ S0(gj ) ∩ [⋂l
i=1 S0(hi)] ∩ B(0,‖x‖) with f (yx) < f (x).

(iii) For any j and any n ∈ N, the subset S0(gj ) ∩ [⋂l
i=1 S0(hi)] ∩ B(0, n) is weakly

compact.
(iv) For any i, hi is lower semicontinuous quasiconvex.

Then, if J is finite, (DP) admits a global solution. If J is not finite, but there exists a
local mapping M = {(ρx,Ax) : x ∈ C} of C such that the set {x ∈ C : card(Ax) > 1}
is included in a weakly compact subset of C, problem (DP) admits a local solution.

Proof This is direct consequence of Theorem 3.1, Remark 3.1 and Proposition 4.1
since, if gj is coercive, then S0(gj ) is bounded and hence the local coercivity condi-
tion holds. �

4.2 Bilevel Programming

Let us now turn our attention to the so-called bilevel programming problem:

(BL) inf fu(x, y),

s.t. y ∈ S(x),

gk(x, y) ≤ 0, k = 1, . . . , p,

where S(x) is the solution set of the lower level problem

(PLx) inf
y′ fl(x, y′),

s.t. (x, y′) ∈ C,

hj (x, y′) ≤ 0, j = 1, . . . , q,

where fu(x, y), fl(x, y), gk(x, y),hj (x, y) are extended-valued functions on X × Y

and C is the locally finite union of a family {Cα : α ∈ A} of closed convex sets of
X × Y . The bilevel programming problem (also called a Stackelberg game) was in-
troduced first in an economic model by Von Stackelberg [19]. The reader is referred to
the recent monograph [9] and the recent papers [10, 20, 22] for applications of bilevel
programming and the recent developments on the subject of bilevel programming.
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Based on the previous notations, let us consider the set-valued map S : X → 2Y

which associates to any point x the (possibly empty) solution set of the lower level
problem (PLx) defined by x, that is,

S(x) = arg min
	(x)

fl(x, ·), (6)

where 	(x) is the feasible region of the lower level problem (PLx), namely,

	(x) = {(x, y) ∈ X × Y : (x, y) ∈ C and hj (x, y) ≤ 0, j = 1, . . . , q}.
In the following theorem, we obtain a first existence result for the bilevel problem
assuming that the graph of the set-valued map S, that is,

Gr(S) = {(x, y) ∈ X × Y : y ∈ S(x)},
is the locally finite union of closed convex sets.

Theorem 4.2 Let fu : X × Y → R ∪ {+∞} be a lower semicontinuous quasiconvex
function, radially continuous on domfu. Assume that:

(a) For every λ > infX×Y fu, int(Sλ(fu)) �= ∅.
(b) Gr(S) is the locally finite union of a family {Kα : α ∈ A} of closed convex sets of

X × Y .
(c) The functions gk , k = 1, . . . , p, are lower semicontinuous quasiconvex on X ×Y .
(d) For any α ∈ A, the set K̃α := Kα ∩ (

⋂p

k=1 S0(gk)) is weakly compact and
bounded.

(e) The feasible region of problem (BL) is nonempty.

Then, if A is finite the bilevel programming problem (BL) admits a global solution;
if A is not finite, but there exists a local mapping M = {(ρw,Aw) : w ∈ Gr(S)} of
Gr(S) such that the set {w ∈ Gr(S) : card(Aw) > 1} is included in a weakly compact
subset of Gr(S), the bilevel programming problem (BL) admits a local solution.

Remark 4.1 Again, Hypothesis (d) can be replaced either by the following local co-
ercivity condition:

For any α ∈ A, K̃α ∩ B(0, n) is weakly compact for any n ∈ N

and there exists ρ > 0 such that, ∀x ∈ K̃α \ B(0, ρ),

∃yx ∈ K̃α ∩ B(0,‖x‖) with fu(yx) < fu(x),

or the following global coercivity condition:

For any α ∈ A, there exists ρ > 0 and y ∈ K̃α ∩B(0, ρ) such that K̃α ∩B(0, ρ)

is weakly compact and fu(y) < fu(x),∀x ∈ K̃α \ B(0, ρ).

Proof This is a consequence of Theorem 3.1 and Remark 3.1. Indeed, due to Hy-
pothesis (b) and (c), the constraint set

	u = Gr(S) ∩
(

p⋂

k=1

S0(gk)

)
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of the upper level problem is a locally finite union (finite union if A is finite) of closed
convex subsets, that is, 	u = ⋃

α∈A K̃α . Moreover, by assumption (d), for any α ∈ A,
K̃α is bounded and, for any n, K̃α ∩ B(0, n) is weakly compact as a weakly closed
subset of the weakly compact subset K̃α . Hence, if A is finite, then (BL) admits a
global solution by virtue of Theorem 3.1.

Now, we consider the case where A is infinite. Let us denote,

J(x,y) := {α ∈ A(x,y) : (x, y) ∈ K̃α},
D := {(x, y) ∈ Gr(S) : card(A(x,y)) > 1},
Du := {(x, y) ∈ 	u : card(J(x,y)) > 1}.

Then, since 	u ⊆ Gr(S) and since, J(x,y) ⊆ A(x,y), for any (x, y) ∈ Gr(S), we have
Du ⊆ D ∩ 	u. Moreover, since A(x,y) is finite and each K̃α is closed, there exists
ρ′

(x,y) ∈]0, ρ(x,y)[ such that

B((x, y), ρ′
(x,y)) ∩ 	u = B((x, y), ρ′

(x,y)) ∩
[ ⋃

α∈J(x,y)

K̃α

]

.

On the other hand, by assumption, D is included in a weakly compact subset K of
Gr(S). The collection {B((x, y), ρ′

(x,y)) : (x, y) ∈ K} is an open cover of K from
which we can extract a finite subcovering {B((xi, yi), ρ

′
(xi ,yi )

) : i = 1, . . . , n}. Thus,
we have

Du ⊆ (D ∩ 	u) ⊆ (K ∩ 	u)

=
n⋃

i=1

[K ∩ B((xi, yi), ρ
′
(xi ,yi )

) ∩ 	u]

=
n⋃

i=1

[

K ∩ B((xi, yi), ρ
′
(xi ,yi )

) ∩
( ⋃

α∈J (xi ,yi )

K̃α

)]

.

The subset K ∩ 	u is a closed set as the finite union of closed sets. Thus Du is in-
cluded in a weakly compact subset of 	u. By Theorem 3.1, the bilevel programming
problem (BL) admits a local solution in this case. �

Let us consider the following particular case of the bilevel problem:

(BL_Lin) inf fu(x, y),

s.t. y ∈ S(x),

gk(x, y) ≤ 0, k = 1, . . . , p,

where S(x) is the solution set of the linear lower level problem

(PLx_Lin) inf
y′ L1(x, y′),

s.t. L2(x, y′) ≤ 0,
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where L1 and L2 are affine functions defined on R
n × R

m with values, respectively,
in R and R

q .
It is interesting to notice that, even in this very particular linear case, the graph of

the set-valued map S is not convex in general. But, as observed in [9, Theorem 3.1],
the set-valued map S is always polyhedral, i.e. the graph of S is the finite union of
closed convex sets.

Therefore, as an immediate consequence of Theorem 4.2 and Remark 4.1, we
obtain the following existence result for problem (BL_Lin) which slightly extends
(fu quasiconvex, possibly unbounded constraint set, gk quasiconvex) the classical
results for linear bilevel problems (see e.g. [9]).

Set M = {(x, y) : L2(x, y) ≤ 0, gk(x, y) ≤ 0, k = 1, . . . , p}.

Corollary 4.1 Let fu : R
n × R

m → R ∪ {+∞} be a lower semicontinuous quasicon-
vex function, radially continuous on domfu. Assume that:

(a) For every λ > infRn+m fu, int(Sλ(fu)) �= ∅.
(b) The functions gk are lower semicontinuous quasiconvex, L1 and L2 are affine

functions.
(c) Either the set M is bounded or fu satisfies the following global coercivity con-

dition on M : there exists ρ > 0 and y ∈ M ∩ B(0, ρ) such that fu(y) < fu(x),
∀x ∈ M \ B(0, ρ).

(d) The feasible region of problem (BL_Lin) is nonempty.

Then, the bilevel programming problem (BL_Lin) admits a global solution.

Remark 4.2 Thanks to Remark 4.1, the global coercivity condition in (c) can be
replaced by the following local condition:

For each i = 1, . . . , l, there exists ρ > 0 such that, ∀x ∈ Ki \ B(0, ρ),
∃yx ∈ Ki ∩ B(0,‖x‖) with fu(yx) < fu(x),

where Ki , i = 1, . . . , l, are closed convex sets which form the polyhedral set Gr(S),
i.e. Gr(S) = ⋃l

i=1 Ki .

Let us now turn our attention back to the general bilevel programming problem
(BL). For any α ∈ A, the marginal function lα : X → R ∪ {−∞,+∞} of the lower
level subproblem on Cα is defined by

lα(x) = inf
y′ fl(x, y′),

s.t. (x, y′) ∈ Cα,

hj (x, y′) ≤ 0, j = 1, . . . , q.

In the following theorem, using the marginal functions lα , we provide another case of
bilevel problem for which the graph of the solution map S is the locally finite union
of closed convex sets.

Theorem 4.3 Let fu : X × Y → R ∪ {+∞} be a lower semicontinuous quasiconvex
function, radially continuous on domfu and let fl : X × Y → R ∪ {+∞} be a lower
semicontinuous quasiconvex function. Assume that:
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(a) For every λ > infX×Y fu, int(Sλ(fu)) �= ∅.
(b) C is the locally finite union of a family {Cα : α ∈ A} of closed convex sets of

X × Y .
(c) The functions gk , k = 1, . . . , p, and hj , j = 1, . . . , q , are lower semicontinuous

quasiconvex on X × Y .
(d) For any α ∈ A, Cα is weakly compact and bounded.
(e) For any α ∈ A, lα(x) = lα(x′) for any x, x′ such that ({x} × Y) ∩ Cα �= ∅ and

({x′} × Y) ∩ Cα �= ∅.
(f) The feasible region of problem (BL) is nonempty.

Then, if A is finite, the bilevel programming problem (BL) admits a global solution;
if A is infinite but there exists a local mapping M = {(ρ(x,y),A(x,y)) : (x, y) ∈ C} of
C such that the set {(x, y) ∈ C : card(A(x,y)) > 1} is included in a weakly compact
subset of C, then the bilevel programming problem (BL) admits a local solution.

Remark 4.3 Roughly speaking, Hypothesis (e) says that the minimal value of the
lower level problem reduced to Cα not depending on x. But of course the corre-
sponding optimal solution set still depends on x, in general.

Proof In order to apply Theorem 4.2, let us first show that Gr(S), the graph of the
solution map for the lower level problem, is the locally finite union of closed convex
sets. Indeed, recall that fl is lower semicontinuous and that, by weak compactness
of the convex subsets Cα , fl is bounded below on Cα for any α ∈ A. Therefore,
according to Hypothesis (e), for any α, there exists βα ∈ R such that, for any x for
which Cα ∩ 	(x) �= ∅, we have

lα(x) = inf
Cα∩	(x)

fl = βα. (7)

If we set, for any α, K̃α = Cα ∩ Gr(S), then by (7) we have

(x, y) ∈ K̃α ⇐⇒ (x, y) ∈ Cα and y ∈ S(x)

⇐⇒ (x, y) ∈ Cα ∩
(

q⋂

j=1

S0(hj )

)

and fl(x, y) = βα

⇐⇒ (x, y) ∈ Cα ∩
(

q⋂

j=1

S0(hj )

)

∩ Sβα (fl).

Consequently, since fl is lower semicontinuous quasiconvex, each function hj is
lower semicontinuous quasiconvex and, for any α ∈ A, Cα is closed convex, the
subsets K̃α are closed convex. Since C is the locally finite union of the family
{Cα : α ∈ A}, there exists ρ > 0 and a finite subset Ãx of A such that

B(x,ρ) ∩ C = B(x,ρ) ∩
( ⋃

α∈Ãx

Cα

)

.
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It follows that Gr(S) is the locally finite union of the family {K̃α : α ∈ A}, since

B(x,ρ) ∩ Gr(S) = B(x,ρ) ∩ C ∩ Gr(S)

= B(x,ρ) ∩
( ⋃

α∈Ãx

Cα

)

∩ Gr(S)

= B(x,ρ) ∩
⋃

α∈Ãx

[Cα ∩ Gr(S)]

= B(x,ρ) ∩
⋃

α∈Ãx

K̃α.

Moreover, for any α ∈ A, the subsets K̃α are weakly compact and bounded as weakly
closed subsets of the weakly compact and bounded set Cα . Therefore, by Theo-
rem 4.2, if A is finite, (BL) has a global solution.

Now, assume that A is infinite. Using the same arguments as in the last part of the
proof of Theorem 4.2, but with 	u and Gr(S) replaced by Gr(S) and C respectively,
we can prove that the set {(x, y) ∈ Gr(S) : card(J(x,y)) > 1} is included in a weakly
compact subset of Gr(S), where J(x,y) = {α ∈ A(x,y) : (x, y) ∈ K̃α}. �
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