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Abstract This paper considers the following generalized vector quasiequilibrium
problem: find a point (z0, x0) of a set E × K such that x0 ∈ A(z0, x0) and

∀η ∈ A(z0, x0), ∃v ∈ B(z0, x0, η), (F (v, x0, η),C(v, x0, η)) ∈ α,

where α is a subset of 2Y × 2Y , A : E × K → 2K, B : E × K × K → 2E, C : E ×
K ×K → 2Y , F : E×K ×K → 2Y are set-valued maps and Y is a topological vector
space. Existence theorems are established under suitable assumptions, one of which is
the requirement of the openness of the lower sections of some set-valued maps which
can be satisfied with maps B,C, F being discontinuous. It is shown that, in some
special cases, this requirement can be verified easily by using the semicontinuity
property of these maps. Another assumption in the obtained existence theorems is
assured by appropriate notions of diagonal quasiconvexity.

Keywords Generalized vector quasiequilibrium problems · Set-valued maps · Open
lower sections · Diagonal quasiconvexity · Semicontinuity

1 Introduction

Let X,Y , Z be topological vector spaces. Let K (resp. E) be a nonempty subset of X

(resp. Z). Let W = E ×K ×K and let A : E ×K → 2K, B : W → 2E, C : W → 2Y ,
F : W → 2Y be set-valued maps with nonempty values. Let α be an arbitrary (binary)
relation on 2Y , i.e., a subset of 2Y × 2Y . We will be interested in the relations α = αi ,
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i = 1,2,3,4, where

α1 = {(a, b) ∈ 2Y × 2Y : a �⊂ b},
α2 = {(a, b) ∈ 2Y × 2Y : a ⊂ b},
α3 = {(a, b) ∈ 2Y × 2Y : a ∩ b �= ∅},
α4 = {(a, b) ∈ 2Y × 2Y : a ∩ b = ∅},

∅ being the empty set. For simplicity of notation, let us write αFC(z, x, η) instead of
(F (z, x, η),C(z, x, η)) ∈ α, where (z, x, η) ∈ W. We will write F(z, x, η) ≡ F(x, η)

(resp. C(z, x, η) ≡ C(x)) if the map F : E × K × K → 2Y (resp. C : E × K × K →
2Y ) does not depend on the variable z ∈ E (resp. (z, η) ∈ E × K) and if its value
at (z, x, η) ∈ E × K × K equals F(x, η) (resp. C(x)), where F(x, η) (resp. C(x))
is some subset of Y. Similarly for A(z, x) ≡ A(x) and B(z, x, η) ≡ B(x). In this
paper,we consider the following general problem.

Problem (Pα): Find (z0, x0) ∈ E × K such that x0 ∈ A(z0, x0) and

∀η ∈ A(z0, x0), ∃v ∈ B(z0, x0, η), αFC(v, x0, η).

Let us mention some special cases of Problem (Pα).

(i) For α = α1, A(z, x) ≡ K, F(z, x, η) ≡ F(x, η) and C(z, x, η) ≡ C(x), Prob-
lem (Pα) is to find a point x0 ∈ K such that F(x0, η) �⊂ C(x0) for all η ∈ K. This
problem was extensively developed in recent years; see [1–7].

(ii) For α = α1, A(z, x) ≡ A(x), F (z, x, η) ≡ F(x, η) and C(z, x, η) a constant
open cone, Problem (Pα) was considered in [8].

(iii) For α = α2, A(z, x) ≡ K, F(z, x, η) ≡ F(x, η) and C(z, x, η) ≡ C(x), Prob-
lem (Pα) is to find x0 ∈ K such that F(x0, η) ⊂ C(x0) for all η ∈ K. This prob-
lem was investigated in [2, 4].

(iv) For α = α1, A(z, x) ≡ K, B(z, x, η) ≡ B(x) and C(z, x, η) ≡ int C(x), Prob-
lem (Pα) is to find x0 ∈ K such that

∀η ∈ K, ∃v ∈ B(x0), F (v, x0, η) �⊂ int C(x0),

where int denotes the interior. Such problem was studied in [3, 9–17].

In this paper, we give existence theorems for the general Problem (Pα) with α be-
ing an arbitrary relation on 2Y . They are established by a unified approach based on
the fixed-point theorem of [18]. We also use appropriate notions of diagonal quasi-
convexity which generalize those given in [19].

We conclude this section by a brief comparison of the problem statement of
this paper (Problem (Pα)) and that of [20]. A more detailed discussion of the re-
lationship between the results of the present paper and the corresponding ones
of [20] can be found in Remark 3.3 of Sect. 3. Problem (P′

α) considered in [20]
is to find a point (z0, x0) ∈ E × K such that (z0, x0) ∈ ˜B(z0, x0) × A(z0, x0) and
∀η ∈ A(z0, x0), αFC(z0, x0, η), where ˜B : E × K → 2E is a set-valued map. Thus,
under the assumption that B = ˜B (i.e., B does not depend on η), each solution of
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(P′
α) is also a solution of (Pα). However, there are problems where strong solutions

(i.e., solutions of Problem (P′
α)) do not exist, while weak solutions (i.e., solutions of

Problem (Pα)) exist. As an example illustrating this remark, we take X = Y = Z = R

(the real line), α = α4, E = [0,2], K = [0,2] and, for each (z, x, η) ∈ E × K × K ,
we set F(z, x, η) = {(x + η − z)2}, ˜B(z, x) ≡ E, C(z, x, η) ≡ int R+ (the positive
half-line) and

A(z, x) ≡
{

[0,1], if x ∈ [0,1],
[0, x), if x ∈ (1,2].

Clearly, in this example, the solutions of Problem (P′
α) do not exist, while each point

(z0, x0) ∈ [0,2] × [0,1] is a solution of Problem (Pα).

2 Preliminaries

Let X be a topological space. Each subset of X is also a topological space with a
topology induced by the given topology of X. In this paper, neighborhoods of each
point x of X, denoted by U(x),U1(x), . . . , are assumed to be open. We will use
the semicontinuity and continuity properties of set-valued maps in the usual sense of
Definitions 1, 3 and 4 in [21, pp. 66–69]. If the graph of set-valued map f : X → 2Y

between topological spaces X and Y , denoted by gr f, is a closed (resp. open) set of
X ×Y , then we say that f has closed (resp. open) graph. Recall that gr f is the set of
all points (x, y) ∈ X × Y such that y ∈ f (x). We say that f has open lower sections
if, for all y ∈ Y, f −1(y) := {x ∈ X : y ∈ f (x)} is open in X.

The following result is a special case of Theorem 5 of [18].

Theorem 2.1 Let V be a nonempty convex subset of a topological vector space X
and let V1 be a nonempty compact subset of V . Let � : V → 2V be a set-valued map
satisfying the following conditions:

(i) ∀v ∈ V , �(v) is nonempty and convex.
(ii) ∀v ∈ V , �−1(v) is open (in V ).

(iii) For each finite subset N of V , there exists a nonempty compact convex set V2

of V such that V2 ⊃ N and, ∀v ∈ V2 \ V1,�(v) ∩ V2 �= ∅.

Then � has a fixed point.

Let b : W → 2E, c : W → 2Y and f : W → 2Y be set-valued maps with nonempty
values, where W = E × K × K . Let β be a relation on 2Y . Let us write βf c(z, x, η)

instead of (f (z, x, η), c(z, x, η)) ∈ β. Denote by β the relation on 2Y defined by β =
[2Y × 2Y ] \ β. Then the symbol βf c(z, x, η) means that (f (z, x, η), c(z, x, η)) /∈ β.

Let K be a convex set. We say that the pair (f, c) is β-diagonally quasiconvex
(resp. strongly β-diagonally quasiconvex) in η with respect to b if, for each z ∈ E,

each finite set {xj , j = 1,2, . . . , n} ⊂ K and each point x ∈ co {xj , j = 1,2, . . . , n},
there exists an index j ∈ {1,2, . . . , n} such that βf c(u, x, xj ) for some u ∈ b(z, x, xj )
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(resp. for each u ∈ b(z, x, xj )). Obviously, strong β-diagonal quasiconvexity ⇒ β-
diagonal quasiconvexity. All notions of diagonal quasiconvexity of [19] are special
cases of our notion of β-diagonal quasiconvexity.

We delete the easy proof of the following result.

Proposition 2.1 Let K ⊂ X be a convex set. For (z, x) ∈ E × K, let

lβ(z, x) = {η ∈ K : ∀u ∈ b(z, x, η),βf c(u, x, η)},
̂lβ(z, x) = {η ∈ K : ∃u ∈ b(z, x, η),βf c(u, x, η)}.

Then, the pair (f, c) is β-diagonally quasiconvex (resp. strongly β-diagonally qua-
siconvex) in η with respect to b if and only if, for all (z, x) ∈ E × K, x /∈
co lβ(z, x) (resp. x /∈ côlβ(z, x)).

Before giving an example of strong β-diagonal quasiconvexity, let us recall some
known definitions. Let c′ be a convex cone of a vector space Y ′ and f ′ : W ′ → 2Y ′

be
a set-valued map defined on a convex set W ′ of a vector space X′. We say that f ′ is
convex on W ′ if its graph is a convex set. We say that f ′ is naturally c′-quasiconvex
on W ′ if

f ′(λx1 + (1 − λ)x2) ⊂ co

{

2
⋃

i=1

f ′(xi)

}

− c′,

for all λ ∈ (0,1) and xi ∈ W ′, i = 1,2.

For a set-valued map f : E × K × K → 2Y and points z ∈ E and x ∈ K , we
define fz,x : K → 2Y by setting fz,x(η) = f (z, x, η) for each η ∈ K. Similarly, fx :
E × K → 2Y is defined by setting fx(z, η) = f (z, x, η) for each (z, η) ∈ E × K.

Example 2.1 Assume that K ⊂ X, E ⊂ Z are convex sets and that c′ ⊂ Y is a convex
cone with nonempty interior. Assume that:

(i) The set-valued map b : E × K × K → 2E is such that, for each (z, x) ∈ E × K,

bz,x : K → 2E is convex on K.

(ii) The set-valued map f : E × K × K → 2Y is such that, for each x ∈ K, fx :
E × K → 2Y is naturally c′-quasiconvex on E × K.

(iii) The set-valued map c : E × K × K → 2Y is given by c(z, x, η) = −int c′ for
each (z, x, η) ∈ E × K × K.

(iv) For each (z, x) ∈ E × K and u ∈ b(z, x, x), we have

f (u, x, x) �⊂ −int c′.

Then, the pair (f, c) is strongly α1-diagonally quasiconvex in η with respect to b.
Indeed, since β = α1, we have

̂lβ(z, x) = {η ∈ K : ∃u ∈ b(z, x, η), f (u, x, η) ⊂ −int c′},
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for each (z, x) ∈ E × K. Condition (iv) in Example 2.1 yields x /∈̂lβ(z, x). In ad-
dition,it is a simple matter to verify from conditions (i) and (ii) of Example 2.1 that
̂lβ(z, x) is a convex set. So, Proposition 2.1 yields the desired conclusion.

Let us observe that all the assumptions of Example 2.1 hold if we take X = Y =
Z = R, E = K = [0,1], c′ = R+ (the nonnegative half-line), f (z, x, η) = {z+η−x}
and b(z, x, η) ≡ [0,1] for each (z, x, η) ∈ E × K × K.

3 Main Results

In this paper, unless otherwise specified, we assume that X, Y , Z are topological
vector spaces, E ⊂ Z and K ⊂ X are nonempty convex sets, and A : E × K → 2K

is a set-valued map with nonempty convex values and open lower sections. We will
assume that the set

M := {(z, x) ∈ E × K : x ∈ A(z, x)}
is closed in E × K. This assumption is automatically satisfied if A(z, x) ≡ K.

Let L : E × K → 2K and A : E × K → 2K be set-valued maps. We say that
the pair (L,A) satisfies the coercivity condition if there exists a nonempty compact
subset V1 ⊂ E × K with the following property: for each finite subset N ⊂ E × K ,
we can find a nonempty compact convex set V2 of E × K such that V2 ⊃ N and, for
each (z, x) ∈ V2 \ V1, there exists (z′, x′) ∈ V2 such that x′ ∈ A(z, x) ∩ co L(z, x) if
(z, x) ∈ M , and x′ ∈ A(z, x) if (z, x) /∈ M.

Let W := E × K × K , and let B : W → 2E , C : W → 2Y , F : W → 2Y be set-
valued maps with nonempty values. Let α be a relation on 2Y . We consider the set-
valued map Lα : E × K → 2K defined by

Lα(z, x) = {η ∈ K : ∀v ∈ B(z, x, η),αFC(v, x, η)},
where (z, x) ∈ E × K. The following lemma gives sufficient conditions for the exis-
tence of a solution of (Pα).

Lemma 3.1 Let M be closed in E × K. Let L : E × K → 2K be a set-valued map
such that:

(i) Lα ⊂ L (i.e., Lα(z, x) ⊂ L(z, x) for all (z, x) ∈ E × K).

(ii) L has open lower sections.
(iii) x /∈ co L(z, x), ∀(z, x) ∈ M.

(iv) The pair (L,A) satisfies the coercivity condition.

Then there exists a solution of Problem (Pα).

Proof It is enough to show that there exists a point (z0, x0) ∈ M such that A(z0, x0)∩
Lα(z0, x0) = ∅. Indeed, assume to the contrary that A(z, x) ∩ Lα(z, x) �= ∅ for all
(z, x) ∈ M. Since Lα(z, x) ⊂ L(z, x) ⊂ ˜L(z, x) := co L(z, x), this yields

A(z, x) ∩ ˜L(z, x) �= ∅,
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for all (z, x) ∈ M. It is clear that the set

H(z, x) =
{

A(z, x) ∩ ˜L(z, x), if (z, x) ∈ M,

A(z, x), if (z, x) ∈ [E × K] \ M,

is nonempty and convex for each (z, x) ∈ E × K.

Observe that, for each x′ ∈ K , we have from [22]

H−1(x′) = [A−1(x′) ∩ ˜L−1(x′)] ∪ [([E × K] \ M) ∩ A−1(x′)].
Since L has open lower sections, it follows from [23] that ˜L has open lower sections.
Since M is closed in E × K , and since both the maps ˜L and A have open lower
sections, we see that, for each x′ ∈ K, H−1(x′) is open in K. Now, let us construct
the set-valued map φ : E × K → 2E×K by setting φ(z, x) = E′(z, x) × H(z, x),

where E′ : E ×K → 2E is the constant set-valued map defined by E′(z, x) ≡ E. For
(z′, x′) ∈ E × K, it is clear that

φ−1(z′, x′) = {(z, x) ∈ E × K : z′ ∈ E′(z, x), x′ ∈ H(z, x)} = H−1(x′).

As we have shown above that H−1(x′) is open in E×K , we conclude that φ−1(z′, x′)
is open in E × K. Now, let us set X = Z × X, V = E × K and �(v) = φ(z, x) for
each v = (z, x) ∈ V . From the coercivity condition it follows that condition (iii) of
Theorem 2.1 holds. By this theorem, the set-valued map � has a fixed point, denoted
by v0 = (z0, x0). Thus, v0 = (z0, x0) ∈ V = E × K and (z0, x0) ∈ φ(z0, x0). This
proves that z0 ∈ E′(z0, x0) = E and x0 ∈ H(z0, x0). Since H(z0, x0) ⊂ A(z0, x0), it
follows that x0 ∈ A(z0, x0). Therefore, (z0, x0) ∈ M. By the very definition of H, this
yields

H(z0, x0) = A(z0, x0) ∩ co L(z0, x0) ⊂ co L(z0, x0).

Hence, x0 ∈ co L(z0, x0), a contradiction to condition (iii) of Lemma 3.1. �

Let us set

W1 = {w = (z, x, η) ∈ W : (z, x) ∈ M,η ∈ A(z, x)}
= {w = (z, x, η) ∈ W : x ∈ A(z, x), η ∈ A(z, x)}.

We say that condition (ps) (resp. condition (wps)) holds if there exist a relation β

on 2Y and set-valued maps b : W → 2E,f : W → 2Y , c : W → 2Y with nonempty
values such that, for all (z, x, η) ∈ W1,

[∃u ∈ b(z, x, η),βf c(u, x, η)] ⇒ [∀v ∈ B(z, x, η),αFC(v, x, η)]
(resp. [∃u ∈ b(z, x, η),βf c(u, x, η)] ⇒ [∃v ∈ B(z, x, η),αFC(v, x, η)]).

Obviously, condition (ps) ⇒ condition (wps), and the converse implication is no
longer true. Condition (ps) (resp. condition (wps)) generalizes the pseudomonotonic-
ity (resp. weak pseudomonotonicity) property of [17].
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From now on, we assume that β,b,f , c are the objects appearing in the definition
of condition (ps) or condition (wps).

To formulate Lemma 3.2, whose proof is immediate, we consider the set-valued
maps ̂Lα : E × K → 2K , łβ : E × K → 2K defined by

̂Lα(z, x) = {η ∈ K : ∃v ∈ B(z, x, η),αFC(v, x, η)},
lβ(z, x) = {η ∈ K : ∀u ∈ b(z, x, η),βf c(u, x, η)}.

We also introduce the following conditions:

(a) x /∈ co Lα(z, x), ∀(z, x) ∈ M.

(b) x /∈ co ̂Lα(z, x), ∀(z, x) ∈ M.

(c) Condition (ps) holds and x /∈ co lβ(z, x), ∀(z, x) ∈ M.

(d) Condition (wps) holds and x /∈ co lβ(z, x), ∀(z, x) ∈ M.

Lemma 3.2 We have (c) ⇒ (b) ⇒ (a) and (c) ⇒ (d) ⇒ (a).

Theorem 3.1 Let M be closed in E × K. Under the following assumptions, there
exists a solution of Problem (Pα):

(i) Lα has open lower sections.
(ii) The pair (Lα,A) satisfies the coercivity condition.

(iii) At least one of the conditions (a), (b), (c), (d) holds.

Proof By Lemma 3.2, it suffices to consider Problem (Pα) under conditions (i), (ii),
(a). A solution of this problem exists by Lemma 3.1 with L = Lα. �

Corollary 3.1 Let E ⊂ Z, K ⊂ X be nonempty compact convex sets. Let A : E ×
K → 2K be a set-valued map with nonempty convex values and open lower sections.
Let the set M be closed in E × K. Assume that:

(i) The following set-valued map has open lower sections:

(z, x) ∈ E × K �→ L′
α(z, x) := {η ∈ K : αFC(z, x, η)}.

(ii) ∀(z, x) ∈ M, x /∈ co L′
α(z, x).

Then, there exists a point (z0, x0) ∈ E × K such that x0 ∈ A(z0, x0) and

αFC(z0, x0, η), ∀η ∈ A(z0, x0).

Proof This is a special case of Theorem 3.1 with B(z, x, η) ≡ {z}. �

Corollary 3.2 Let K ⊂ X be a nonempty compact convex set. Let A : K → 2K be a
set-valued map with nonempty convex values and open lower sections. Let the set

M ′ = {x ∈ K : x ∈ A(x)}
be closed in K. Let F : K × K → 2Y , C : K × K → 2Y be set-valued maps with
nonempty values. Assume that:
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(i) For each η ∈ K, the following set is closed in K :

{x ∈ K : (F(x, η),C(x, η)) ∈ α}.
(ii) For each x ∈ K, the following set is convex:

d(x) = {η ∈ K : (F(x, η),C(x, η)) ∈ α}.
(iii) For each x ∈ K, (F(x, x),C(x, x)) ∈ α.

Then, there exists a point x0 ∈ K such that x0 ∈ A(x0) and

∀η ∈ A(x0), (F(x0, η),C(x0, η)) ∈ α.

Proof This is a special case of Corollary 3.1, where E = K, A(x,η) ≡ A(x),

F (z, x, η) ≡ F(x, η), C(z, x, η) ≡ C(x, η) and L′
α(z, x) ≡ d(x). �

Remark 3.1 When α = α1, the conclusion of Corollary 3.2 is established in Corol-
lary 3.1 of [8] for a class of maps A which is more general than that used in Corol-
lary 3.2.

Corollary 3.3 Let K ⊂ X be a nonempty compact convex set. Let A : K → 2K be
a set-valued map with nonempty convex values and open lower sections. Let the set
M ′ defined in Corollary 3.2 be closed in K. Let T : K → 2X∗

be a set-valued map
with nonempty values, where X∗ is the topological dual of X with the duality pairing
〈·, ·〉 : X∗ × X → R. Let

ζ(x, η) := inf
v∈T (x)

〈v, x − η〉 ∈ R

for each (x, η) ∈ E × K. If, for each η ∈ K , the set {x ∈ K : ζ(x, η) ≤ 0} is closed
in K , then there exists a point x0 ∈ K such that x0 ∈ A(x0) and ∀η ∈ A(x0),

ζ(x0, η) ≤ 0.

Proof This is a consequence of Corollary 3.2, where Y = R, α = α2, F(x, η) ≡
{ζ(x, η)} and C(x, η) ≡ −R+ (the nonpositive half-line). Indeed, since

(F(x, η),C(x, η)) ∈ α2 ⇔ ζ(x, η) ≤ 0,

we see that condition (i) of Corollary 3.2 holds. Condition (ii) of this corollary is
assured by the concavity of ζ(x, ·). Condition (iii) is trivially satisfied since F(x, x) =
ζ(x, x) ≡ 0. �

Remark 3.2 A special case of Corollary 3.3 with A(x) ≡ K is considered in Theo-
rem 3.2 of [24]. Corollary 3.3 is established in Lemma 3.1 of [25] under an assump-
tion different from that used in Corollary 3.3 for the set-valued map A.

Theorem 3.2 Let M be closed in E × K. Under the following assumptions, there
exists a solution of Problem (Pα) such that:
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(i) ̂Lα has open lower sections.
(ii) One of the pairs (Lα,A) and (̂Lα,A) satisfies the coercivity condition.

(iii) One of the conditions (b) and (c) holds.

Proof If the pair (Lα,A) satisfies the coercivity condition, then the pair (̂Lα,A) also
satisfies this condition. On the other hand, by Lemma 3.2, (c) ⇒ (b). So, it suffices
to prove Theorem 3.2 under the conditions (i), (b) and the condition that the pair
(̂Lα,A) satisfies the coercivity condition. To complete our proof, it remains to apply
Lemma 3.1 with L = ̂Lα. �

The proof of Theorems 3.3 and 3.4 below is similar to that of Theorems 3.1
and 3.2, and therefore is deleted.

Theorem 3.3 Let M be closed in E × K. Under the following assumptions there
exists a solution of Problem (Pα):

(i) lβ has open lower sections.

(ii) One of the pairs (Lα,A), (̂Lα,A), (lβ,A) satisfies the coercivity condition.
(iii) Condition (c) holds.

Theorem 3.4 Let M be closed in E × K. Under the following assumptions, there
exists a solution of Problem (Pα):

(i) lβ has open lower sections.
(ii) One of the pairs (Lα,A) and (lβ,A) satisfies the coercivity condition.

(iii) Condition (d) holds.

The following conditions are useful for checking (a), (b), (c) or (d):

(a′) The pair (F,C) is α-diagonally quasiconvex in η with respect to B.

(b′) The pair (F,C) is strongly α-diagonally quasiconvex in η with respect to B.

(c′) Condition (ps) holds and the pair (f, c) is β-diagonally quasiconvex in η with
respect to b.

(d′) Condition (wps) holds and the pair (f, c) is β-diagonally quasiconvex in η with
respect to b.

(a′′) For each (z, x) ∈ E × K, Lα(z, x) is convex, and αFC(v, x, x) for some v ∈
B(z, x, x).

(b′′) For each (z, x) ∈ E × K, ̂Lα(z, x) is convex, and αFC(v, x, x) for all v ∈
B(z, x, x).

(c′′) Condition (ps) holds and, for each (z, x) ∈ E × K, lβ(z, x) is convex, and
βf c(u, x, x) for some u ∈ b(z, x, x).

(d′′) Condition (wps) holds and, for each (z, x) ∈ E × K, lβ(z, x) is convex, and
βf c(u, x, x) for some u ∈ b(z, x, x).

Proposition 3.1 The following implications are true: (a′′) ⇒ (a′) ⇒ (a); (b′′) ⇒ (b′)
⇒ (b); (c′′) ⇒ (c′) ⇒ (c) and (d′′) ⇒ (d′) ⇒ (d).
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Proof This is a consequence of Proposition 2.1. �

Remark 3.3 Results similar to those of Sect. 3 are given for Problem (P′
α) of [20]. (For

the formulation of (P′
α), see Sect. 1.) It should be noted that some assumptions used in

Sect. 3 of the present paper are weaker than or different from the corresponding ones
of [20]. Let us compare the difference between some corresponding assumptions of
these papers. A common feature for each existence result of [20] is that the set-valued
map B is independent of η and B is always assumed to be a compact acyclic map,
while all these requirements are not needed for the validity of the results of the present
paper. Another difference is that the set-valued maps Lα, ̂Lα , lβ , used to formulate
the main results of this paper, are defined with the participation of set-valued map
B or b, while the corresponding set-valued maps Nβ and N ′

β , used to formulate
the main results of [20] (see Theorems 3.1 and 4.1 of [20]), are introduced without
the participation of B and b. Similar remark can be made when we deal with the
pseudomonotonicity type conditions (see conditions (ps) and (wps) of this paper, and
conditions (PS) and (ps) of [20]) or the β-diagonal quasiconvexity type properties.
The above discussions show that the results obtained in this paper are different from
the corresponding ones of [20]. It is a simple mater to verify that the existence of a
solution of Problem (Pα) with the data given in the example at the end of Sect. 1 can
be derived from our Theorem 3.1.

4 Sufficient Conditions for the Existence of Open Lower Sections

As we have seen in Theorems 3.1–3.4 of the previous section, the existence of a
solution of Problem (Pα) requires that one of the set-valued maps Lα, ̂Lα and lβ has
open lower sections. Obviously, this requirement may be satisfied even when the set-
valued maps involving in the definition of Lα, ̂Lα or lβ are discontinuous. However,
checking this requirement in the general case is not an easy task. It is then natural
to ask if this requirement can be discovered under suitable continuity assumptions.
This section is devoted to an answer to this question for the case α = αi, i = 1,2,3,4.

First observe from the formulas defining lβ(z, x) and Lα(z, x) that the construction of
lβ(z, x) is exactly that of Lα(z, x) with β,f, c, b in place of α,F,C, B respectively.

So, we can restrict ourselves to the existence of open lower sections of Lα and ̂Lα

whose constructions are quite different.

Proposition 4.1

(i) Let α = α1 (resp. α = α3) and, for each η ∈ K , let F(·, ·, η) and B(·, ·, η) be usc
and compact-valued; let C(·, ·, η) have an open graph (resp. a closed graph).
Then, the set-valued map Lα has open lower sections.

(ii) Let α = α2 (resp. α = α4) and, for each η ∈ K , let F(·, ·, η) be lsc; let B(·, ·, η)

be usc and compact-valued; let C(·, ·, η) have a closed graph (resp. an open
graph). Then, the set-valued map Lα has open lower sections.

Proof

(i) To prove that the set-valued map Lα with α = α1 has open lower sections, we
need to show that, for fixed η ∈ K , the set
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Q1(η) := {(z, x) ∈ E × K : ∀v ∈ Bη(z, x), Fη(v, x) ⊂ Cη(v, x)}
is open in E × K , where Bη(·, ·) = B(·, ·, η) and similarly for Fη(·, ·) and
Cη(·, ·). Indeed, assuming that (̃z, x̃) ∈ Q1(η), we have to find a neighborhood
U(̃z, x̃) in the topological space E × K such that

U(̃z, x̃) ⊂ Q1(η). (1)

Indeed, (̃z, x̃) ∈ Q1(η) means that, for each ṽ ∈ Bη(̃z, x̃),

ϕη(̃v, x̃) ⊂ gr Cη, (2)

where

ϕη(v, x) = (v, x,Fη(v, x)) ⊂ E × K × Y. (3)

In other words,

pη(̃z, x̃) :=
⋃

v∈Bη(̃z,̃x)

ϕη(v, x̃) ⊂ gr Cη. (4)

Setting σ = (z, x) ∈ X′ := E × K, μ = (v, ξ) ∈ Z′ := E × K and Y ′ := E ×
K × Y, we can write

pη(σ ) =
⋃

μ∈ψη(σ )

ϕη(μ),

where

ψη(σ ) = (Bη(z, x), x) ⊂ Z′. (5)

Since Bη : E ×K → 2E is usc and compact-valued, it follows from [21, Proposi-
tion 7, p. 73] that ψη : X′ → 2Z′

is usc. In addition, since Fη is usc and compact-
valued, it follows again from [21, Proposition 7, p. 73] that ϕη : Z′ → 2Y ′

is
usc. Therefore, the set-valued map pη is usc on X′ (see [21, Proposition 6,
p. 73]). On the other hand, by assumption gr Cη is an open set in Y ′, and by (4)
pη(̃σ ) ⊂ gr Cη, where σ̃ := (̃z, x̃). Therefore, by the upper semicontinuity of the
map pη, there exists a neighborhood U(̃σ ) in X′ such that pη(σ ) ⊂ gr Cη, for all
σ ∈ U(̃σ ). In other words, there exists a neighborhood U(̃z, x̃) in E × K such
that

pη(z, x) ⊂ gr Cη, ∀(z, x) ∈ U(̃z, x̃). (6)

Since pη(z, x) ⊂ gr Cη means that Fη(v, x) ⊂ Cη(v, x) for each v ∈ Bη(z, x),

we conclude from (6) that (1) holds, as desired.
Part (i) of Proposition 4.1 is thus established for α = α1. Consider now the

case α = α3. Setting C′(z, x, η) = Y \ C(z, x, η), we can verify that C′(·, ·, η) :
E × K → 2Y has an open graph if and only if C(·, ·, η) has a closed graph. On
the other hand,

Lα3(z, x) = {η ∈ K : ∀v ∈ B(z, x, η), F (z, x, η) ⊂ C′(z, x, η)},
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i.e., Lα3(z, x) is exactly Lα1(z, x) with C′(z, x, η) in place of C(z, x, η). So,
applying the result of part (i) for α = α1, with C′(z, x, η) instead of C(z, x, η),

we can conclude that Lα4 has open lower sections.
(ii) To prove that the set-valued map Lα with α = α2 has open lower sections, we

need to show that, for fixed η ∈ K , the set

Q2(η) := {(z, x) ∈ E × K : ∀v ∈ Bη(z, x), Fη(v, x) �⊂ Cη(v, x)}
is open in E ×K , where Bη, Fη, Cη are as above. Indeed, assuming that (̃z, x̃) ∈
Q2(η), we have to find a neighborhood U(̃z, x̃) in the topological space E × K

such that U(̃z, x̃) ⊂ Q2(η). Indeed, condition (̃z, x̃) ∈ Q2(η) means that, for each
ṽ ∈ Bη(̃z, x̃), ϕη(̃v, x̃) �⊂ gr Cη, where ϕη(v, x) is defined by (3). Since Fη(·, ·)
is lsc, it can be verified that ϕη(·, ·) is lsc.

Let us fix ṽ ∈ Bη(̃z, x̃). Since by assumption gr Cη is closed in E × K × Y ,
and since ϕη(̃v, x̃) �⊂ gr Cη, we derive from the lower semicontinuity of ϕη(·, ·)
that there exists a neighborhood U(̃v) (resp. Uṽ(̃x)) in the topological space E

(resp. K) such that

∀(v, x) ∈ U(̃v) × Uṽ(̃x), ϕη(v, x) �⊂ gr Cη. (7)

(The subscript ṽ in Uṽ(̃x) means that this neighborhood of x̃ depends on ṽ.)
Since Bη(̃z, x̃) is compact, there exist n neighborhoods U(̃vi), i = 1,2, . . . , n,

such that
n

⋃

i=1

U(̃vi) ⊃ Bη(̃z, x̃).

Since Bη(·, ·) is usc, we find a neighborhood U(̃z) (resp. U(̃x)) in the topo-
logical space E (resp. K) such that

∀(z, x) ∈ U(̃z) × U(̃x),

n
⋃

i=1

U(̃vi) ⊃ Bη(z, x). (8)

Without loss of generality, we may assume that

U(̃x) ⊂
n

⋂

i=1

Uṽi
(̃x).

We now prove that the inclusion U(̃z, x̃) ⊂ Q2(η) holds, with U(̃z, x̃) = U(̃z) ×
U(̃x). Indeed, let us take an arbitrary point (z, x) ∈ U(̃z) × U(̃x). By (8), for
each v ∈ Bη(z, x), we can find an index i such that v ∈ U(̃vi). Since (v, x) ∈
U(̃vi) × Uṽi

(̃x), we conclude from (7) with ṽ = ṽi that ϕη(v, x) �⊂ gr Cη, i.e.,
Fη(v, x) �⊂ Cη(v, x). This proves that (z, x) ∈ Q2(η). Since this is true for each
(z, x) ∈ U(̃z) × U(̃x) =: U(̃z, x̃), we obtain U(̃z, x̃) ⊂ Q2(η), as desired.

The part (ii) of Proposition 4.1 is thus established for the case α = α2. Defin-
ing C′(z, x, η) = Y \ C(z, x, η), we see that

Lα4(z, x) = {η ∈ K : ∀v ∈ B(z, x, η), F (z, x, η) �⊂ C′(z, x, η)},
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i.e., Lα4(z, x) is exactly Lα2(z, x) with C′(z, x, η) in place of C(z, x, η). Hence,
we can apply the result of the part (ii) for α = α2, with C′(z, x, η) instead of
C(z, x, η), to derive that Lα4 has open lower sections.

�

We delete the detailed proof of Propositions 4.2 and 4.3 below, observing that it is
quite similar to that of Proposition 4.1.

Proposition 4.2

(i) Let α = α1 (resp. α = α3) and, for each η ∈ K, let F(·, ·, η) be usc and compact-
valued, let B(·, ·, η) be lsc, and let C(·, ·, η) have an open graph (resp. a closed
graph). Then, the map ̂Lα has open lower sections.

(ii) Let α = α2 (resp. α = α4) and, for each η ∈ K, let F(·, ·, η), B(·, ·, η) be lsc,
and let C(·, ·, η) have a closed graph (resp. an open graph). Then, the map ̂Lα

has open lower sections.

When B(z, x, η) does not depend on z and x, the requirement of F and C in
Proposition 4.2 can be weakened. Namely, we have the following result.

Proposition 4.3 Let B(z, x, η) ≡ B(η) for each (z, x, η) ∈ E × K × K.

(i) Let α = α1 (resp. α = α3) and, for each (z, η) ∈ E × K, let F(z, ·, η) be usc
and compact-valued, and let C(z, ·, η) have an open graph (resp. a closed graph).
Then, the map ̂Lα has open lower sections.

(ii) Let α = α2 (resp. α = α4) and, for each (z, η) ∈ E × K, let F(z, ·, η) be lsc,
and let C(z, ·, η) have a closed graph (resp. an open graph). Then, the map ̂Lα has
open lower sections.
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