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Abstract Scalarization of fuzzy multiobjective programming problems using the
embedding theorem and the concept of convex cone (ordering cone) is proposed in
this paper. Since the set of all fuzzy numbers can be embedded into a normed space,
this motivation naturally inspires us to invoke the scalarization techniques in vector
optimization problems to evaluate the a multiobjective programming problem. Two
solution concepts are proposed in this paper by considering different convex cones.
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1 Introduction

Ever since Bellman and Zadeh [1] inspired the development of decision making un-
der the fuzzy environment by providing the aggregation operators to combine the
fuzzy goals and fuzzy decision space, the topic of fuzzy optimization has been widely
investigated. The fuzzy optimization problems deal with fuzziness in optimization
problems. In such cases, some useful tools in fuzzy sets theory are invoked to solve
the optimization problems under the fuzzy environment. The collection of papers
on fuzzy optimization edited by Slowiński [2] and Delgado et al. [3] give the main
stream of this topic. The books by Zimmermann [4] and Lai and Hwang [5, 6] also
give an insightful survey. Moreover, for the other variants of fuzzy multiobjective
programming problems, we may refer to the literature review in Wu [7]. On the other
hand, for the vector optimization problems with respect to cones, we may refer to
Benson [8–10], Borwein [11] and Yu [12].

Communicated by H.P. Benson.

H.C. Wu (�)
Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan
e-mail: hcwu@nknucc.nknu.edu.tw

mailto:hcwu@nknucc.nknu.edu.tw


362 J Optim Theory Appl (2008) 139: 361–378

The technique for solving fuzzy optimization problems using embedding theorem
was proposed by Wu [13]. The solution concept of fuzzy multiobjective programming
problem based on convex cones was also proposed by Wu [7]. The purpose of this
paper is to consider another viewpoint, i.e., the scalarization of fuzzy multiobjective
programming problem based on the concept of convex cones and the embedding the-
orem simultaneously. However the embedding theorem used in this paper is different
from that of Wu [7].

The set of all fuzzy numbers is not a vector space in general. However, Puri and
Ralescu [14] and Kaleva [15] proved that the set of all fuzzy numbers can be embed-
ded into a normed space. Under this motivation, the scalarization technique in vector
optimization turns into a useful tool in solving the corresponding vector optimization
problem that can be transformed from the original fuzzy multiobjective programming
problem using the embedding theorem and a suitable linear defuzzification function.

In Sect. 2, we present the embedding theorem and prove the order preserving prop-
erty under the embedding function (that is, the order does not change the direction
under the embedding function). In Sect. 3, we formulate the fuzzy multiobjective
programming problems using the concept of convex cones and introduce different
notions of optimality. In Sect. 4, the scalarization methodology for fuzzy multiob-
jective programming problem is developed by following the essence of scalarization
technique in vector optimization problems. Use of the methodology developed in this
paper is illustrated by applying it to some practical problems in Sect. 5. Conclusions
of the present study are finally drawn in Sect. 6.

2 Embedding and Order Preserving

Let A be a subset of R. Then, the corresponding indicator function of A is given
by χA(x) = 1 if x ∈ A and χA(x) = 0 if x �∈ A. The fuzzy subset ã of R is defined
by a function ξã : R → [0,1], which is an extension of indicator function and is
called a membership function of ã. The α-level set of ã, denoted by ãα , is defined by
ãα = {x ∈ R : ξã(x) ≥ α} for all α ∈ (0,1]. The 0-level set ã0 is defined as the closure
of the set {x ∈ R : ξã(x) > 0}, i.e., ã0 = cl({x ∈ R : ξã(x) > 0}).

Definition 2.1 The fuzzy subset ã of R is said to be a fuzzy number if the following
conditions are satisfied:

(i) ã is normal, i.e., there exists an x ∈ R such that ξã(x) = 1;
(ii) ξã is quasiconcave, i.e., ξã(tx + (1 − t)y) ≥ min{ξã(x), ξã(y)} for t ∈ [0,1];

(iii) ξã is upper semicontinuous, i.e., {x ∈ R : ξã(x) ≥ α} is a closed subset of R for
each α ∈ (0,1];

(iv) the 0-level set ã0 is a closed and bounded subset of R.

Since ãα ⊂ ã0 for each α ∈ (0,1], we see that the α-level sets ãα are bounded
subsets of R for all α ∈ (0,1]. We denote by F (R) the set of all fuzzy numbers. It is
well known that if ã ∈ F (R), then the α-level set of ã is a closed, bounded and convex
subset of R, i.e., a closed interval in R. Therefore, we denote by ãα = [ãL

α , ãU
α ]. For
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convenience, the membership function of 0̃ is defined by

ξ0̃(r) =
{

1, if r = 0,

0, otherwise.

It is easy to see that 0̃L
α = 0 = 0̃U

α for all α ∈ [0,1].
Let ã and b̃ be two fuzzy numbers. Using the extension principle in Zadeh [16–18]

and referring to Puri and Ralescu [14], the membership function of the addition ã ⊕ b̃

is defined by

ξ
ã⊕b̃

(z) = sup
{(x,y):x+y=z}

min{ξã(x), ξ
b̃
(y)} (1)

and the membership function of the scalar multiplication λã, λ ∈ R, is defined by

ξλã(z) =
⎧⎨
⎩

ξã(z/λ), if λ �= 0,
0, if λ = 0 and z �= 0,
1, if λ = 0 = z.

(2)

It also means that λã = 0̃ if λ = 0.

Proposition 2.1 Let ã, b̃ ∈ F (R). Then ã ⊕ b̃ ∈ F (R) and λã ∈ F (R) for λ ∈ R and
λ �= 0. Moreover, we also have the following useful results:

(i) (ã ⊕ b̃)Lα = ãL
α + b̃L

α and (ã ⊕ b̃)Uα = ãU
α + b̃U

α for α ∈ [0,1],
(ii) (λã)Lα = λ · ãL

α and (λã)Uα = λ · ãU
α for λ > 0 and α ∈ [0,1],

(iii) (λã)Lα = λ · ãU
α and (λã)Uα = λ · ãL

α for λ < 0 and α ∈ [0,1].

Definition 2.2 Let ã be a fuzzy number. We call ã a canonical fuzzy number if ãL
α

and ãU
α are continuous with respect to α on [0,1], i.e., the functions f (α) = ãL

α and
g(α) = ãU

α are continuous on [0,1].

We denote by Fc(R) the set of all canonical fuzzy numbers. In general, Fc(R) is
not a vector space according to the addition and scalar multiplication described in (1)
and (2), respectively. However, Puri and Ralescu [14] and Kaleva [15] proved that
Fc(R) can be embedded into a normed space (N ,‖ · ‖) isometrically and isomorphi-
cally. In other words, if π is the embedding function π : Fc(R) → N , then

(i) π(ã ⊕ b̃) = π(ã) + π(b̃),
(ii) π(λã) = λπ(ã) for λ ≥ 0,

(iii) d(ã, b̃) = ‖π(ã) − π(b̃)‖,

where the metric d(·, ·) on Fc(R) is defined by

d(ã, b̃) = sup
0≤α≤1

dH (ãα, b̃α)

and the Hausdorff distance dH is given by

dH (A,B) = max
{

sup
a∈A

inf
b∈B

|a − b|, sup
b∈B

inf
a∈A

|a − b|
}
.
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More precisely, the normed space (N ,‖ · ‖) consists of the equivalence classes
[[ã, b̃]] induced by the equivalence relation (ã, b̃) ∼ (c̃, d̃) if and only if ã⊕ d̃ = b̃⊕ c̃,
where (ã, b̃), (c̃, d̃) ∈ Fc(R) × Fc(R). The vector addition and scalar multiplication
in (N ,‖ · ‖) is defined by

[[ã, b̃]] + [[c̃, d̃]] = [[ã ⊕ c̃, b̃ ⊕ d̃]] (3)

and

λ[[ã, b̃]] =
{ [[λã, λb̃]], if λ ≥ 0,

[[(−λ)b̃, (−λ)ã]], if λ < 0.

The norm in N is defined by

‖[[ã, b̃]]‖ = d(ã, b̃).

We see that [[0̃, 0̃]] is the zero element of the normed space (N ,‖ · ‖), since
from (3),

[[ã, b̃]] + [[0̃, 0̃]] = [[ã, b̃]] = [[0̃, 0̃]] + [[ã, b̃]].
The embedding function π : Fc(R) → N is then defined by

π(ã) = [[ã, 0̃]]. (4)

Now suppose that [[ã, 0̃]] = [[b̃, 0̃]]. Then (ã, 0̃) ∼ (b̃, 0̃), i.e., ã = b̃. It says that the
embedding function π is injective (one-to-one). We see that π(0̃) = [[0̃, 0̃]] is the zero
element of the normed space (N ,‖ · ‖).

Definition 2.3 The function η : F (R) → R is called a defuzzification function. We
say that the defuzzification function η is linear if the following conditions are satis-
fied:

η(ã ⊕ b̃) = η(ã) + η(b̃) and η(λã) = λ · η(ã), (5)

for λ ∈ R.

A fuzzy number ã ∈ F (R) is defuzzified into a real number η(ã). Therefore we
call η as the defuzzication function.

Example 2.1 Let ã ∈ F (R). We define

η(ã) = 1

2

∫ 1

0
(ãL

α + ãU
α )dα.

From Proposition 2.1, it is not hard to prove that η is a linear defuzzification function.

By referring to Puri and Ralescu [14], we give the following definition.
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Definition 2.4 Let ã, b̃ ∈ F (R). If there exists a fuzzy number c̃ ∈ F (R) such that
b̃ = ã ⊕ c̃ (this is well-defined since the addition “⊕” is commutative), then c̃ is
unique, and c̃ is called the Hukuhara difference between b̃ and ã. We also write
c̃ = b̃ �H ã.

Proposition 2.2 Let ã, b̃ ∈ F (R). If the Hukuhara difference c̃ = b̃�H ã exists, then
c̃L
α = b̃L

α − ãL
α and c̃U

α = b̃U
α − ãU

α for all α ∈ [0,1]. If ã, b̃ ∈ Fc(R) and the Hukuhara
difference c̃ = b̃ �H ã exists, then c̃ ∈ Fc(R).

Proof The results follow immediately from Proposition 2.1. �

Proposition 2.3 The following statements hold true.

(i) Let ã, b̃ ∈ F (R). Suppose that η is a linear defuzzification function on F (R). If
the Hukuhara difference b̃ �H ã exists, then η(b̃ �H ã) = η(b̃) − η(ã).

(ii) Let ã, b̃ ∈ Fc(R). Suppose that π is the embedding function given in (4). If the
Hukuhara difference b̃ �H ã exists and belongs to Fc(R), then π(b̃ �H ã) =
π(b̃) − π(ã).

Proof Let c̃ = b̃ �H ã, i.e., b̃ = ã ⊕ c̃. Then, we have η(b̃) = η(ã) + η(c̃). On the
other hand, we also have π(b̃) = π(ã) + π(c̃). This completes the proof. �

Definition 2.5 Each binary relation ≤ on the real vector space V is called a partial
ordering on V if the following axioms are satisfied:

(A1) x ≤ x for all x ∈ V (reflexive);
(A2) if x ≤ y and y ≤ z then x ≤ z for all x, y, z ∈ V (transitive);
(A3) if x ≤ y and a ≤ b then x + a ≤ y + b for all x, y, a, b ∈ V ;
(A4) if x ≤ y and λ is a positive real number then λx ≤ λy for all x, y ∈ V .

Remark 2.1

(i) Let ≤ be a partial ordering on the real vector space V . It is well known that the
set CV = {x ∈ V : 0 ≤ x} is a convex cone. In this case, we say that CV is induced
by ≤. Conversely, if CV is a convex cone in V , then the binary relation ≤ defined
by x ≤ y if and only if y − x ∈ CV is a partial ordering on V . In this case, we say
that ≤ is induced by CV .

(ii) The convex cone CV is called pointed if and only if CV ∩ (−CV ) = 0. We see that
if the ordering cone CV is pointed then the partial ordering ≤ induced by CV is
antisymmetric. Conversely, if the partial ordering ≤ is antisymmetric, then the
convex cone CV induced by ≤ is pointed.

Definition 2.6 Let ã ∈ F (R). We say that ã is nonnegative if and only if ãL
α ≥ 0 for

all α ∈ [0,1]. We say that ã is positive if and only if ãL
α > 0 for all α ∈ [0,1].

Remark 2.2 Let ã ∈ F (R). Since ãL
α ≤ ãU

α for all α ∈ [0,1], we see that ã is non-
negative if and only if ãL

α ≥ 0 and ãU
α ≥ 0 for all α ∈ [0,1], and ã is positive if and

only if ãL
α > 0 and ãU

α > 0 for all α ∈ [0,1].
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We write F n
c (R) = Fc(R) × · · · × Fc(R) (n times). For ũ ∈ F n

c (R), we also write
ũ = (ũ1, . . . , ũn), where ũj ∈ Fc(R) for all j = 1, . . . , n. The addition and scalar
multiplication in F n

c (R) can be defined componentwise; that is, for ũ, ṽ ∈ F n
c (R), we

have

ũ ⊕ ṽ = (ũ1 ⊕ ṽ1, . . . , ũn ⊕ ṽn) and λũ = (λũ1, . . . , λũn)

for λ ∈ R. We also say that the Hukuhara difference ṽ �H ũ exists if ṽj �H ũj exist
for all j = 1, . . . , n. In this case, ṽ �H ũ means

ṽ �H ũ = (ṽ1 �H ũ1, . . . , ṽn �H ũn).

Let η be a linear defuzzification function. In this paper, we are going to consider
two solution concepts. Therefore, we consider the following two sets:

C 1 = {ũ = (ũ1, . . . , ũn) : η(ũj ) ≥ 0 for all j = 1, . . . , n and ũ ∈ F n
c (R)}

and

C 2 = {ũ = (ũ1, . . . , ũn) : ũj are nonnegative for all j = 1, . . . , n and ũ ∈ F n
c (R)}.

Two binary relations 1 and 2 on F n
c (R) are defined below.

Definition 2.7 Let ũ, ṽ ∈ F n
c (R). We write ũ 1 ṽ (resp. ũ 2 ṽ) if the Hukuhara

difference ṽ �H ũ exists and ṽ �H ũ ∈ C 1 (resp. ṽ �H ũ ∈ C 2).

Proposition 2.4 Let ũ, ṽ ∈ F n
c (R) and η be a linear defuzzification function on

Fc(R) ⊂ F (R).

(i) If ũ 1 ṽ then η(ũj ) ≤ η(ṽj ) for all j = 1, . . . , n, and if ũ 2 ṽ then (ũj )Lα ≤
(ṽj )Lα and (ũj )Uα ≤ (ṽj )Uα for all j = 1, . . . , n and all α ∈ [0,1].

(ii) The binary relations 1 and 2 defined on F n
c (R) satisfy axioms (1)–(4) of De-

finition 2.5.

Proof The results follow immediately from Propositions 2.1, 2.2 and 2.3. �

Remark 2.3 Although the binary relations 1 and 2 satisfy axioms (1)–(4) of Defi-
nition 2.5, we cannot say that 1 and 2 are partial orderings on F n

c (R), since F n
c (R)

is not a real vector space in general. However, if we regard F n
c (R) as a set, then 1

and 2 are partial orderings on F n
c (R). On the other hand, if the real vector space

V in Definition 2.5 is relaxed (replaced) as just saying that V is a set instead of a
real vector space with some defined addition and scalar multiplication, then we can
conclude that 1 and 2 are partial orderings on F n

c (R) under this new definition
for partial ordering. Sometimes, if V is a set, then we say that  is a partial ordering
on V if conditions (1) and (2) in Definition 2.5 are satisfied. We don’t have to check
conditions (3) and (4), since V is not a vector space.

Proposition 2.5 Let ũ, ṽ ∈ C 1. Then, we have the following results:
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(i) λũ ∈ C 1 for λ > 0;
(ii) λũ ⊕ (1 − λ)ṽ ∈ C 1 for λ ∈ (0,1).

Proof It is easy to see λuj ,λũj ⊕ (1 − λ)ṽj ∈ Fc(R) for all j = 1, . . . , n. Since η

is a linear defuzzification function, we have η(λũj ) = λ · η(ũj ) ≥ 0 and η(λũj ⊕
(1 − λ)ṽj ) = λ · η(ũj ) + (1 − λ) · η(ṽj ) ≥ 0 for all j = 1, . . . , n. This completes the
proof. �

Proposition 2.6 Let ũ, ṽ ∈ C 2. Then, we have the following results:

(i) λũ ∈ C 2 for λ > 0;
(ii) λũ ⊕ (1 − λ)ṽ ∈ C 2 for λ ∈ (0,1).

Proof The results follow immediately from Proposition 2.1 and Remark 2.2. �

Remark 2.4 Propositions 2.5 and 2.6 show that C 1 and C 2 have the structure of convex
cone in some sense. However, we cannot say that C 1 and C 2 are convex cones, since
F n

c (R) is not a vector space. Of course, we may say that C 1 and C 2 are convex cones
in F n

c (R) if the definition of convex cone is taken in a set instead of a real vector
space.

Now we consider the product vector space N n = N × · · · × N (n times). Then,
from Kreyszig [19], we see that N n is a normed space with norm given by

‖s‖ = max{‖s1‖, . . . ,‖sn‖},
where s = (s1, . . . , sn) ∈ N n. Let π be the embedding function given in (4). We
define a function � : F n

c (R) → N n by

�(ũ) = (π(ũ1), . . . , π(ũn)) (6)

for ũ ∈ F n
c (R).

Proposition 2.7 The sets �(C 1) and �(C 2) are convex cones in N n.

Proof Let s, t ∈ �(C 1). Then, there exist ũ, ṽ ∈ C 1 such that π(ũj ) = sj and π(ṽj ) =
tj for all j = 1, . . . , n. We have λsj + (1 − λ)tj = λ · π(ũj ) + (1 − λ) · π(ṽj ) =
π(λũj ⊕ (1 − λ)ṽj ). From Proposition 2.5, we see that λs + (1 − λ)t ∈ �(C 1). It
shows that �(C 1) is a convex subset of N n. We also see that λs ∈ �(C 1) for λ > 0.
Therefore, �(C 1) is a convex cone in N n. Similarly, from Proposition 2.6, we see
that �(C 2) is a convex cone in N n. �

Using Proposition 2.7 and Remark 2.1, we can induce two partial orderings ≤1

and ≤2 on N n from �(C 1) and �(C 2), respectively. Now we are going to present an
order preserving property under the function �.

Proposition 2.8 (Order Preserving) Let ũ, ṽ ∈ F n
c (R). Then, ũ 1 ṽ if and only if

�(ũ) ≤1 �(ṽ), and ũ 2 ṽ if and only if �(ũ) ≤2 �(ṽ).
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Proof By Proposition 2.3, we see that π(ṽj ) − π(ũj ) = π(ṽj �H ũj ) for all j =
1, . . . , n. It says that �(ṽ) − �(ũ) = �(ṽ �H ũ) ∈ �(C 1), i.e., �(ũ) ≤1 �(ṽ). Con-
versely, if �(ũ) ≤1 �(ṽ), i.e., �(ṽ) − �(ũ) ∈ �(C 1), then there exists a w̃ ∈ C 1

such that �(ṽ) − �(ũ) = �(w̃). It says that π(ṽj ) = π(ũj ) + π(w̃j ) = π(ũj ⊕ w̃j )

for all j = 1, . . . , n. Since π is one-to-one, we have ṽj = ũj ⊕ w̃j . This shows that
w̃j = ṽj �H ũj exists for all j = 1, . . . , n, i.e., ṽ �H ũ = w̃ ∈ C 1. It also means that
ũ 1 ṽ. Similarly for the case of “≤2”, this completes the proof. �

In order to interpret the ordering concept for fuzzy constraint function values, we
consider the following two sets:

C 1
π = {ã : η(ã) ≥ 0 and ã ∈ Fc(R)}

and

C 2
π = {ã : ã is nonnegative and ã ∈ Fc(R)}.

Remark 2.5 Let s ∈ N n. We see that s ∈ �(C 1) if and only if sj ∈ π(C 1
π ) for all

j = 1, . . . , n, and s ∈ �(C 2) if and only if sj ∈ π(C 2
π ) for all j = 1, . . . , n.

Using the similar arguments as in Proposition 2.7, we can show that π(C 1
π ) and

π(C 2
π ) are convex cones in N , where π is the embedding function given in (4). There-

fore, we can induce two partial orderings “≤1
π ” and “≤2

π ” on N from π(C 1
π ) and

π(C 2
π ), respectively. According to Definition 2.7, for ã, b̃ ∈ Fc(R), we can define

ã 1
π b̃ (resp. ã 2

π b̃) if the Hukuhara difference b̃ �H ã exists and b̃ �H ã ∈ C 1
π

(resp. b̃�H ã ∈ C 2
π ). We also have the order preserving property under the function π .

Proposition 2.9 (Order Preserving) Let ã, b̃ ∈ Fc(R). Then, ã 1
π b̃ if and only if

π(ã) ≤1
π π(b̃), and ã 2

π b̃ if and only if π(ã) ≤2
π π(b̃).

Proof The results follow from the similar arguments as in Proposition 2.8. �

3 Fuzzy Multiobjective Programming Problems

Let X be a real vector space. The function f̃ : X → Fc(R) is called a canonical
fuzzy-valued function defined on X. Now, we consider the following two fuzzy mul-
tiobjective programming problems:

(FMOP1) min (f̃1(x), . . . , f̃n(x)),

s.t. g̃i (x) 1
π 0̃, i = 1,2, . . . ,m,

x ∈ X,

and

(FMOP2) min (f̃1(x), . . . , f̃n(x)),

s.t. g̃i (x) 2
π 0̃, i = 1,2, . . . ,m,

x ∈ X,
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where f̃j and g̃i are canonical fuzzy-valued functions defined on X for all j =
1, . . . , n and all i = 1, . . . ,m. Each problem will be solved with respect to its cor-
responding solution concept. The partial orderings 1 and 2 in Definition 2.7 will
be used to tackle the fuzzy multiobjective function values (f̃1(x), . . . , f̃n(x)) in prob-
lems (FMOP1) and (FMOP2), respectively.

Let us write f̃ (x) = (f̃1(x), . . . , f̃n(x)). Then, we have

(�◦ f̃ )(x) = �(f̃ (x)) = (π(f̃1(x)), . . . , π(f̃n(x)) = ((π ◦ f̃1)(x), . . . , (π ◦ f̃n)(x)).

Applying the embedding function π to problems (FMOP1) and (FMOP2) and using
Propositions 2.8 and 2.9, it is reasonable to consider the following two corresponding
multiobjective programming problems (MOP1) and (MOP2):

(MOP1) min (� ◦ f̃ )(x) = ((π ◦ f̃1)(x), . . . , (π ◦ f̃n)(x)),

s.t. (π ◦ g̃i )(x) ≤1
π π(0̃), i = 1,2, . . . ,m,

x ∈ X,

and

(MOP2) min (� ◦ f̃ )(x) = ((π ◦ f̃1)(x), . . . , (π ◦ f̃n)(x)),

s.t. (π ◦ g̃i )(x) ≤2
π π(0̃), i = 1,2, . . . ,m,

x ∈ X,

where π(0̃) = [[0̃, 0̃]] is the zero element in the normed space N . Since (� ◦ f̃ )(x) ∈
N n for x ∈ X, the partial orderings ≤1 and ≤2 induced from the convex cones �(C 1)

and �(C 2), respectively, will be used to tackle the multiobjective function values in
problems (MOP1) and (MOP2).

Although the minimization problems for fuzzy multiobjective programming prob-
lems are considered only in this paper, the maximization problems for fuzzy multi-
objective programming problems can also be similarly treated including the solution
concepts that will be described below.

Let us recall some solution concepts. A convex cone CV defining a partial ordering
as described before in the real vector space V is also called an ordering cone. Let S be
any subset of V endowed with a partial ordering ≤. Referring to Jahn [20], an element
x∗ ∈ S is called a minimal element of S if x ≤ x∗ for x ∈ S then x∗ ≤ x. If the partial
ordering ≤ is regarded as an ordering cone CV , then an element x∗ ∈ S is a minimal
element of the set S if ({x∗}+ (−CV ))∩ S ⊆ {x∗}+ CV . Similarly, an element x∗ ∈ S
is called a maximal element of S if x∗ ≤ x for x ∈ S then x ≤ x∗. Equivalently, an
element x∗ ∈ S is a maximal element of the set S if ({x∗}+ CV )∩ S ⊆ {x∗}+ (−CV ).

Now we say that x∗ ∈ S is a strongly minimal element of S if x∗ ≤ x for all x ∈ S ,
and x∗ is a strongly maximal element of S if x ≤ x∗ for all x ∈ S . Equivalently, an
element x∗ ∈ S is a strongly minimal element of S if S ⊆ {x∗} + CV , and an element
x∗ ∈ S is a strongly maximal element of S if S ⊆ {x∗} + (−CV ).

Let S be a nonempty subset of the real vector space V . The set

int(S) = {x ∈ S : for each y ∈ V there exists some ζ > 0

with x + λy ∈ S for all λ ∈ [0, ζ ]}
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is called an algebraic interior of S . By referring to Jahn [20], an element x∗ ∈ S is
called a weakly minimal element of S if int(CV ) �= ∅ and there does not exist an x ∈ S
such that x∗ −x ∈ int(CV ) or, equivalently, ({x∗}+(−int(CV )))∩ S = ∅. Similarly, an
element x∗ ∈ S is called a weakly maximal element of S if ({x∗} + int(CV )) ∩ S = ∅.

Definition 3.1 Let η be a linear defuzzification function on Fc(R) ⊂ F (R). We
say that η is a canonical linear defuzzification function on Fc(R) if ã ∈ Fc(R) and
η(ã) = 0 imply ã = 0̃.

Proposition 3.1 Let � be the function given in (6).

(i) If η is a canonical linear defuzzification function on Fc(R), then the set �(C 1)

is a pointed convex cone in N n.
(ii) The set �(C 2) is a pointed convex cone in N n.

Proof From Proposition 2.7, it suffices to show that

�(C 1) ∩ (−�(C 1)) = (π(0̃), . . . , π(0̃)) = �(C 2) ∩ (−�(C 2)),

where (π(0̃), . . . , π(0̃)) is the zero element in the normed space N n.
(i) Let s ∈ �(C 1) ∩ (−�(C 1)). Then s,−s ∈ �(C 1). Therefore, there exist ũ, ṽ ∈

C 1 such that �(ũ) = s and �(ṽ) = −s, i.e., π(ũj ) = sj and π(ṽj ) = −sj for all
j = 1, . . . , n. By adding them together, we have π(ũj ⊕ ṽj ) = π(ũj )+π(ṽj ) = π(0̃)

(note that π(0̃) is the zero element of the normed space N ). Since π is one-to-one,
we see that ũj ⊕ ṽj = 0̃. Then we have 0 = η(0̃) = η(ũj ⊕ ṽj ) = η(ũj ) + η(ṽj ).
We also have η(ũj ) ≥ 0 and η(ṽj ) ≥ 0, since ũ, ṽ ∈ C 1. Therefore we obtain η(ũj ) =
0 = η(ṽj ). It shows that ũj = 0̃ = ṽj for all j = 1, . . . , n, since η is a canonical linear
defuzzification function on Fc(R). We conclude that s = (π(0̃), . . . , π(0̃)).

(ii) For the case of �(C 2), from the proof of (i), we can also obtain ũj ⊕ ṽj = 0̃ for
all j = 1, . . . , n. By Proposition 2.1, we have 0 = (ũj )Lα + (ṽj )Lα = (ũj )Uα + (ṽj )Uα .
Since ũ, ṽ ∈ C 2, we also have (ũj )Lα ≥ 0, (ṽj )Lα ≥ 0, (ũj )Uα ≥ 0 and (ṽj )Uα ≥ 0 by
Remark 2.2. Therefore we obtain 0 = (ũj )Lα = (ṽj )Lα = (ũj )Uα = (ṽj )Uα for all α ∈
[0,1] and all j = 1, . . . , n. This completes the proof. �

Let � be the function given in (6). In the sequel, we are going to show that
int(�(C 1)) �= ∅ and int(�(C 2)) �= ∅ in order to obtain some interesting results. First
of all, we need some useful lemmas given below.

Let ã be a fuzzy subset of R with membership function ξã and ãα be the α-level
sets of ã for α ∈ [0,1]. Zadeh [16–18] proved that the membership function ξã can
be expressed as

ξã(r) = sup
α∈[0,1]

α · 1ãα
(r),

where 1ãα
is the indicator function of set ãα . Conversely, we also have the following

result.

Lemma 3.1 (Negoita and Ralescu [21]) Let A be a set and let {Aα : α ∈ [0,1]} be a
family of subsets of A such that the following conditions are satisfied:
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(a) A0 = A;
(b) Aβ ⊆ Aα for α < β;
(c) Aα = ⋂∞

n=1 Aαn for αn ↑ α.

Then, the function ξ : A → [0,1] defined by

ξ(r) = sup
α∈[0,1]

α · 1Aα (r)

has the property Aα = {r ∈ A : ξ(r) ≥ α}.

Let ã be a fuzzy number. Then, we see that, for α < β , ãL
α ≤ ãU

α , ãL
α ≤ ãL

β and

ãU
α ≥ ãU

β . Now, we propose the following definition.

Definition 3.2 Let ã be a canonical fuzzy number. Then, ã is called a standard fuzzy
number if ãL

α < ãU
α , ãL

α < ãL
β and ãU

α < ãU
β for α < β .

We denote by Fs(R) the set of all standard fuzzy numbers.

Lemma 3.2 Let ã ∈ Fs(R) and let c̃, d̃ ∈ Fc(R). There exist a ζ > 0 and a standard
fuzzy-valued function b̃ : [0, ζ ] → Fs(R) defined on [0, ζ ] such that ã ⊕ λc̃ = b̃(λ)⊕
λd̃ for all λ ∈ [0, ζ ].

Proof We can use Lemma 3.1 to construct the standard fuzzy-valued function b̃. �

Lemma 3.3 Let π be the embedding function given in (4) and let η be a linear
defuzzification function on Fc(R). If ã ∈ Fs(R) with η(ã) > 0, then, for each s ∈ N ,
there exists some ζ > 0 such that π(ã) + λs ∈ π(C 1

π ) for all λ ∈ [0, ζ ].

Proof The result can be obtained by Lemma 3.2. �

Lemma 3.4 Let π be the embedding function given in (4). If ã ∈ Fs(R) and ã is
positive, then, for each s ∈ N , there exists some ζ > 0 such that π(ã) + λs ∈ π(C 2

π )

for all λ ∈ [0, ζ ].

Proof The result can be obtained by Lemma 3.2. �

In order to discuss the nonemptiness of int(�(C 1)) and int(�(C 2)), we introduce
the triangular fuzzy numbers. The membership function of a triangular fuzzy number
ã = (aL, a, aU ) is defined by

ξã(r) =
⎧⎨
⎩

(r − aL)/(a − aL), if aL ≤ r ≤ a,

(aU − r)/(aU − a), if a < r ≤ aU ,

0, otherwise.

The graph of ã is a triangle with base [aL, aU ] and peak a. The α-level set of ã is
then

ãα = [(1 − α)aL + αa, (1 − α)aU + αa];
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that is,

ãL
α = (1 − α)aL + αa and ãU

α = (1 − α)aU + αa. (7)

We also see that −ã = (−aU ,−a,−aL). Furthermore, the triangular fuzzy number
ã is also a standard fuzzy number, and if aL > 0, then ã is positive.

Proposition 3.2 Let � be the function given in (6). If η is a linear defuzzification
function on Fc(R) such that η(ũ) > 0 for some ũ ∈ Fs(R), then int(�(C 1)) �= ∅.

Proof Let ũj ∈ Fs(R) with η(ũj ) > 0, where ũj , j = 1, . . . , n, are not necessarily
all distinct, which is possible from the hypothesis, since we can take ũj = ũ for all
j = 1, . . . , n. Let s = (s1, . . . , sn) ∈ N n. From Lemma 3.3, there exists a ζ j > 0
such that π(uj ) + λsj ∈ π(C 1

π ) for all λ ∈ [0, ζ j ]. We define ζ = min{ζ 1, . . . , ζ n}.
Then π(uj ) + λsj ∈ π(C 1

π ) for all λ ∈ [0, ζ ] and all j = 1, . . . , n. From Remark 2.5,
we see that �(ũ) + λs ∈ �(C 1) for all λ ∈ [0, ζ ], i.e., �(ũ) ∈ int(�(C 1)), where
ũ = (ũ1, . . . , ũn). This completes the proof. �

Proposition 3.3 Let � be the function given in (6). Then int(�(C 2)) �= ∅.

Proof We shall apply Lemma 3.4 and the similar arguments as in the proof of Propo-
sition 3.2. Since the triangular fuzzy numbers are also standard fuzzy numbers, it
suffices to just consider the triangular fuzzy numbers in the proof. It will always
be possible to take the positive triangular fuzzy numbers ũj = (ujL,uj , ujU ), i.e.,
ujL > 0, j = 1, . . . , n. Let s = (s1, . . . , sn) ∈ N n. Then the result follows immedi-
ately from Lemma 3.4 and the arguments of Proposition 3.2. �

Now, we let

X1 = {x ∈ X : (π ◦ g̃i )(x) ≤1
π π(0̃), i = 1, . . . ,m}, (8a)

S 1 = {(� ◦ f̃ )(x) : x ∈ X1}, (8b)

and

X2 = {x ∈ X : (π ◦ g̃i )(x) ≤2
π π(0̃), i = 1, . . . ,m}, (9a)

S 2 = {(� ◦ f̃ )(x) : x ∈ X2}. (9b)

Proposition 2.9 says that problems (FMOP1) and (MOP1) have the identical feasible
sets. Similarly, problems (FMOP2) and (MOP2) also have the identical feasible sets.
Since π is one-to-one, we propose the following definition.

Definition 3.3 Let us consider the convex cone �(C 1).

(i) We say that x∗ is a complete C 1-optimal solution of problem (FMOP1) if (� ◦
f̃ )(x∗) is a strongly minimal element of the set S 1 defined in (8b) under the

convex cone �(C 1).
(ii) We say that x∗ is a Pareto C 1-optimal solution of problem (FMOP1) if (� ◦

f̃ )(x∗) is a minimal element of the set S 1 under the convex cone �(C 1).
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(iii) We say that x∗ is a weak Pareto C 1-optimal solution of problem (FMOP1) if
(� ◦ f̃ )(x∗) is a weakly minimal element of the set S 1 under the convex cone

�(C 1).

We can similarly define the solution concepts based on the convex cone �(C 2) and
problem (FMOP2) by referring to S 2 and (9b).

Let XCO
1 , XP

1 , and XWP
1 denote the set of complete C 1-optimal solutions, Pareto

C 1-optimal solutions and weak Pareto C 1-optimal solutions of problem (FMOP1),
respectively. We can similarly define the sets XCO

2 , XP
2 and XWP

2 based on the convex
cone �(C 2) and problem (FMOP2). Then we have the following interesting results.

Proposition 3.4 Let the problems (FMOP1) and (FMOP2) be feasible.

(i) If η is a linear defuzzification function on Fc(R) such that η(ã) > 0 for some
ã ∈ Fs(R), then XCO

1 ⊆ XP
1 ⊆ XWP

1 .
(ii) We have XCO

2 ⊆ XP
2 ⊆ XWP

2 .

Proof (i) Since problem (FMOP1) is feasible, the set S 1 defined in (8b) is nonempty.
From Jahn [20, p. 104, Lemma 4.10], each strongly minimal element of S 1 is also
a minimal element of S 1. Therefore XCO

1 ⊆ XP
1 . On the other hand, from Jahn [20,

p. 106, Lemma 4.14], if �(C 1) �= N and int(�(C 1)) �= ∅, then each minimal element
of S 1 is also a weakly minimal element of S 1. Since �(C 1) �= N is obvious by
definition, the result follows immediately from Proposition 3.2.

(ii) Using Proposition 3.3, we can similarly prove this result. This completes the
proof. �

4 Scalarization

We define (N n)′ to be the set of all linear functionals from N n to R. Then the set

C 1
(N n)′ = {φ ∈ (N n)′ : φ(s) ≥ 0 for all s ∈ �(C 1)}

is also a convex cone and is called a dual cone for �(C 1). The set defined by

(C 1)◦(N n)′ = {φ ∈ (N n)′ : φ(s) > 0 for all s ∈ �(C 1) \ {�(0̃, . . . , 0̃)}}

is called the quasi-interior of the dual cone for �(C 1), where �(0̃, . . . , 0̃) is the zero
element in the normed space N n. Similarly, we have

C 2
(N n)′ = {φ ∈ (N n)′ : φ(s) ≥ 0 for all s ∈ �(C 2)}

and

(C 2)◦(N n)′ = {φ ∈ (N n)′ : φ(s) > 0 for all s ∈ �(C 2) \ {�(0̃, . . . , 0̃)}}.
Then, we have the following interesting results.
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Theorem 4.1 Let the problems (MOP1) and (MOP2) be feasible.

(i) Suppose that η is a linear defuzzification function on Fc(R) such that η(ã) > 0
for some ã ∈ Fs(R). If there exists a linear functional φ ∈ C 1

(N n)′ \ {0(N n)′ },
where 0(N n)′ is the zero element of (N n)′, and an element x∗ ∈ X1 such that

φ((� ◦ f̃ )(x∗)) ≤ φ((� ◦ f̃ )(x)), for all x ∈ X1

then x∗ is a weak Pareto C 1-optimal solution.
(ii) If there exists a linear functional φ ∈ C 2

(N n)′ \ {0(N n)′ } and an element x∗ ∈ X2

such that

φ((� ◦ f̃ )(x∗)) ≤ φ((� ◦ f̃ )(x)), for all x ∈ X2,

then x∗ is a weak Pareto C 2-optimal solution.

Proof From Jahn [20, p. 136, Theorem 5.28], if int(�(C 1)) �= ∅ and there exists
a linear functional φ ∈ C 1

(N n)′ \ {0(N n)′ } and an element y∗ ∈ S 1 with φ(y∗) ≤
φ(y) for all y ∈ S 1, then y∗ is a weakly minimal element of S 1. The results follow
immediately from Propositions 3.2 and 3.3. �

Theorem 4.2 Suppose that problem (MOP1) is feasible and η is a canonical linear
defuzzification function on Fc(R).

(i) If there exists a linear functional φ ∈ C 1
(N n)′ and an element x∗ ∈ X1 such that

φ((� ◦ f̃ )(x∗)) < φ((� ◦ f̃ )(x)), for all x ∈ X1 \ {x∗},

then x∗ is a Pareto C 1-optimal solution.
(ii) If there exists a linear functional φ ∈ (C 1)◦

(N n)′ and an element x∗ ∈ X1 such that

φ((� ◦ f̃ )(x∗)) ≤ φ((� ◦ f̃ )(x)), for all x ∈ X1,

then x∗ is a Pareto C 1-optimal solution.

Proof From Jahn [20, p. 128, Theorem 5.18], if �(C 1) is a pointed convex cone, then
we have:

(i) if there exists a linear functional φ ∈ C 1
(N n)′ and an element y∗ ∈ S 1 with

φ(y∗) < φ(y) for all y ∈ S 1 \ {y∗}, then y∗ is a minimal element of S 1;
(ii) if there exists a linear functional φ ∈ (C 1)◦

(N n)′ and an element y∗ ∈ S 1 with

φ(y∗) ≤ φ(y) for all y ∈ S 1, then y∗ is a minimal element of S 1.
The results follow immediately from Proposition 3.1 (i). �

Theorem 4.3 Suppose that problem (MOP2) is feasible.

(i) If there exists a linear functional φ ∈ C 2
(N n)′ and an element x∗ ∈ X2 such that

φ((� ◦ f̃ )(x∗)) < φ((� ◦ f̃ )(x)), for all x ∈ X2 \ {x∗},
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then x∗ is a Pareto C 2-optimal solution.
(ii) If there exists a linear functional φ ∈ (C 2)◦

(N n)′ and an element x∗ ∈ X2 such that

φ((� ◦ f̃ )(x∗)) ≤ φ((� ◦ f̃ )(x)), for all x ∈ X2,

then x∗ is a Pareto C 2-optimal solution.

Proof The results follow from Proposition 3.1 (ii) and the similar arguments in the
proof of Theorem 4.2. �

Remark 4.1 Theorems 4.2 and 4.3 still hold true even when the objective functions
f̃j , j = 1, . . . , n, and the constraint functions g̃i , i = 1, . . . ,m, assume values on
F (R) instead of Fc(R), since the nonemptiness of int(�(C 1)) and int(�(C 2)) are
not needed in those two theorems.

5 Practical Problems

In order to interpret the constraints of problem (FMOP2), we consider the ordering
π(ã) 2

π π(0̃). Since π(0̃) is the zero element of the normed space (N ,‖ · ‖), by
definition, we have −π(ã) = π(0̃) − π(ã) ∈ π(C 2

π ). Although −π(ã) �= π((−1)ã) in
general, we see that −π(ã) = π(b̃) for some nonnegative b̃ in C 2

π . By adding π(ã) on
both sides, we have π(0̃) = π(ã)+π(b̃) = π(ã⊕ b̃). Since π is one-to-one, we obtain
ã⊕ b̃ = 0̃. From Proposition 2.1, we conclude that ãL

α = −b̃L
α ≤ 0 and ãU

α = −b̃U
α ≤ 0

for all α ∈ [0,1]. Therefore, the feasible set X2 of problem (FMOP2) shown in (9b)
can be rewritten as

X2 = {x ∈ X : (g̃i(x))Lα ≤ 0 and (g̃i(x))Uα ≤ 0, for α ∈ [0,1] and i = 1, . . . ,m}.
(10)

Similarly, for problem (FMOP1), we can also obtain ã ⊕ b̃ = 0̃, where b̃ ∈ C 1
π , i.e.,

η(b̃) ≥ 0, which implies η(ã) + η(b̃) = η(ã ⊕ b̃) = η(0̃) = 0. Therefore, we have
η(ã) ≤ 0. It says that the feasible set X1 of problem (FMOP1) shown in (8b) can be
rewritten as

X1 = {x ∈ X : η(g̃i(x)) ≤ 0, i = 1, . . . ,m}. (11)

In order to apply the previous theorems, we need to specify the linear functional
φ : N n → R. Here, we are going to define φ as

φ([[ã1, b̃1]], . . . , [[ãn, b̃n]]) =
n∑

i=1

η(ãi) −
n∑

i=1

η(b̃i),

where η is a linear defuzzification function. Of course, we need to show that it is
well-defined. Suppose that (c̃i , d̃i ) ∈ [[ãi , b̃i]] for i = 1, . . . , n. By definition, we have
[[c̃i , d̃i]] = [[ãi , b̃i]] and ãi ⊕ d̃i = b̃i ⊕ c̃i , which also implies η(ãi)−η(b̃i) = η(c̃i)−
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η(d̃i) for all i = 1, . . . ,m. Therefore, we see that

φ([[ã1, b̃1]], . . . , [[ãn, b̃n]]) = φ([[c̃1, d̃1]], . . . , [[c̃n, d̃n]])

=
n∑

i=1

η(ãi) −
n∑

i=1

η(b̃i) =
n∑

i=1

η(c̃i) −
n∑

i=1

η(d̃i),

which says that φ is well-defined. The linearity of φ is also not difficult to prove. We
omit the details. Since π(ã) = [[ã, 0̃]], we also see that

f (x) ≡ φ((� ◦ f̃ )(x)) =
n∑

i=1

η(f̃i(x)). (12)

Therefore the previous theorems say that, in order to solve problem (FMOP2), we
need to minimize the objective function f given in (12) subject to the feasible set X2

shown in (10), which is a semi-infinite programming problem, since X2 consists of
infinite constraints. There are many semi-infinite programming algorithms available
for solving this problem by referring to Hettich and Kortanek [22].

Now we illustrate a numerical example to solve problem (FMOP1). Suppose that
we consider the triangular fuzzy number ã = (a − h,a, a + h) for some h ∈ R

+,
where a ∈ R is the core value of ã. If we adopt the linear defuzzification function η

in Example 2.1, then, according to (7), we obtain η(ã) = a. We consider the following
biobjective problem:

min (f̃1(x1, . . . , x5), f̃2(x1, . . . , x5)),

s.t. 2̃x1 ⊕ 3̃x2 ⊕ 3̃x3 ⊕ 2̃x4 ⊕ 2̃x5 ⊕ (−̃20) 1
π 0̃,

3̃x1 ⊕ 5̃x2 ⊕ 4̃x3 ⊕ 2̃x4 ⊕ 4̃x5 ⊕ (−̃30) 1
π 0̃,

x1, x2, x3, x4, x5 ≥ 0,

where

f̃1(x1, . . . , x5) = 2̃x1 ⊕ 1̃x2 ⊕ (−̃2)x3 ⊕ 2̃x4 ⊕ (−̃9)x5,

f̃2(x1, . . . , x5) = (−̃7)x1 ⊕ (−̃9)x2 ⊕ 9̃x3 ⊕ (−̃6)x4 ⊕ 3̃x5.

According to (11) and (12), its corresponding scalar optimization problem is given
by

min −5x1 − 8x2 − 7x3 − 4x4 − 6x5,

s.t. 2x1 + 3x2 + 3x3 + 2x4 + 2x5 ≤ 20,

3x1 + 5x2 + 4x3 + 2x4 + 4x5 ≤ 30,

x1, x2, x3, x4, x5 ≥ 0.

The optimal solution of this problem is (x∗
1 , x∗

2 , x∗
3 , x∗

4 , x∗
5 ) = (0,5,0,2.5,0). There-

fore, from Theorem 4.1, (x∗
1 , x∗

2 , x∗
3 , x∗

4 , x∗
5 ) = (0,5,0,2.5,0) is a weak Pareto C 1-

optimal solution.
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6 Conclusions

Three sets of fuzzy numbers F (R), Fc(R) and Fs(R) with the relation Fs(R) ⊂
Fc(R) ⊂ F (R) are considered in this paper. The purpose of introducing the sets
Fc(R) and Fs(R) is to guarantee the nonemptiness of int(�(C 1)) and int(�(C 2)).
However, whether the nonemptiness of int(�(C 1)) and int(�(C 2)) still holds true
based on the set F (R) instead of the set Fc(R) remains open. Although Theorems 4.2
and 4.3 are created on the set Fc(R), the arguments in the proofs are still valid when
these are created on the set F (R) instead of the set Fc(R). The main reason is that
the nonemptiness of int(�(C 1)) and int(�(C 2)) are not the conditions that guarantee
Theorems 4.2 and 4.3.

As mentioned in the section of introduction, there are many existing methods
available for solving the fuzzy multiobjective programming problem. These meth-
ods can be roughly classified into parametric programming approach, two-phase ap-
proach, interactive method, dynamic programming approach and differential equation
approach. Since the solution concepts adopted by the researchers are different, these
methods may be incomparable. For example, the solution obtained by applying the
parametric programming approach may not be comparable with the solution obtained
by the interactive method. The main reason is that the solution concepts adopted by
these two methods are different, which also means that the parametric programming
approach may not be used to obtain the solution that is based on the solution concept
adopted by the interactive method. The proposed methodology in this paper is based
on the solution concepts that are induced by the convex cones, which is also different
from the existing methods. In other words, the proposed method in this paper is also
incomparable with the existing methods.

The technique for solving fuzzy optimization problems using embedding theorem
was proposed by Wu [13]. However, the solution concept in Wu [13] is different
from the solution concept adopted in this paper. Therefore, these two methods are
incomparable. Although the solution concept in Wu [7] was also based on the convex
cone that is the same approach adopted in this paper, the difference is that the notions
of convex cones are different. The reason is that the vector space adopted in Wu [7]
consists of the equivalence classes obtained from the set of all fuzzy numbers, and the
vector space adopted in this paper is based on the embedding theorem. This implies
that these two methods are also incomparable.
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