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Abstract This paper deals with a parametric family of convex semi-infinite opti-
mization problems for which linear perturbations of the objective function and con-
tinuous perturbations of the right-hand side of the constraint system are allowed. In
this context, Cánovas et al. (SIAM J. Optim. 18:717–732, 2007) introduced a suffi-
cient condition (called ENC in the present paper) for the strong Lipschitz stability of
the optimal set mapping. Now, we show that ENC also entails high stability for the
minimal subsets of indices involved in the KKT conditions, yielding a nice behav-
ior not only for the optimal set mapping, but also for its inverse. Roughly speaking,
points near optimal solutions are optimal for proximal parameters. In particular, this
fact leads us to a remarkable simplification of a certain expression for the (metric) reg-
ularity modulus given in Cánovas et al. (J. Glob. Optim. 41:1–13, 2008) (and based
on Ioffe (Usp. Mat. Nauk 55(3):103–162, 2000; Control Cybern. 32:543–554, 2003)),
which provides a key step in further research oriented to find more computable ex-
pressions of this regularity modulus.
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1 Introduction

This paper is focused on the modulus of metric regularity of a multifunction asso-
ciated with a parametrized family of convex semi-infinite optimization problems.
Metric regularity constitutes a key concept in variational analysis (see, e.g., [5, 6],
and [7]). The reader is also addressed to [8] and [3] for details about the regularity
modulus of generic multifunctions.

The present work deals with the optimal set mapping (also called argmin map-
ping) and its inverse. The main goal of the paper consists of deriving formulae of the
regularity modulus of this inverse mapping (see Theorem 5.1), which in our context
coincides with the Lipschitz modulus of the argmin mapping. Along this paper, we
call ENC—extended Nürnberger condition—to the property introduced originally in
[1, Condition (10)] and whose first implications are gathered in Sect. 2.2.

We consider the canonically perturbed convex programming problem, in R
n,

P(c, b) Inf f (x) + 〈c, x〉 (1a)

s.t. gt (x) ≤ bt , t ∈ T , (1b)

where x ∈ R
n is the vector of variables, c ∈ R

n, 〈., .〉 represents the usual inner prod-
uct in R

n, the index set T is a compact metric space, f : R
n → R and gt : R

n → R,
t ∈ T , are convex functions, (t, x) �→ gt (x) is assumed to be continuous on T × R

n

(according to [9, Theorem 10.7], it is enough to require the continuity of each
t �→ gt (x)), and b ∈ C(T ,R) (i.e., t �→ bt is also continuous). In this setting, the pair
(c, b) ∈ R

n × C(T ,R) is regarded as the parameter to be perturbed. The topology in
the parameter space R

n × C(T ,R) is described by the norm

‖(c, b)‖ := max{‖c‖,‖b‖∞}, (2)

where ‖ · ‖ is any given norm in R
n and ‖b‖∞ := maxt∈T |bt |. The dual norm ‖ · ‖∗ is

given by ‖u‖∗ := max{〈u,x〉 | ‖x‖ ≤ 1}, and d∗ denotes the corresponding distance.
The optimal set mapping F ∗ : R

n × C(T ,R) ⇒ R
n assigns to each parameter

(c, b) ∈ R
n × C(T ,R) the optimal set—set of optimal solutions—of P(c, b); i.e.,

F ∗(c, b) := arg min{f (x) + 〈c, x〉 | gt (x) ≤ bt , t ∈ T }.
We set G∗ := (F ∗)−1; i.e., (c, b) ∈ (F ∗)−1(x) ⇔ x ∈ F ∗(c, b).

Here, we recall some Lipschitz/regularity concepts and related results: F ∗ is
pseudo-Lipschitz (satisfies the Aubin property) at ((c, b), x) ∈ gph(F ∗) (the graph
of F ∗), or equivalently, G∗ is metrically regular at (x, (c, b)) ∈ gph(G∗) (see for in-
stance [5]), if there exist a constant κ ≥ 0 and some associated neighborhood U of x

and V of (c, b) such that

d(x, F ∗(c, b)) ≤ κd((c, b), G∗(x)), (3)

for all x ∈ U and all (c, b) ∈ V , with the convention d(x,∅) = +∞. Observe that we
might have considered without loss of generality (w.l.o.g.) c = 0n and b = 0T (zero
function) just by replacing f (·) by f (·) + 〈c, ·〉 and each gt (·) by gt (·) − bt .
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In our context of problems (1) (even in more general contexts, see for instance [5]),
the pseudo-Lipschitz property of F ∗ at ((c, b), x) is equivalent to the strong Lipschitz
stability of F ∗ at this point (see Lemma 5 in [1]), which can be read as single-
valuedness and Lipschitz continuity of F ∗ near (c, b) (since F ∗(c, b) is convex).
Under this property, the so-called modulus of metric regularity (regularity modulus,
for short) of G∗ at (x, (c, b)), denoted by reg G∗(x | (c, b)), coincides with the Lip-
schitz modulus of F ∗ at (c, b); i.e.,

reg G∗(x | (c, b)) = lim sup
(c1,b1),(c2,b2)→(c,b)

(c1,b1)=(c2,b2)

‖F ∗(c1, b1) − F ∗(c2, b2)‖
‖(c1, b1) − (c2, b2)‖ , (4)

where we are using the same notation for the set F ∗(c, b) and its unique element, for
(c, b) near (c, b).

The structure of the paper is as follows: Sect. 2 collects the preliminary concepts
and results needed later. Section 3 shows that, for our purposes, under ENC, c may
remain unperturbed. In Sect. 4, we formalize the idea that ENC entails a nice behavior
of the minimal subsets of indices in the KKT conditions, which constitutes a key
result in the sequel. Section 5 is devoted to simplify the expression for reg G∗(x |
(c, b)) provided in [2, Theorem 3].

2 Preliminaries

In this section, we provide further notation and some preliminary results.

2.1 Notations and Basic Concepts

Given ∅ = X ⊂ R
k , k ∈ N, we denote by co(X) and cone(X) the convex hull and the

conical convex hull of X, respectively. From the topological side, int(X) and bd(X)

represent the interior and the boundary of X, respectively. If y is a point in any metric
space, Bδ(y) and Bδ(y) denote, respectively, the open and the closed ball centered at
y with radius δ.

For all b ∈ C(T ,R), we consider the associated constraint system

σ(b) := {gt (x) ≤ bt , t ∈ T }
and let F (b) be the corresponding set of feasible solutions. We consider also the set
of active indices at x ∈ F (b),

Tb(x) := {t ∈ T | gt (x) = bt }.
Our system σ(b) satisfies the Slater constraint qualification (SCQ) if Tb(x

0) is empty
for some x0 ∈ F (b), in which case x0 is referred to as a Slater point of σ(b).

Next, we recall the well-known Karush-Kuhn-Tucker optimality conditions. For a
convex function h : R

n → R, ∂h(x) denotes its ordinary subdifferential at x.
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Lemma 2.1 [10, Chap. 7] Let (c, b) ∈ R
n × C(T ,R) and x ∈ F (b). If

(∂f (x) + c) ∩ cone

( ⋃
t∈Tb(x)

(−∂gt (x))

)
= ∅, (5)

then x ∈ F ∗(c, b). The converse holds when σ(b) satisfies SCQ.

In this paper, we are concerned with those minimal subsets D ⊂ Tb(x) such that
(5) holds by replacing the whole Tb(x) by D. According to the Carathéodory theo-
rem, these minimal subsets have at most n elements. Along the paper, we appeal to
the set of δ-active indices (δ ≥ 0) at x ∈ F (b),

T δ
b (x) := {t ∈ T | gt (x) ≥ bt − δ}.

2.2 Extended Nürnberger Condition and First Consequences

In [1], a sufficient condition for the metric regularity of G∗ is introduced (see condi-
tion (10) therein). That paper points out that this sufficient condition is rather strong,
but it has the virtue of being formulated exclusively in terms of the nominal prob-
lem’s data, not involving problems in a neighborhood. When confined to the linear
case (f and gt ’s being linear functions), this condition turns out to be equivalent to
the one introduced by Nürnberger in [11] (see, also, [12]) for characterizing the strong
uniqueness of optimal solutions in a neighborhood of the nominal parameter. From
now on, this condition, specified below, is referred to as the extended Nürnberger con-
dition (extended in the sense that it is now stated for the convex case, and coincides
with Nürnberger’s condition for linear programs). Here, | · | means cardinality.

Definition 2.1 The Extended Nürnberger Condition (ENC) is said to be satisfied at
(x, (c, b)) ∈ gph(G∗) when

σ(b) satisfies SCQ and there is no D ⊂ Tb(x)

with |D| < n such that (∂f (x) + c) ∩ cone

(⋃
t∈D

(−∂gt (x))

)
= ∅.

Note that ENC constitutes a specification of the KKT optimality conditions, since
it additionally requires the presence of at least n active indices (i.e., exactly n active
indices, taking the Carathéodory theorem into account).

Theorem 2.1 For the convex program (1), let (x, (c, b)) ∈ gph(G∗). If ENC is satis-
fied at (x, (c, b)), then the following conditions hold:

(i) [1, Proposition 9(i)] There exists a neighborhood U of (x, (c, b)) such that ENC
is satisfied at any (x, (c, b)) ∈ U ∩ gph(G∗).

(ii) [1, Proposition 9(ii)] There exist u ∈ ∂f (x), ui ∈ −∂gti (x), ti ∈ Tb(x), and λi >

0 for i ∈ {1, . . . , n}, such that {u1, . . . , un} is a basis of R
n and

u + c =
n∑

i=1

λiui .
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(iii) [1, Lemma 5 and Theorem 10] G∗ is metrically regular at (x, (c, b)); or, equiva-
lently, F ∗ is single-valued and Lipschitz continuous in a neighborhood of (c, b).

Remark 2.1 [1, Theorem 16] In the linear case, ENC at (x, (c, b)) ∈ gph(G∗) turns
out to be equivalent to the metric regularity of G∗ at (x, (c, b)).

2.3 Variational Tools

Consider a function ϕ : R
n → R ∪ {+∞} and a point z ∈ R

n with ϕ(z) finite. The
strong slope [13] of ϕ at z is given by

|∇ϕ|(z) := lim sup
y→z
y =z

(ϕ(z) − ϕ(y))+

‖z − y‖ ,

where α+ := max{α,0}. A vector v ∈ R
n is called a regular subgradient (also called

the Fréchet subgradient) of ϕ at z, written v ∈ ∂̂ϕ(z), if

ϕ(y) ≥ ϕ(z) + 〈v, y − z〉 + o(‖y − z‖),
where limτ↘0

o(τ)
τ

= 0 [7, Definition 8.3(a)]. The set ∂̂ϕ(z) is closed and convex
[7, Theorem 8.6] and coincides with the ordinary subdifferential set in convex analy-
sis if ϕ is convex [7, Proposition 8.12].

The next result comes from [4, Theorem 2.2] and [3, Proposition 3 in p. 546].

Theorem 2.2 Let Y be a Banach space and let F : R
n ⇒ Y be a set-valued mapping

with a nonempty closed graph. Let (x, y) ∈ gph(F ) and assume that the functions

ψy := d(y,F (·))
are lower semicontinuous for all y in a neighborhood of y. Then,

regF(x | y) = lim sup
(x,y)→(x,y)

y /∈F(x)

(
d∗(0n, ∂̂ψy(x))

)−1

= lim sup
(x,y)→(x,y)

y /∈F(x)

(|∇ψy |(x))−1.

We shall apply this result for writing reg G∗(x | (c, b)) in terms of the minimal
norm d∗(0n, ∂̂fb(z)), for (z, b) near (x, b), where

fb(z) := d(b, G̃(z)) (6)

and G̃ represents the inverse of F̃ := F ∗(c, ·) : C(T ,R) ⇒ R
n; i.e.,

b ∈ G̃(x) ⇔ x ∈ F̃ (b) := F ∗(c, b).
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3 Negligibility of Perturbations of the Objective Function

This section is devoted to clarify the role played by the vector c in (1) in the cal-
culus of reg G∗(x | (c, b)), provided that ENC (see Definition 2.1) is fulfilled at
(x, (c, b)) ∈ gph(G∗). We actually show that the parameter c can be considered fixed
in our analysis. The following lemma extends [14, Lemma 2] from the linear case to
the convex setting.

Lemma 3.1 Assume that ENC is satisfied at (x, (c, b)) ∈ gph(G∗). If a sequence
{(xr , (cr , br))}r∈N ⊂ gph(G∗) converges to (x, (c, b)), then (xr , (c, br )) ∈ gph(G∗),
for r large enough.

Proof Let {(xr , (cr , br))}r∈N ⊂ gph(G∗) converge to (x, (c, b)). Since σ(b) satis-
fies SCQ, we may assume w.l.o.g. that σ(br) also does for all r. So, according to
Lemma 2.1 and taking the Carathéodory theorem into account, we write, for each
r ∈ N,

ur + cr =
n∑

i=1

λr
i u

r
i , (7)

where, for all r ∈ N and all i ∈ {1, . . . , n},
ur ∈ ∂f (xr), ur

i ∈ −∂gtri
(xr ), for some t ri ∈ Tbr (xr ) and λr

i ≥ 0.

Next, we apply a filtering procedure. Since T is a compact metric space, {t r1 } has
a subsequence converging to a certain t1 ∈ Tb(x), taking the continuity of (t, x) �→
gt (x) into account. For simplicity, we denote the associated subsequence of r’s as the
whole sequence. In the same way, we obtain (after filtering n − 1 times) t ri → ti , for
certain ti ∈ Tb(x), i = 2, . . . , n. Then, [9, Theorem 24.5] ensures the boundedness of
the sequences of subgradients {ur

i }r∈N, for all i = 1, . . . , n. The same theorem yields
the boundedness of {ur}. Thus, we may assume w.l.o.g. that ur → u, ur

i → ui , for
certain

u ∈ ∂f (x), ui ∈ −∂gti (x), i = 1, . . . , n,

where we have applied [9, Theorem 24.4]. Moreover, the SCQ entails the bound-
edness of the sequence {∑n

i=1 λr
i }r∈N (Gauvin-type property). Otherwise, we would

have, for a suitable subsequence, {∑n
i=1 λ

rk
i }k∈N → +∞; after dividing both sides of

(7) by
∑n

i=1 λ
rk
i and letting k → +∞, we obtain

0n ∈ conv{u1, . . . , un} ∈ conv

( ⋃
t∈Tb(x)

∂gt (x)

)
,

which represents a contradiction with the SCQ (see [1, Lemma 3]). Therefore,
w.l.o.g., λr

i → λi for some λi ≥ 0, i = 1, . . . , n, and so

u + c =
n∑

i=1

λiui .
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Now, ENC at (x, (c, b)) entails that {u1, . . . , un} is a basis of R
n (otherwise, the

Carathéodory theorem would allow us to remove some term in
∑n

i=1 λiui , which
would contradict ENC) and λi > 0 for all i = 1, . . . , n. Therefore,

u + c ∈ int(cone({u1, . . . , un}))
(see for instance Theorem A.7 in [10]). Thus, for r large enough, we have

ur + c ∈ cone({ur
1, . . . , u

r
n})

(see, for instance, [10, Exercise 6.12]), and so, appealing again to Lemma 2.1 and
recalling that t ri ∈ Tbr (xr ) for all i, we conclude that xr ∈ F ∗(c, br ). �

By exploiting similar ideas to [14, Proposition 4] (for the linear case), we obtain
the following proposition, identifying F ∗(c, b) with its unique element for b near b.

Proposition 3.1 Assume that ENC is satisfied at (x, (c, b)) ∈ gph(G∗). Then,

reg G∗(x | (c, b)) = lim sup
b,̃b→b

b =b̃

‖F ∗(c, b) − F ∗(c, b̃)‖
‖b − b̃‖∞

= reg G̃(x | b).

Proof The second equality comes from the fact that F̃ (= F ∗(c, ·)) is single valued
and Lipschitz continuous around b, as a consequence of the metric regularity of G∗
at (x, (c, b)). According to (4), it is clear that reg G̃(x | b) ≤ reg G∗(x | (c, b)). More-
over, in the nontrivial case when reg G∗(x | (c, b)) is positive, we can write for certain
(cr , br ), (̃c r , b̃r ) → (c, b), such that (cr , br) = (̃c r , b̃r ), r = 1,2, . . . ,

reg G∗(x | (c, b)) = lim sup
r→∞

‖F ∗(cr , br ) − F ∗(̃c r , b̃r )‖
‖(cr , br ) − (̃cr , b̃r )‖

≤ lim sup
r→∞

‖F ∗(c, br ) − F ∗(c, b̃r )‖
‖br − b̃r‖∞

≤ reg G̃(x | b).

In the previous expression, we have made use of (2) and the previous lemma, which
yields F ∗(cr , br) = F ∗(c, br ) and F ∗(̃c r , b̃r ) = F ∗(c, b̃r ) for r large enough. Note
that the assumption reg G∗(x | (c, b)) > 0 entails br = b̃r for r large enough (because,
otherwise, F ∗(cr , br ) = F ∗(c, br) = F ∗(̃c r , b̃r ) for r large enough). �

The following example shows that the first equality in Proposition 3.1 may fail if
ENC is not satisfied at (x, (c, b)).

Example 3.1 Consider the following problem in R
2, endowed with the Euclidean

norm:

P(c, b) : Inf

{
1

2
x2

1 + c1x1 + c2x2 | |x1| − x2 ≤ b

}
,
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where c := (c1, c2). For (c, b) close enough to (c, b) = ((1, 1
2 ),0), we have

F ∗(c, b) = {(c2 − c1, c1 − c2 − b)}.
Hence, F ∗ is strongly Lipschitz stable at ((1, 1

2 ),0) and, so, according to Lemma 5
in [1], G∗ is metrically regular at (x, (c, b)) with x := (− 1

2 , 1
2 ). Trivially, ENC is not

satisfied at (x, (c, b)), since there is only one constraint in the model. Moreover,

reg G̃(x | b) = lim sup
b,̃b→0
b =b̃

‖(− 1
2 , 1

2 − b) − (− 1
2 , 1

2 − b̃)‖
‖b − b̃‖∞

= 1,

whereas, considering the sequence ((1 + 1
r
, 1

2 − 1
r
),0), for r = 1,2, . . . , one has

reg G∗(x | (c, b)) ≥ lim
r→∞

‖(− 1
2 , 1

2 ) − (− 1
2 − 2

r
, 1

2 + 2
r
)‖

‖((1, 1
2 ),0) − ((1 + 1

r
, 1

2 − 1
r
),0)‖ = 2.

4 Stability of Minimal Subsets of Indices in the KKT Conditions

This section points out the repercussions of ENC in relation to the stability of the
indices involved in the KKT conditions and also to the stability of G̃ . Roughly speak-
ing, ENC yields high stability for both F̃ (which turns out to be strongly Lipschitz
stable) and its inverse G̃ . As we show in the following example, the strong Lipschitz
stability of F̃ itself does not guarantee such a high stability as ENC does; in particu-
lar, it does not ensure that close points are optimal for close parameters (formally, G̃
may fail to be lower semicontinuous).

Example 4.1 Consider the following problem in R
2, endowed with the Euclidean

norm:

P(c, b) : Inf{c1x1 + c2x2 | |x1| − x2 ≤ b1, −x1 ≤ b2}.
Take (c, b) = (( 1

2 ,1), (0,0)), x = (0,0). One can easily check that F̃ (b) = {((−b2)
+,

−b1 + (−b2)
+)}, and so F̃ is strongly Lipschitz stable at b, although ENC is not

satisfied at (x, (c, b)), since c ∈ cone(−∂g1(x)) (here f ≡ 0). Nevertheless, the point
(−1

r
, 1

r
), r ∈ N, is not optimal for any b such that (−1

r
, 1

r
) ∈ F (b) (see the expression

of F̃ (b) above). Just as a motivation for further results, we point out that

c /∈ cone

( ⋃
i=1,2

(−∂gi(−1/r,1/r))

)
, r ∈ N,

which, roughly speaking, can be seen as a certain instability of the KKT representa-
tion of c with respect to perturbations of the point x.

ENC precludes the previous situation (see Theorem 4.3). Now, we introduce ad-
ditional tools in relation to KKT conditions for our model (1). Hereafter, the vector c

remains unchanged (c = c). So, the notation introduced below does not rely on c.



J Optim Theory Appl (2008) 139: 485–500 493

The following definition is intended to isolate the part of KKT conditions which
depends only on the point x and the nonparametric elements of the model, i.e, the
functions f and gt ’s.

Definition 4.1 The subset D ⊂ T is said to be a quasi-KKT set of indices at x ∈ R
n

if

(∂f (x) + c) ∩ cone

(⋃
t∈D

(−∂gt (x))

)
= ∅.

Note that (under SCQ) x is a KKT point for P(c, b) if and only if x ∈ F (b) and
Tb(x) is a quasi-KKT set of indices at x. For x ∈ R

n, we introduce the set

D(x) := {D : |D| = n and D is a quasi-KKT set of indices at x}.
The ENC assumption at (x, (c, b)) ∈ gph(G∗), together with the Carathéodory theo-
rem, entails that D(x) consists of the minimal quasi-KKT sets of indices at x.

For x ∈ F (b), we set

T δ
b (x) := {D ∈ D(x) : D ⊂ T δ

b (x)}, with δ ≥ 0.

For simplicity, we write Tb(x) instead of T 0
b (x). Note that, as a consequence of ENC

at (x, (c, b)) ∈ gph(G∗), and according to Theorem 2.1(i), Tb(x) = ∅ for (x, b) ∈
gph(G̃) close enough to (x, b). The following theorem shows that, in Theorem 2.1(ii),
we can replace everywhere “there exist” by “for all”.

Theorem 4.1 Assume that ENC is satisfied at (x, (c, b)) ∈ gph(G∗). Then, for all
D := {t1, . . . , tn} ∈ Tb(x) and every ui ∈ −∂gti (x), i = 1, . . . , n, one has

∂f (x) + c ⊂ int(cone({u1, . . . , un})).

Proof Let us fix an arbitrary D := {t1, . . . , tn} ∈ Tb(x). Along the proof, we will
frequently appeal to the fact that cone(

⋃n
i=1(−∂gti (x))) is a pointed closed convex

cone, since 0n /∈ co(
⋃n

i=1 ∂gti (x)), which is derived from the fact that σ(b) satisfies
the Slater condition (see [1, Lemma 3(v)]). The proof is built in three steps.

Step 1 Let us prove the existence of ui ∈ −∂gti (x), i = 1, . . . , n, such that

∂f (x) + c ⊂ int(cone({u1, . . . , un})). (8)

The fulfillment of ENC at (x, (c, b)) yields, according to Theorem 2.1(ii), the exis-
tence of u ∈ ∂f (x), ui ∈ −∂gti (x) and μi > 0, i = 1, . . . , n, such that {u1, . . . , un} is a
basis of R

n and u+c = ∑n
i=1 μiui , which leads us to u+c ∈ int(cone({u1, . . . , un}))

(see, for instance, [10, Theorem A.7]). Then, one can easily check that (8) holds since
otherwise, because of the convexity of ∂f (x) + c, there would exist ũ ∈ ∂f (x) such
that ũ + c ∈ bd(cone({u1, . . . , un})), leading us to a representation of ũ + c which
contradicts ENC (applying again [10, Theorem A.7]).
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Step 2 Consider, according to the previous step, an arbitrarily fixed u ∈ ∂f (x)

and take the same vectors ui ∈ −∂gti (x), i = 1, . . . , n, as before, and certain
μ1, . . . ,μn > 0 (positive because of ENC) such that

n∑
i=1

μiui − (u + c) = 0n. (9)

In this step, we prove that, for every u1 ∈ −∂gt1(x), the following condition holds:

u + c ∈ cone({u1, u2, . . . , un}). (10)

Reasoning by contradiction, we assume that, for a certain ũ1 ∈ −∂gt1(x), (10) does
not hold. Then from the separation theorem, and since cone({̃u1, u2, . . . , un}) is
pointed, closed and convex, there exists w ∈ R

n \ {0} with

〈u + c,w〉 < 0, 〈̃u1,w〉 > 0, and 〈ui,w〉 > 0, for i = 2, . . . , n.

(Obviously, ũ1 = 0n because 0n /∈ co(
⋃n

i=1 ∂gti (x)).) For an appropriate choice of
positive scalars λi , i = 1,2, . . . , n (which are in fact determined by the equations
below), we can guarantee that

〈u + c + λ1ũ1,w〉 = 〈u + c + λiui,w〉 = 0, for i = 2, . . . , n,

so that the set {u + c + λ1ũ1; u + c + λiui , i = 2, . . . , n} is linearly dependent. Let
us then consider n scalars α1, . . . , αn, not all zero, satisfying

α1λ1ũ1 +
n∑

i=2

αiλiui +
n∑

i=1

αi(u + c) = 0n. (11)

We can assume w.l.o.g. that α1 ≥ 0 (otherwise, just multiply both sides of (11)
by −1). Moreover, at least one of the scalars αi , for i ∈ {2, . . . , n}, should be negative,
because otherwise we would have

∑n
i=1 αi > 0, in which case (11) leads us to the

contradiction −(u + c) ∈ cone(
⋃n

i=1(−∂gti (x))) (recall that cone(
⋃n

i=1(−∂gti (x)))

is a closed convex pointed cone containing u + c).
Now, we consider

γ := min

{−μi

αiλi

∣∣∣∣αi < 0

}
> 0.

Note that γ = −μi0/(αi0λi0) for some i0 ∈ {2, . . . , n}. Then, multiplying in (11) by
γ and adding (9), we obtain

γ α1λ1ũ1 + μ1u1 +
n∑

i=2
i =i0

(γ αiλi + μi)ui +
(

γ

n∑
i=1

αi − 1

)
(u + c) = 0n, (12)

with γ αiλi + μi ≥ 0 for all i = 2, . . . , n.
Now we distinguish three cases:



J Optim Theory Appl (2008) 139: 485–500 495

(i) If γ
∑n

i=1 αi − 1 = 0, we attain the contradiction

0n ∈ co

( ⋃
i∈{1,...,n}

(−∂gti (x))

)
.

(ii) If γ
∑n

i=1 αi − 1 > 0, then

−(u + c) ∈ cone

( ⋃
i∈{1,...,n}\{i0}

(−∂gti (x))

)
,

which again contradicts the pointedness of cone(
⋃n

i=1(−∂gti (x))).
(iii) Finally, if one has γ

∑n
i=1 αi − 1 < 0, then

u + c ∈ cone

( ⋃
i∈{1,...,n}\{i0}

(−∂gti (x))

)
,

contradicting ENC.

Step 3 From the previous step, (10) holds for arbitrarily chosen u ∈ ∂f (x) and u1 ∈
−∂g1(x). Moreover, ENC and the Carathéodory theorem ensure that {u1, u2, . . . , un}
is a basis of R

n and the associated coefficients generating u + c are positive. Then,
we can apply Step 2 to replace u2 by an arbitrary u2 ∈ −∂g2(x). By repeating this
procedure, we finish the proof. �

Along the paper, we claim that ENC provides high stability for the minimal sub-
sets of indices involved in the KKT conditions. This is formalized in the following
theorem. In particular, condition (i) below yields Tb(x) ⊂ D(x) for all x in a neigh-
borhood of x (since Tb(x) ⊂ T δ

b
(x) for all δ > 0). In other words, those minimal

subsets of indices in the KKT conditions at x (for P(c, b)) are also quasi-KKT sets
of indices at every x in a neighborhood of x. This fact is crucial for establishing that
points near x are optimal for some (c, b) with b near b (see Theorem 4.3).

Theorem 4.2 Assume that ENC is satisfied at (x, (c, b)) ∈ gph(G∗). Then, the fol-
lowing conditions hold:

(i) There exist δ0 > 0 and a neighborhood U0 of x such that

T δ0

b
(x) ⊂ D(x), for all x ∈ U0.

(ii) For every δ > 0, there exist neighborhoods Uδ of x and Vδ of b such that

Tb(x) ⊂ T δ

b
(x), for all x ∈ Uδ and all b ∈ Vδ.
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Proof

(i) We proceed by contradiction, supposing that there are sequences δr ↘ 0, xr → x,
and Dr := {t r1 , . . . , t rn} ∈ T δr

b
(x)�D(xr ), r = 1,2, . . . , and so

(∂f (xr) + c) ∩ cone

( n⋃
i=1

(−∂gtri
(xr ))

)
= ∅, for r = 1,2, . . . . (13)

From Dr ∈ T δr

b
(x) ⊂ D(x), we conclude the existence of ur

i ∈ −∂gtri
(x), λr

i ≥ 0,
with i = 1, . . . , n, and ur ∈ ∂f (x) such that

ur + c =
n∑

i=1

λr
i u

r
i . (14)

We may assume w.l.o.g. that t ri → ti ∈ Tb(x) (recall that btri
− δr ≤ gtri

(x) ≤ btri
for

all r), for i = 1, . . . , n, so that [9, Theorem 24.5] entails, for a suitable subsequence of
r’s, ur

i → ui ∈ −∂gti (x), ur → u ∈ ∂f (x). Moreover, SCQ allows us to assume (for
a new subsequence, in the line of the proof of Lemma 3.1) that λr

i → λi , i = 1, . . . , n.
Hence, setting D := {t1, . . . , tn} and letting r → ∞ in (14), we have

u + c =
n∑

i=1

λiui .

Thus, D ∈ Tb(x).
Now, let us consider, for each r , arbitrarily chosen vr

i ∈ −∂gtri
(xr ), i = 1, . . . , n,

and vr ∈ ∂f (xr). Applying again [9, Theorem 24.5], we may assume (for suitable
subsequences) vr → v ∈ ∂f (x), vr

i → vi ∈ −∂gti (x), i = 1, . . . , n. Applying Theo-
rem 4.1, we obtain v +c ∈ int(cone({v1, . . . , vn})). Then, for r large enough, we have
vr + c ∈ int(cone({vr

1, . . . , v
r
n})) (see [10, Exercise 6.12]). This contradicts (13).

(ii) Reasoning by contradiction, assume the existence of δ0 > 0 and sequences xr →
x and br → b such that Tbr (xr ) ⊂ T δ0

b
(x) for all r . Let

Dr := {t r1 , . . . , t rn} ∈ Tbr (xr )�T δ0

b
(x), r = 1,2, . . . . (15)

We may assume w.l.o.g. that t ri → ti ∈ T , for i = 1, . . . , n. So, the fact that Dr ⊂
Tbr (xr ) for all r , implies ti ∈ Tb(x), for all i = 1, . . . , n, appealing once more to the

continuity of (t, x) �→ gt (x). So, we have Dr ⊂ T
δ0

b
(x) for r large enough (assume

for all r). Thus, (15) necessarily implies

(∂f (x) + c) ∩ cone

( n⋃
i=1

(−∂gtri
(x))

)
= ∅, for all r. (16)

Take any u ∈ ∂f (x) and, for each r and each i, consider any ur
i ∈ −∂gtri

(x). From
(16), we have

u + c /∈ cone({ur
1, . . . , u

r
n}), r = 1,2, . . . .
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Moreover, [9, Theorem 24.5] entails, for a suitable subsequence of r’s, ur
i → ui ∈

−∂gti (x). Note that, again from [10, Exercise 6.12], one has

u + c /∈ int(cone({u1, . . . , un})).

Now, we shall prove that D := {t1, . . . , tn} ∈ Tb(x), which represents a contradic-
tion with Theorem 4.1. From one side, D ⊂ Tb(x). Moreover, since Dr ∈ Tbr (xr ),
we can find, for each r , vr ∈ ∂f (xr), vr

i ∈ −∂gtri
(xr ) for all i, and λr

i ≥ 0, such that
vr + c = ∑n

i=1 λr
i v

r
i . Again, from [9, Theorem 24.5], and taking SCQ into account,

we may assume vr → v ∈ ∂f (x), vr
i → vi ∈ −∂gti (x), λr

i → λi ≥ 0, i = 1, . . . , n.
Hence, v + c = ∑n

i=1 λivi and then D ∈ Tb(x). �

Remark 4.1 Observe that Example 4.1 also shows that ENC cannot be removed as
an assumption in the previous theorem. Specifically, D(−1

r
, 1

r
) = ∅ for all r ∈ N,

whereas for every δ > 0 one has T δ
(0,0)(0,0) = {{1,2}}.

Theorems 4.1 and 4.2 allow us to establish the lower (or inner) semicontinuity of
G̃ at (x, b) ∈ gph(G̃) in the following sense (see for instance [6, Definition 1.63(i)]):
For all neighborhood V of b, there exists a neighborhood U of x such that

G̃(x) ∩ V = ∅, for all x ∈ U.

We need the following technical lemma, whose proof follows from standard argu-
ments of continuous functions defined on compact spaces.

Lemma 4.1 For each ε > 0, there exists δ > 0 such that

max
t∈T

|gt (x) − gt (x)| < ε, for all x ∈ Bδ(x). (17)

Theorem 4.3 Assume that ENC is satisfied at (x, (c, b)) ∈ gph(G∗). Then, G̃ is lower
semicontinuous at (x, b).

Proof Take any neighborhood V of b. We show the existence of a neighborhood U

of x such that G̃(x) ∩ V = ∅ for all x ∈ U . Fix D ∈ Tb(x), take ε > 0 such that
Bε(b) ⊂ V , and define U := Bδ(x) where δ is such that ‖x − x‖ < δ implies

D ∈ D(x) and max
t∈T

|gt (x) − gt (x)| < ε.

The existence of such a δ comes from Theorem 4.2(i) and the previous lemma. In
particular, since D ⊂ Tb(x), we have maxt∈D |gt (x) − bt | < ε.

Now, let us prove that, for each x ∈ U , we can find a continuous function b ∈
G̃(x) ∩ V and so this set is nonempty. Fix x ∈ U and define

bt := ϕ(t)gt (x) + (1 − ϕ(t))bt , for t ∈ T ,
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where ϕ : T → [0,1] is defined by virtue of Urysohn’s lemma as a continuous func-
tion satisfying

ϕ(t) :=
{

1, if t ∈ D or gt (x) ≥ bt ,

0, if gt (x) ≤ bt − ε.

(When {t ∈ T : gt (x) ≤ bt − ε} = ∅, then we take ϕ ≡ 1.) Now, we check that b ∈
G̃(x) and ‖b − b‖∞ < ε. To start with, note that the definition of ϕ implies

gt (x) − bt = (1 − ϕ(t))(gt (x) − bt ) ≤ 0,

which states the feasibility of x; i.e., x ∈ F (b). Moreover, observe that bt = gt (x), for
t ∈ D, as well as D ∈ D(x), which provide the KKT optimality conditions, entailing
b ∈ G̃(x) (see Lemma 2.1). Moreover, |bt − bt | = ϕ(t)|gt (x) − bt | and, in the non-
trivial case ϕ(t) > 0, we have

−ε < gt (x) − bt ≤ gt (x) − gt (x) < ε,

yielding |bt − bt | ≤ |gt (x) − bt | < ε. Then, ‖b − b‖∞ = maxt∈T |bt − bt | < ε. �

5 Regularity Modulus of G∗

Theorem 4.3 allows us to sharpen some arguments in the methodology followed in [2]
in order to obtain in Theorem 5.1 a more simplified expression of reg G∗(x | (c, b)).
For comparative purposes, after Theorem 5.1 we refer to the original expression of
[2, Theorem 3]. For the sake of completeness, we introduce all the necessary ingre-
dients related to the fulfillment of the hypotheses of Theorem 2.2, but adapted to the
current case in which c remains unperturbed.

Assume the ENC at (x, (c, b)) ∈ gph(G∗). In particular, σ(b) satisfies SCQ, and
we consider x0 ∈ R

n and ρ > 0 such that gt (x
0) ≤ bt − 2ρ for all t ∈ T . Let

W := {b ∈ C(T ,R) : bt ≥ gt (x
0) + ρ, for all t ∈ T }. (18)

Note that W is a closed neighborhood of b containing Bρ(b).
Now, associated with W , we introduce G̃W : R

n ⇒ C(T ,R) given by

G̃W(x) := G̃(x) ∩ W, (19)

and consider, associated with each b ∈ W , the distance function fb,W defined by

fb,W (x) := d(b, G̃W(x)). (20)

Then, we have the following lemma, which constitutes the counterpart of [2, Theo-
rem 2] in our current situation (under ENC) where perturbations of c are negligible.
In fact, condition (i) in the following lemma is a consequence of the referred Theo-
rem 2(i) in [2]. It is not the case of condition (ii) although its proof follows from a
very similar argument and so it is omitted here.
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Lemma 5.1 Assume the ENC at (x, (c, b)) ∈ gph(G∗), take W as in (18), and con-
sider G̃W and fb,W given by (19) and (20), respectively. Then:

(i) gph(G̃W) is closed and nonempty;
(ii) fb,W is lower semicontinuous on R

n for all b ∈ W .

In our context, we can go a little bit further and ensure that, for b close enough to
b, fb,W is finite-valued in a neighborhood of x, and that W may be removed from the
definition of fb,W .

Lemma 5.2 Under the hypotheses of the previous lemma, there exist neighborhoods
U of x and V of b, V ⊂ W , such that

fb,W (x) = d(b, G̃(x)) < +∞, for all x ∈ U and b ∈ V.

Proof Take V := Bε(b) such that B3ε(b) ⊂ W , and let U be a neighborhood of x

such that G̃(x) ∩ V = ∅ for all x ∈ U , according to Theorem 4.3. In this way, given
b ∈ V , x ∈ U and b̃ ∈ G̃(x)∩V , we have fb,W (x) ≤ d(b, b̃) < 2ε and, if b̂ ∈ G̃(x)\W ,
then

d(b, b̂) ≥ d(̂b, b) − d(b, b) > 3ε − ε > d(b, G̃(x) ∩ W).

So, fb,W (x) = d(b, G̃(x)). �

Because of the two previous lemmas, fb,W verifies the hypothesis of Theorem 2.2.
In fact, Lemma 5.2 enables us to express the thesis of Theorem 2.2 directly in terms of
the functions fb (see (6)) for b close enough to b. Specifically we obtain the following
result, which is the counterpart of [2, Theorem 3] in our context.

Theorem 5.1 Assume that ENC is satisfied at (x, (c, b)) ∈ gph(G∗) and let fb, b ∈
C(T ,R) be the functions defined in (6). Then we have

reg G∗(x | (c, b)) = lim sup
(z,b)→(x,b)

fb(z)>0

(d∗(0n, ∂̂fb(z)))
−1 = lim sup

(z,b)→(x,b)
fb(z)>0

(|∇fb|(z)))−1.

Remark 5.1 Theorem 3 in [2] provides a more involved expression for reg G∗(x |
(c, b)), where the limsup is taken on (z, c, b) → (x, c, b) with fc,b(z) > 0, the latter
being defined as fc,b(z) := d((c, b), G∗(z) ∩ V ), where V := R

n × W .
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