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Abstract We consider the problem

min
m∑

i=1

fi(xi),

s.t. x ∈ S,

where xi are multidimensional subvectors of x, fi are convex functions, and S is
a subspace. Monotropic programming, extensively studied by Rockafellar, is the spe-
cial case where the subvectors xi are the scalar components of x. We show a strong
duality result that parallels Rockafellar’s result for monotropic programming, and
contains other known and new results as special cases. The proof is based on the use
of ε-subdifferentials and the ε-descent method, which is used here as an analytical
vehicle.

Keywords Monotropic · Duality · ε-subdifferential · ε-descent

1 Introduction

In this paper, we analyze a class of convex optimization problems, using the tools and
terminology of convex analysis, e.g., [1, 2]. In particular, we study the problem

min
m∑

i=1

fi(xi), (1)

s.t. x ∈ S, (2)
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where x = (x1, . . . , xm) with xi ∈ �ni , i = 1, . . . ,m, fi : �ni �→ (−∞,∞], i =
1, . . . ,m, is a proper convex function, and S is a subspace of �n1+···+nm . We refer
to this as an extended monotropic programming problem. The special case of prob-
lem (2) where each component xi is one-dimensional (i.e., ni = 1) is the monotropic
programming problem, introduced and extensively analyzed by Rockafellar in his
book [3].

Note that problems involving general linear constraints and an additive convex
cost function can be converted to extended monotropic programming problems. In
particular, the problem

min
m∑

i=1

fi(xi), (3)

s.t. Ax = b, (4)

where A is a given matrix and b is a given vector, is equivalent to

min
m∑

i=1

fi(xi),

s.t. Ax − z = 0, z = b,

where z is a vector of artificial variables. This is an extended monotropic program-
ming problem, where the constraint subspace is

S = {
(x, z) | Ax − z = 0

}

and the indicator function of the set {(x, z) | z = b} is added to the cost function.
When the functions fi have the form

fi(xi) = x′
iQixi + c′

ixi + δXi
(xi),

where Qi is a positive semidefinite symmetric matrix, ci is a vector, and δXi
(·) is

the indicator function of the nonnegative orthant, problem (4) reduces to a convex
quadratic programming problem. In the special case where Qi = 0, it reduces to
a linear programming problem.

Note also that, while the subvectors x1, . . . , xm appear independently in the cost
function

m∑

i=1

fi(xi),

they may be coupled through the subspace constraint. For example, consider a cost
function of the form

f (x) = h(x1, . . . , xm) +
m∑

i=1

fi(xi), (5)
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where h is a proper convex function of all the components xi . Then, by introducing
an auxiliary vector z ∈ �n1+···+nm , the problem of minimizing f (x) subject to x ∈ S

can be transformed to the problem

min h(z) +
m∑

i=1

fi(xi),

s.t. (x, z) ∈ S,

where S is the subspace of �2(n1+···+nm)

S = {
(x, x) | x ∈ S

}
.

This problem is of the form (2).
Another problem that can be converted to the extended monotropic programming

format (2) is

min
m∑

i=1

fi(x), (6)

s.t. x ∈ S, (7)

where fi : �n �→ (−∞,∞] are proper convex functions, and S is a subspace of �n.
This can be done by introducing m copies of x, i.e., auxiliary vectors zi ∈ �n that are
constrained to be equal, and write the problem as

min
m∑

i=1

fi(zi),

s.t. (z1, . . . , zm) ∈ S,

where S is the subspace

S = {
(x, . . . , x) | x ∈ S

}
.

The special case of problem (7) where m = 1 is the generic convex cost problem
with linear constraints,

min f (x),

s.t. x ∈ S,

where f : �n �→ (−∞,∞] is a proper convex function, and S is a subspace of �n

(cf. the earlier discussion regarding problem (4)).
It can thus be seen that the extended monotropic programming problem contains

as special cases broad classes of important optimization problems. These problems
share a powerful and symmetric duality theory that we will develop in this paper.
In Sect. 2, we formulate the dual problem, and prepare for the proof of our strong
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duality result. This result shows that, for a feasible problem, strong duality holds if
the functions fi are lower semicontinuous in their domain and the set

{
(z1 + λ1, . . . , zm + λm) | (z1, . . . , zm) ∈ S⊥, λi ∈ ∂εfi(xi)

}

is closed for all feasible x = (x1, . . . , xm) and ε > 0, where ∂εfi(xi) is the ε-
subdifferential of fi at xi . While this is an unusual constraint qualification, it can
be translated into readily verifiable conditions by using standard results that address
the preservation of closedness of the vector sum of closed convex sets.

To prepare the ground for the proof of our duality result, we discuss in Sect. 3 the
ε-descent method, introduced by Bertsekas and Mitter [4, 5] as a general algorithm
for convex nondifferentiable optimization. We use a variant of the method (also given
in [4]), which involves projection on an outer approximation of the ε-subdifferential.
In Sect. 4, we use the ε-descent method to prove our strong duality result. This line of
proof is unusual, but a closely related line of proof was used by Rockafellar [3, 6] to
prove strong duality in the special case of monotropic programming. Rockafellar used
a variant of the ε-descent method that involves descent along elementary vectors of
the subspace S. We modified his argument in order to apply it to extended monotropic
programming, both because elementary vectors are not useful in our context, and also
because of the need for a constraint qualification that takes the form of closedness of
a vector sum of ε-subdifferentials. In Sect. 4, we also discuss various special cases
where our result may be applied. As an example, we show that strong duality holds
for broad classes of multicommodity network flow problems, and for cost functions
of the form (5), where h is a real-valued function. It seems hard to extend our re-
sults to problems with nonlinear constraints. In particular, a notable result, due to
Tseng [7], which asserts the absence of a duality gap in separable convex problems
with nonlinear constraints, does not seem to be easily extendable to nonseparable
problems using our methodology.

In this paper, all vectors are finite dimensional, and are viewed as column vectors.
A prime denotes transposition, so x′y is the inner product of two vectors x and y.
We adopt throughout the standard norm, ‖x‖ = √

x′x. We use standard terminology,
facts, and notation from convex analysis; see e.g., [1, 2]. In summary, for a function
f : �n �→ (−∞,∞], the effective domain {x | f (x) < ∞} is denoted by dom(f ),
the epigraph {(x,w) | f (x) ≤ w} is denoted by epi(f ), and the closure of f (the
function whose epigraph is the closure of epi(f )) is denoted by clf . We say that
f is proper if its epigraph is nonempty and does not contain a vertical line. The
conjugate function of a proper convex function f is the closed proper convex function
g : �n �→ (−∞,∞] given by

g(λ) = sup
x∈�n

{
λ′x − f (x)

}
, λ ∈ �n.

A basic fact for our purposes is that the conjugate of g is the closure of f . Further-
more, from the definition of the conjugate, we have Fenchel’s inequality

f (x) + g(λ) ≥ λ′x, ∀(x,λ) ∈ �2n,

which holds as an equality if and only if λ belongs to the subdifferential ∂f (x) of f

at x.
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2 Dual Problem

Throughout the paper we make the following standing assumption.

Assumption 2.1 Each function fi in the extended monotropic programming prob-
lem (2) is lower semicontinuous within its domain, i.e., for all i,

fi(x) = (clfi)(x), ∀x ∈ dom(fi).

This assumption is slightly weaker than the assumption that the functions fi are
closed, usually made in connection with monotropic programming [3], but is suffi-
cient for our purposes.

To derive the appropriate dual problem, we introduce auxiliary vectors zi ∈ �ni

and we convert the extended monotropic programming problem (2) to the equivalent
form

min
m∑

i=1

fi(zi),

s.t. zi = xi, i = 1, . . . ,m, x ∈ S.

We then assign a multiplier vector λi ∈ �ni to the equality constraint zi = xi , thereby
obtaining the Lagrangian function

L(x, z,λ) =
m∑

i=1

fi(zi) + λ′
i (xi − zi), (8)

where λ = (λ1, . . . , λm). The dual function is

q(λ) = inf
x∈S, zi∈�ni

L(x, z, λ)

= inf
x∈S

λ′x +
m∑

i=1

inf
zi∈�ni

{
fi(zi) − λ′

izi

}

=
{∑m

i=1 qi(λi), if λ ∈ S⊥,

−∞, otherwise,

where

qi(λi) = inf
zi∈�

{
fi(zi) − λ′

izi

}
, i = 1, . . . ,m, (9)

and S⊥ is the orthogonal subspace of S.
Note that, since qi can be written as

qi(λi) = − sup
zi∈�

{
λ′

izi − fi(zi)
}
,
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it follows that −qi is the conjugate of fi , so −qi is a closed proper convex function.
The dual problem is

max
m∑

i=1

qi(λi), (10)

s.t. λ ∈ S⊥. (11)

Thus, with a change of sign to convert maximization to minimization, the dual prob-
lem has the same form as the primal. In fact, assuming that the functions fi are
closed, when the dual problem is dualized, it yields the primal problem, and the du-
ality is fully symmetric.

Since the extended monotropic programming problem can be viewed as a special
case of a convex programming problem with linear equality constraints, it is possi-
ble to obtain optimality conditions as a special case of classical conditions, which
state that (x,λ) is a pair of primal and dual optimal solutions if and only if x is pri-
mal feasible, λ is dual feasible, and x minimizes the Lagrangian function; see e.g.,
[2, Proposition 6.2.5]. The Lagrangian minimization condition is in turn true if and
only if xi attains the infimum in the equation

qi(λi) = inf
zi∈�ni

{
fi(zi) − λ′

izi

}
, i = 1, . . . ,m,

or equivalently, by Fenchel’s inequality,

λi ∈ ∂fi(xi), i = 1, . . . ,m.

We thus obtain the following proposition.

Proposition 2.1 Let f ∗ be the optimal value of problem (2) and assume that −∞ <

f ∗ < ∞. The vectors x∗ and λ∗ are optimal primal and dual solutions, respectively,
and the optimal primal and dual costs are equal if and only if

x∗ ∈ S, λ∗ ∈ S⊥, λ∗
i ∈ ∂fi(x

∗
i ), i = 1, . . . ,m.

3 The ε-descent Method

Given a proper convex function f : �n �→ (−∞,∞] and a scalar ε > 0, we say that
a vector λ is an ε-subgradient of f at a point x ∈ dom(f ) if

f (z) ≥ f (x) + (z − x)′λ − ε, ∀z ∈ �n. (12)

The ε-subdifferential, denoted ∂εf (x), is the set of all ε-subgradients of f at x, and
by convention, ∂εf (x) = ∅ for x /∈ dom(f ).

The properties of the ε-subdifferential have been discussed extensively; see e.g.,
Hiriart-Urruty and Lemarechal [8, 9], and Hiriart-Urruty et al. [10]. Let us provide
a brief discussion of some of the properties that are useful for our purposes.
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(i) For any x ∈ dom(f ) and ε > 0, consider the x-translation of f , i.e., the function
fx given by

fx(y) = f (x + y) − f (x), ∀y ∈ �n,

and its conjugate given by

gx(λ) = sup
y∈�n

{
y′λ − f (x + y) + f (x)

} = g(λ) + f (x) − λ′x,

where g is the conjugate of f . Then, from the definition (12), we have

∂εf (x) = {
λ | gx(λ) ≤ ε

}
. (13)

(ii) It can be seen that the conjugate of gx is (clf )(x +y)−f (x) (viewed as a func-
tion of y), so from the definition of conjugacy, for y = 0, we obtain

(clf )(x) − f (x) = sup
λ∈�n

{−gx(λ)
}
.

It follows that

inf
λ∈�n

gx(λ) = 0 if and only if (clf )(x) = f (x).

Thus, in view of (13),

∂εf (x) is nonempty and closed for all ε > 0 if and only if (clf )(x) = f (x).

(14)
Also it can be shown that ∂εf (x) is compact if x is in the interior of dom(f ).

(iii) The support function of ∂εf (x) is given by the formula [1, p. 220]

sup
λ∈∂εf (x)

y′λ = inf
α>0

f (x + αy) − f (x) + ε

α
, y ∈ �n. (15)

(iv) We say that a direction y is an ε-descent direction at x ∈ dom(f ) if

inf
α>0

f (x + αy) < f (x) − ε.

By (15), it follows that

y is an ε-descent direction if and only if sup
λ∈∂εf (x)

y′λ < 0.

In particular, if 0 /∈ ∂εf (x) and λ is the projection of the origin on ∂εf (x), the
vector −λ is an ε-descent direction.

The ε-descent method is based on observation (iv) above. It starts at some x0 ∈
dom(f ) and generates a sequence {xk} ⊂ dom(f ). The kth iteration is

xk+1 = xk + αkyk, (16)
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yk is an ε-descent direction (if one can be found) and αk is a positive stepsize that
reduces the cost function by more than ε, i.e.,

f (xk + αkyk) < f (xk) − ε.

The iteration can be implemented by finding the projection of the origin on ∂εf (xk),

λk = arg min
λ∈∂εf (xk)

‖λ‖.

If λk �= 0, then by observation (iv) above, −λk is an ε-descent direction, and can be
used as the direction yk in the iteration (16).

We will use a variant of this implementation where ∂εf (xk) is approximated by
a closed set A(xk) such that

∂εf (xk) ⊂ A(xk) ⊂ ∂γ εf (xk),

where γ is a scalar with γ > 1. In this variant, the direction used in iteration (16) is
yk = −λk , where

λk = arg min
λ∈A(xk)

‖λ‖

is the projection of the origin on A(xk). If λk = 0 (equivalently 0 ∈ A(xk)), the
method stops, and it follows that xk is within γ ε of being optimal. If λk �= 0, it
follows that by suitable choice of the stepsize αk , we can move along the direction
yk = −λk to decrease the cost function by more than ε. Thus, for a fixed ε > 0 and
assuming that f is bounded below, the method is guaranteed to terminate in a finite
number of iterations with a γ ε-optimal solution.

We now focus on the case where f is the sum of functions,

f (x) = f1(x) + · · · + fm(x).

The following proposition shows that we may use as approximation the closure of
the vector sum of the ε-subdifferentials:

A(x) = cl
(
∂εf1(x) + · · · + ∂εfm(x)

)
.

This case, and a corresponding ε-descent algorithm, were discussed in [4] under the
assumption that the functions fi are real-valued, in which case the sets ∂εfi(x) are
compact and the closure operation is unnecessary in the preceding equation. Other
versions of the following result are also known; see Hiriart-Urruty et al. [10, Theo-
rem 3.2].

Proposition 3.1 Let f be the sum of m proper convex functions fi : �n �→ (−∞,∞],
i = 1, . . . ,m,

f (x) = f1(x) + · · · + fm(x),

and let ε be a positive scalar. Consider a vector x ∈ dom(f ) such that

fi(x) = (clfi)(x), i = 1, . . . ,m, (17)
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Then,

∂εf (x) ⊂ cl
(
∂εf1(x) + · · · + ∂εfm(x)

) ⊂ ∂mεf (x). (18)

Proof We first note that in view of the assumption (17) and the property (14), the ε-
subdifferentials ∂εfi(x) are nonempty and closed. Let λi ∈ ∂εfi(x) for i = 1, . . . ,m.
Then, we have

fi(z) ≥ fi(x) + λ′
i (z − x) − ε, ∀z ∈ �n, i = 1, . . . ,m,

and by adding over all i, we obtain

f (z) ≥ f (x) + (λ1 + · · · + λm)′(z − x) − mε, ∀z ∈ �n.

Hence, λ1 + · · · + λm ∈ ∂mεf (x), and it follows that

∂εf1(x) + · · · + ∂εfm(x) ⊂ ∂mεf (x).

Since ∂mεf (x) is closed, this proves the right-hand side of (18).
To prove the left-hand side of (18), to arrive at a contradiction, assume that there

exists a λ ∈ ∂εf (x) such that

λ /∈ cl
(
∂εf1(x) + · · · + ∂εfm(x)

)
.

Then, there exists a hyperplane strictly separating λ from the set cl(∂εf1(x) + · · · +
∂εfm(x)), i.e., there exist a vector y and a scalar b such that

y′(λ1 + · · · + λm) < b < y′λ, ∀λ1 ∈ ∂εf1(x), . . . , λm ∈ ∂εfm(x).

From this, we obtain

sup
λ1∈∂εf1(x)

y′λ1 + · · · + sup
λm∈∂εfm(x)

y′λm < y′λ,

so that, by (15),

inf
α>0

f1(x + αy) − f1(x) + ε

α
+ · · · + inf

α>0

fm(x + αy) − fm(x) + ε

α
< y′λ.

It follows that there exist positive scalars α1, . . . , αm such that

f1(x + α1y) − f1(x) + ε

α1
+ · · · + fm(x + αmy) − fm(x) + ε

αm

< y′λ. (19)

Let

α = min{α1, . . . , αm}.
By the convexity of fi , the ratio (fi(x + αy) − fi(x))/α is monotonically nonde-
creasing in α. Thus, since αi ≥ α, we have

fi(x + αiy) − fi(x)

αi

≥ fi(x + αy) − fi(x)

α
, i = 1, . . . ,m,
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and from (19) and the definition of α we obtain

y′λ >
f1(x + α1y) − f1(x) + ε

α1
+ · · · + fm(x + αmy) − fm(x) + ε

αm

≥ f1(x + αy) − f1(x) + ε

α
+ · · · + fm(x + αy) − fm(x) + ε

α

= f (x + αy) − f (x) + ε

α

≥ inf
α>0

f (x + αy) − f (x) + ε

α
.

Since λ ∈ ∂εf (x), this contradicts (15), and proves the left-hand side of (18). �

The potential lack of closure of the set ∂εf1(x) + · · · + ∂εfm(x) indicates a prac-
tical difficulty in implementing the method. In particular, in order to find an ε-
descent direction one will ordinarily minimize ‖λ1 + · · · + λm‖ over λi ∈ ∂εfi(x),
i = 1, . . . ,m, but an optimal solution to this problem may not exist. Thus, it may be
difficult to check algorithmically whether

0 ∈ cl
(
∂εf1(x) + · · · + ∂εfm(x)

)
,

which is the test for mε-optimality of x. We will see in the next section that the lack
of closure of the set ∂εf1(x)+ · · ·+ ∂εfm(x) may be the cause of a duality gap in the
extended monotropic programming context.

4 Strong Duality Theorem

We are now ready to prove the main result of the paper. Let f ∗ and q∗ be the optimal
values of the primal and dual problems (2) and (11), respectively, and note that by
weak duality, we have q∗ ≤ f ∗. Let us introduce the functions f i : �n1+···+nm �→
(−∞,∞] of the vector x = (x1, . . . , xm), defined by

f i(x) = fi(xi), i = 1, . . . ,m.

Note that the ε-subdifferentials of f i and fi are related by

∂εf i(x) = {
(0, . . . ,0, λi,0, . . . ,0) | λi ∈ ∂εfi(xi)

}
, i = 1, . . . ,m, (20)

where the nonzero element in (0, . . . ,0, λi,0, . . . ,0) is in the ith position. The fol-
lowing proposition gives conditions for strong duality.

Proposition 4.1 Assume that the extended monotropic programming problem (2) is
feasible and that, for all feasible solutions x, the set

T (x, ε) = S⊥ + ∂εf 1(x) + · · · + ∂εf m(x)

is closed for all ε > 0. Then, q∗ = f ∗.
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Proof If f ∗ = −∞, then q∗ = f ∗ by weak duality, so we may assume that
f ∗ > −∞. Let F denote the feasible region of the primal problem,

F = S ∩
(

m⋂

i=1

dom(f i)

)
.

We apply the ε-descent method based on an outer approximation of the subdifferen-
tial (cf. Sect. 3) to the minimization of the function

f (x) = δS(x) +
m∑

i=1

f i(x) = δS(x) +
m∑

i=1

fi(xi),

where δS is the indicator function of S. In this method, we start with a vector x0 ∈ F

and we generate a sequence {xk} ⊂ F . At the kth iteration, given the current iter-
ate xk , we find the vector of minimum norm wk on the set T (xk, ε) (which is closed
by assumption). If wk = 0, the method stops, verifying that 0 ∈ ∂mεf (xk) (cf. Propo-
sition 3.1). If wk �= 0, we generate a vector xk+1 ∈ F of the form xk+1 = xk − αkwk ,
such that

f (xk+1) < f (xk) − ε;
such a vector is guaranteed to exist, since 0 /∈ T (xk, ε) and hence 0 /∈ ∂εf (xk) by
Proposition 3.1. Since f (xk) ≥ f ∗ and we have assumed that f ∗ > −∞, the method
must stop at some iteration with a vector x = (x1, . . . , xm) such that 0 ∈ T (x, ε).
Thus, some vector in ∂εf 1(x) + · · · + ∂εf m(x) must belong to S⊥. In view of (20),
it follows that there must exist vectors

λi ∈ ∂εfi(xi), i = 1, . . . ,m,

such that

λ = (λ1, . . . , λm) ∈ S⊥.

From the definition of an ε-subgradient, we have (cf. (9) and (12))

fi(xi) ≤ qi(λi) + λ′
ixi + ε, i = 1, . . . ,m,

and by adding over i and using the fact x ∈ S and λ ∈ S⊥, we obtain

m∑

i=1

fi(xi) ≤
m∑

i=1

qi(λi) + mε.

Since x is primal feasible and λ is dual feasible, it follows that

f ∗ ≤ q∗ + mε.

Taking the limit as ε → 0, we obtain f ∗ = q∗. �
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4.1 Some Special Cases

We now delineate some special cases where the assumptions of the preceding propo-
sition are satisfied. We first note that in view of (20), the set ∂εf i(x) is compact if
∂εfi(xi) is compact, and it is polyhedral if ∂εfi(xi) is polyhedral. Since the vector
sum of a compact set and a polyhedral set is closed [1, Theorem 20.3], [2, p. 68], it
follows that if each of the sets ∂εfi(xi) is either compact or polyhedral, then T (x, ε)

is closed, and by Proposition 4.1, we have q∗ = f ∗. Furthermore, the set ∂εfi(xi) is
compact if xi ∈ int(dom(fi)) (as in the case where fi is real-valued), and it is poly-
hedral if fi is polyhedral. (In our use of the term, a polyhedral set is a nonempty set
that is specified by a finite number of affine inequalities. A polyhedral function is
an extended real-valued function whose epigraph is a polyhedral set.) There are some
other interesting special cases where ∂εfi(xi) is polyhedral, as we now describe.

One such special case is when fi depends on a single scalar component of x, as in
the case of a monotropic programming problem. The following definition introduces
a more general case.

Definition 4.1 We say that a proper convex function h : �n �→ (−∞,∞] is essen-
tially one-dimensional if it has the form

h(x) = h(a′x),

where a is a vector in �n and h : � �→ (−∞,∞] is a scalar proper convex function.

The following proposition establishes the main associated property for our pur-
poses. A proof may be obtained by using general results on the ε-subdifferential of
the composition of a convex function and a linear function (see Hiriart-Urruty et al.
[10, Theorem 7.1]). We give here a simpler specialized proof.

Proposition 4.2 Let h : �n �→ (−∞,∞] be a proper convex essentially one-
dimensional function that is lower semicontinuous within its domain. Then, for all
x ∈ dom(h) and ε > 0, the ε-subdifferential ∂εh(x) is nonempty and polyhedral.

Proof We note that ∂εh(x) is nonempty and closed, since h is lower semicontinuous
within its domain (cf. (14)). Let h(x) = h(a′x), where a is a vector in �n and h is
a scalar proper convex function. If a = 0, then h is a constant function, and ∂εh(x)

is equal to {0}, a polyhedral set. Thus, we may assume that a �= 0. We note that
λ ∈ ∂εh(x) if and only if

h(a′z) ≥ h(a′x) + (z − x)′λ − ε, ∀z ∈ �n.

Writing λ in the form λ = ξa + v with ξ ∈ � and v ⊥ a, we have

h(a′z) ≥ h(a′x) + (z − x)′(ξa + v) − ε, ∀z ∈ �n,

and by taking z = γ a + δv with γ, δ ∈ � and γ chosen so that γ ‖a‖2 ∈ dom(h),
we obtain

h
(
γ ‖a‖2) ≥ h(a′x) + (γ a + δv − x)′λ − ε

= h(a′x) + (γ a − x)′λ − ε + δv′λ, ∀δ ∈ �.
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Since v′λ = ‖v‖2 and δ can be arbitrarily large, this relation implies that v = 0, so
it follows that every λ ∈ ∂εh(x) must be a scalar multiple of a. Since ∂εh(x) is also
a closed convex set, it must be a nonempty closed interval in �n, and hence is poly-
hedral. �

Another interesting special case is described in the following definition.

Definition 4.2 We say that a proper convex function h : �n �→ (−∞,∞] is domain
one-dimensional if the affine hull of dom(h) is either a single point or a line, i.e.,

aff
(
dom(h)

) = {γ a + b | γ ∈ �},
where a and b are some vectors in �n.

The following proposition parallels Proposition 4.2.

Proposition 4.3 Let h : �n �→ (−∞,∞] be a proper convex domain one-dimen-
sional function that is lower semicontinuous within its domain. Then, for all x ∈
dom(h) and ε > 0, the ε-subdifferential ∂εh(x) is nonempty and polyhedral.

Proof Denote by a and b the vectors associated with the domain of h as per Defin-
ition 4.2. We note that, for γ a + b ∈ dom(h), we have λ ∈ ∂εh(γ a + b) if and only
if

h(γ a + b) ≥ h(γ a + b) + (γ − γ )a′λ − ε, ∀γ ∈ �,

or equivalently, if and only if a′λ ∈ ∂εh(γ ), where h is the one-dimensional convex
function

h(γ ) = h(γ a + b), γ ∈ �.

Thus,

∂εh(γ a + b) = {
λ | a′λ ∈ ∂εh(γ )

}
.

Since ∂εh(γ ) is a nonempty closed interval (h is lower semicontinuous within its do-
main because h is), it follows that ∂εh(γ a +b) is nonempty and polyhedral (if a = 0,
it is equal to �n, and if a �= 0, it is the vector sum of two polyhedral sets: the interval
{γ a | γ ‖a‖2 ∈ ∂εh(γ )} and the subspace that is orthogonal to a). �

By combining the preceding two propositions with Proposition 4.1, we obtain the
following.

Proposition 4.4 Assume that the extended monotropic programming problem (2) is
feasible and that each function fi is real-valued, or is polyhedral, or is essentially
one-dimensional, or is domain one-dimensional. Then, q∗ = f ∗.

Here is an example of a class of problems where strong duality is implied by
Proposition 4.4.
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Example 4.1 Consider a directed graph consisting of a set N of nodes and a set
A of directed arcs. The flows on the arcs are of K different types (commodities).
We denote by xij (k) the flow of kth type on arc (i, j) (k = 1, . . . ,K). These flows
must satisfy conservation of flow and supply/demand constraints of the form

∑

{j |(i,j)∈A}
xij (k) −

∑

{j |(j,i)∈A}
xji(k) = si(k), ∀i ∈ N , k = 1, . . . ,K, (21)

where si(k) is the amount of flow of type k entering the network at node i (si(k) > 0
indicates supply, and si(k) < 0 indicates demand). The supplies/demands si(k) are
given and, for the problem to be feasible, they must satisfy

∑

i∈N
si(k) = 0, k = 1, . . . ,K (22)

(total supply and total demand of each type should be equal).
The problem is to minimize

∑

(i,j)∈A
fij (xij )

subject to the constraints (21), where fij : � �→ (−∞,∞] are closed proper convex
functions of the total flow on arc (i, j), i.e., the sum

xij = xij (1) + · · · + xij (K). (23)

In typical applications in communication and transportation contexts (see e.g.,
[11, 12]), the function fij is monotonically increasing, thus representing a penalty
for a large amount of total flow xij on arc (i, j). Furthermore, fij may embody a ca-
pacity constraint, whereby xij should lie within certain bounds.

We can formulate the problem into the extended monotropic programming format
(2) by introducing an additional variable zi(k) for each i ∈ N and k = 1, . . . ,K , and
by converting the conservation of flow constraint (21) to the subspace constraint

∑

{j |(i,j)∈A}
xij (k) −

∑

{j |(j,i)∈A}
xji(k) − zi(k) = 0, ∀i ∈ N , k = 1, . . . ,K,

while changing the cost function to

∑

(i,j)∈A
fij (xij ) +

K∑

k=1

∑

i∈N
dik

(
zi(k)

)
, (24)

where dik is the function

dik(z) =
{

0, if z = si(k),

∞, otherwise.
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It can be seen, using the definition (23) of xij , that the cost function (24) is the
sum of closed proper convex functions that are essentially one-dimensional. It fol-
lows from Proposition 4.4 that if the optimal value of the problem is finite, there is no
duality gap. This conclusion holds also for some more general versions of the prob-
lem. For example, the cost function may contain an additional real-valued convex
function and/or a polyhedral function that depends on all the arc flows xij (k). Fur-
thermore, instead of being fixed, the supply/demand amounts may be variable and
subject to optimization under the constraint

∑

i∈N
zi(k) = 0, k = 1, . . . ,K,

(cf. (22)), while the functions dik in the cost (24) may be replaced by arbitrary closed
convex functions of zi(k).

It turns out that there is a conjugacy relation between essentially one-dimensional
functions and domain one-dimensional functions such that the affine hull of their
domain is a subspace. This is shown in the following proposition, which establishes
a somewhat more general connection, needed for our purposes.

Proposition 4.5

(a) The conjugate of an essentially one-dimensional function is a domain one-
dimensional function such that the affine hull of its domain is a subspace.

(b) The conjugate of a domain one-dimensional function is the sum of an essentially
one-dimensional function and a linear function.

Proof (a) Let h : �n �→ (−∞,∞] be essentially one-dimensional, so that

h(x) = h(a′x),

where a is a vector in �n and h : � �→ (−∞,∞] is a scalar proper convex function.
If a = 0, then h is a constant function, so its conjugate is domain one-dimensional,
since its domain is {0}. We may thus assume that a �= 0. We claim that the conjugate

g(λ) = sup
x∈�n

{
λ′x − h(a′x)

}
, (25)

takes infinite values if λ is outside the one-dimensional subspace spanned by a, im-
plying that g is domain one-dimensional with the desired property. Indeed, let λ be
of the form λ = ξa + v, where ξ is a scalar, and v is a nonzero vector with v ⊥ a.
If we take x = γ a + δv in (25), where γ is such that γ ‖a‖2 ∈ dom(h), we obtain

g(λ) = sup
x∈�n

{
λ′x − h(a′x)

}

≥ sup
δ∈�

{
(ξa + v)′(γ a + δv) − h

(
γ ‖a‖2)}

= ξγ ‖a‖2 − h
(
γ ‖a‖2) + sup

δ∈�
{
δ‖v‖2},
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so it follows that g(λ) = ∞.
(b) Let h : �n �→ (−∞,∞] be domain one-dimensional, so that

aff
(
dom(h)

) = {γ a + b | γ ∈ �},

for some vectors a and b. If a = b = 0, the domain of h is {0}, so its conjugate is the
function taking the constant value −h(0) and is essentially one-dimensional. If b = 0
and a �= 0, then the conjugate is

g(λ) = sup
x∈�n

{
λ′x − h(x)

} = sup
γ∈�

{
γ a′λ − h(γ a)

}
,

so g(λ) = g(a′λ) where g is the conjugate of the scalar function h(γ ) = h(γ a).

Since h is convex and proper, the same is true for g, and it follows that g is essen-
tially one-dimensional. Finally, consider the case where b �= 0. Then we use a trans-
lation argument and write h(x) = ĥ(x − b), where ĥ is a function such that the affine
hull of its domain is the subspace spanned by a. The conjugate of ĥ is essentially
one-dimensional (by the preceding argument), and the conjugate of h is obtained by
adding b′λ to it. �

We now turn to the dual problem, and derive a duality result that is analogous
to the one of Proposition 4.4. We say that a function is co-finite if its conjugate is
real-valued (see [1, p. 116]). If we apply Proposition 4.4 to the dual problem (11),
we obtain the following.

Proposition 4.6 Assume that the dual extended monotropic programming problem
(11) is feasible and that each function fi is closed. Assume further that each fi

is cofinite, or is polyhedral, or is essentially one-dimensional, or is domain one-
dimensional. Then, q∗ = f ∗.

In the special case of a monotropic programming problem, where the functions
fi are essentially one-dimensional (they depend on the single scalar component xi ),
Propositions 4.4 and 4.6 yield the following.

Proposition 4.7 Consider the monotropic programming problem, where ni = 1 for
all i. Assume that either the problem is feasible, or else its dual problem is feasible
and the functions fi are closed. Then q∗ = f ∗.

Proof This is a consequence of Propositions 4.4 and 4.6, and the fact that when
ni = 1, the functions fi and qi are essentially one-dimensional. Applying Propo-
sition 4.4 to the primal problem, shows that q∗ = f ∗ under the hypothesis that the
primal problem is feasible. Applying Proposition 4.6 to the dual problem, shows that
q∗ = f ∗ under the hypothesis that the dual problem is feasible and each function fi

is closed. �
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