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Abstract In this paper, we introduce new dual problems of generalized vector vari-
ational inequality problems with set-valued maps and we discuss a link between the
solution sets of the primal and dual problems. The notion of solutions in each of
these problems is introduced via the concepts of efficiency, weak efficiency or Ben-
son proper efficiency in vector optimization. We provide also examples showing that
some earlier duality results for vector variational inequality may not be true.
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1 Introduction

The theory of variational inequality problems [1] and its extensions such as the
theory of vector variational inequality problems [2] and the theory of scalar and vec-
tor equilibrium problems [3, 4] were developed extensively in recent years. Most of
the papers dealing with these theories are centered around existence results. There are
only a few works devoted to the study of duality in these problems. In 1972, Mosco
[5] introduced a dual problem of a variational inequality problem and showed a re-
lationship between the solution sets of the primal and dual problems. In 1980, such
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a relationship was considered in [6] for a more general problem, called the implicit
variational problem, which includes the variational inequality problem and the equi-
librium problem as special cases. The duality results obtained in [5, 6] were extended
to the vector case in [7–9]. The original duality results of [8, 9] were also presented in
[10] in a finite-dimensional space, together with some applications to the study of gap
functions for vector variational inequality problems. In this paper, we give examples
proving that the just mentioned dual problems of [8–10] are not suitable for the dual-
ity property of vector variational inequalities, and hence, all possible applications of
them cannot be seen to be justified. This fact shows that, when dealing with duality in
vector variational inequality problems which are generalizations of those considered
in [8–10], we must use dual problems different from those of [8–10]. In this paper,
such new dual problems are introduced for a set-valued version of the vector varia-
tional inequality problem of [8–10], and they are shown to be useful in establishing
duality properties. Our duality results are expressed in Theorems 2.2, 2.3, 3.1, 3.2
below. We observe that, in Theorems 3.1 and 3.2, the notion of solutions in both the
primal and dual problems is quite different from that used in Theorems 2.2 and 2.3:
In Theorems 3.1 and 3.2, the notion of solutions is introduced via that of proper effi-
ciency of Benson [11, 12]; in Theorems 2.2 and 2.3 of the present paper, as well as
in [8–10], the notion of solutions is given via the concept of efficiency or weak effi-
ciency. We observe also that our results are valid without any continuity or convexity
assumption.

2 Duality in Generalized Vector Variational Inequalities with Fenchel
Conjugate Maps

Let Y be a topological vector space and let C be an arbitrary subset of Y with 0 ∈ C

(the set C is not necessarily a cone). Let C0 = C \{0} �= ∅, where ∅ denotes the empty
set. For a subset A ⊂ Y , let us set

MaxCA = {a ∈ A : [A − a] ∩ C0 = ∅},
BMaxCA = {a ∈ A : cl cone[A − a − C] ∩ C = {0}},

where coneA = {λa : λ ≥ 0, a ∈ A} and clA is the closure of A. If no confusion
can arise we will delete the subscript C in MaxCA and BMaxCA. These sets can be
found e.g. in [10–12] for the case where C is a convex cone. Namely, if

C = c, (1)

where c ⊂ Y is a closed convex cone, then MaxA is called [10, 12] the set of efficient
points of A. If

C = {0} ∪ int c, (2)

where c is a convex cone with ∅ �= int c (the interior c) and Y �= c, then MaxA is
called [10, 12] the set of weakly efficient points of A. So, our above definition of
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MaxA includes as special cases the known notions of the sets of efficient and weakly
efficient points of A.

If C is a convex cone, then BMax A corresponds [11, 12] to the set of all the Ben-
son properly efficient points of A. In vector optimization, several notions of proper
efficiencies were introduced. The reader is referred to [13] (see also [12]) for a com-
prehensive survey where all these notions and links between them can be found. The
following lemma will be used later.

Lemma 2.1

(i) BMax A ⊂ Max A.
(ii) If Q ⊂ A is a subset such that MaxA ⊂ Q − C (resp. BMax A ⊂ Q − C) then

MaxA ⊂ Q (resp. BMax A ⊂ Q).

Proof (i) If a ∈ BMax A then [A − a] ∩ C0 = ∅ (i.e., a ∈ MaxA) since

[A − a] ∩ C = [A − a − 0] ∩ C ⊂ [A − a − C] ∩ C = {0}.
(ii) If MaxA = ∅ (resp. BMax A = ∅) then the required conclusion is obvious.

In case MaxA �= ∅ (resp. BMax A �= ∅) we must show that a ∈ MaxA (resp. a ∈
BMax A) =⇒ a ∈ Q. By assumption we can find q ∈ Q such that a ∈ q − C, i.e.,
q − a ∈ C. On the other hand, q − a /∈ C0 since q ∈ A and a ∈ MaxA. Therefore
a = q ∈ Q. �

Let X be an arbitrary set and U be a (nonempty) family of single-valued maps
u : X −→ Y . Thus, for each u ∈ U and x ∈ X,u(x) is an element of Y . As an example
of U we can take the set L(X,Y ) of linear continuous maps from X into Y where X

is assumed to be a topological vector space. Sometimes we write 〈u,x〉 instead of
u(x) if u ∈ U = L(X,Y ).

For each set-valued map F : X −→ 2Y and each map u ∈ U , let us set

A(u,F ) = {u(x) − F(x) : x ∈ dom F },
where dom F = {x ∈ X : F(x) �= ∅}.

For each set-valued map F : U −→ 2Y and each point x ∈ X, let us set

A∗(x,F) = {u(x) −F(u) : u ∈ dom F},
where dom F = {u ∈ U :F(u) �= ∅}.
Remark 2.1 It is obvious that

y ∈ F(x) =⇒ u(x) − y ∈ A(u,F ), ∀u ∈ U, (3)

v ∈F(u) =⇒ u(x) − v ∈ A∗(x,F), ∀x ∈ X. (4)

Definition 2.1 The set-valued map F ∗ : U −→ 2Y defined by

F ∗(u) = Max A(u,F ) = {v ∈ A(u,F ) : [A(u,F ) − v] ∩ C0 = ∅} (5)

is called the Fenchel conjugate map of F .
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If U = L(X,Y ) and if C is of the form (1) (resp. (2)), then F ∗ is exactly the
Fenchel transform (resp. weak Fenchel transform) of F (see [10, 12]).

Let F : X −→ 2Y and G : X −→ 2U be set-valued maps. Let F ∗ be the Fenchel
conjugate map of F . In this section we consider the following problem:

Problem (p): Find x0 ∈ dom F , y0 ∈ F(x0) and u0 ∈ G(x0) such that

{A(u0,F ) − [u0(x0) − y0]} ∩ C0 = ∅. (6)

Let F(·) = {f (·)} and G(·) = {−g(·)} where f : X −→ Y and g : X −→ U =
L(X,Y ) are single-valued maps. Then, Problem (P) is to find a point x0 ∈ X with

−〈g(x0), x − x0〉 + f (x0) − f (x) /∈ C0, ∀x ∈ X.

(As we have remarked above, 〈g(x0), x〉 is the evaluation of g(x0) ∈ L(X,Y ) at x ∈
X.) We will refer to this problem as Problem (p) which was considered in [8–10]
under the assumption (1) or (2).

Denote by g−1 the inverse map of g,

g−1(u) = {x ∈ X : g(x) = u}, u ∈ U = L(X,Y ).

Obviously, dom g−1 = im g := ⋃
x∈X g(x). Observe that, for each u ∈ dom g−1,

g−1(u) is a singleton if g is one-to-one (injective). Let us consider the following
dual problem where g is assumed to be one-to-one:

Problem (d): Find u0 ∈ −im g such that, for all u ∈ U = L(X,Y ),

[〈u − u0, g
−1(−u0)〉 + f ∗(u0) − f ∗(u)] ∩ C0 = ∅. (7)

The links between the solution sets of the primal Problem (p) and the dual Prob-
lem (d) are given in Theorems 9.3.1 and 9.3.2 of [10] (see also [8, 9]). The first part
of these theorems can be formulated as follows.

Theorem 2.1 Assume that X = R
n (the n-dimensional Euclidean space), Y = R

p,

g : X −→ U = L(X,Y ) is injective and f : X −→ Y is continuous.

(i) Let C be of the form (1) and let f ∗(u) �= ∅ for all u ∈ L(Rn,R
p). If x0 is a

solution of Problem (p) then u0 = −g(x0) is a solution of Problem (d).
(ii) Let C be of the form (2) and let f ∗(u) �= ∅ for all u ∈ L(Rn,R

p). If x0 is a
solution of Problem (p) then u0 = −g(x0) is a solution of Problem (d).

This theorem is incorrect. Before giving Examples 2.1 and 2.2 proving this con-
clusion let us note that, for X = R := R

1 and Y = R
2, each map u ∈ L(X,Y ) can be

identified with a 2 × 1 matrix, i.e.,

u =
[
u1
u2

]

, (8)

where ui ∈ R, i = 1,2, are some real numbers.
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Example 2.1 Consider Problems (p) and (d), where X = R, Y = R
2, U = L(R,R

2),

and C is defined by (1) with c = cone{(1,1)} ⊂ R
2. Assume that the injective map

g : R −→ L(R,R
2) and the continuous map f : R −→ R

2 are given by

g(x) =
[

0
x

]

, x ∈ R,

f (x) =
{

(x, x) ∈ R
2, if x ≥ 0,

(−x, x) ∈ R
2, if x < 0.

For each u ∈ L(R,R
2) defined by (8), we have

〈u,x〉 − f (x) =
{

x(u1 − 1, u2 − 1) ∈ R
2, if x ≥ 0,

−x(−u1 − 1,−u2 + 1) ∈ R
2, if x < 0,

A(u,f ) = {〈u,x〉 − f (x) : x ∈ R}
= cone{(u1 − 1, u2 − 1), (−u1 − 1,−u2 + 1)}. (9)

Since C = c = cone{(1,1)} ⊂ R
2, we have

C0 = C \ {0} = cone{(1,1)} \ {(0,0)} ⊂ R
2. (10)

We now prove that, for C0 being defined by (10), f ∗(u) �= ∅ for all u ∈ L(R,R
2).

Indeed, let u ∈ L(R,R
2) be defined by (8). If u2 = 1, then by (9)

A(u,f ) = cone{(u1 − 1,0), (−u1 − 1,0)}. (11)

Since C0 is given by (10), we can check from (11) that

f ∗(u) = cone{(u1 − 1,0), (−u1 − 1,0)} �= ∅. (12)

If u2 �= 1 then (u1 − 1, u2 − 1) and (−u1 − 1,−u2 + 1) are linearly independent
vectors of R

2. Using this fact and recalling that A(u,f ) and C0 are defined by (9)
and (10) we can see that f ∗(u) �= ∅. We have thus showed that f ∗(u) �= ∅ for all
u ∈ L(R,R

2).
We now claim that the conclusion of Part (i) of Theorem 2.1 is incorrect. Indeed,

setting x0 = 0 ∈ X = R, we see that x0 is a solution of Problem (p). However, u0 =
−g(x0) = −[ 0

0

] ∈ − img is not a solution of Problem (d). This is because (7) cannot

be satisfied for u = ũ := [ 0
1

]
. Indeed, from (12) with u = ũ and u = u0 we have

f ∗(̃u) = cone{(−1,0)} and f ∗(u0) = cone{(−1,1)}. Since g−1(−u0) = 0, (−1,1) ∈
f ∗(u0) and (−2,0) ∈ f ∗(̃u), we get

(1,1) = (0,0) + (−1,1) − (−2,0) ∈ 〈̃u − u0, g
−1(−u0)〉 + f ∗(u0) − f ∗(̃u).

Observe now by (10) that (1,1) ∈ C0. Therefore, condition (7) is violated for u = ũ.
The conclusion of Part (i) of Theorem 2.1 is thus incorrect.
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Example 2.2 Consider Problems (p) and (d), where X = R, Y = R
2, U = L(R,R

2)

and C is defined by (2) with c = int R
2+ (the interior of the nonnegative orthant R

2+ of
R

2). Assume that the injective map g : R −→ L(R,R
2) is as in Example 2.1, and that

the continuous map f : R −→ R
2 is given by f (x) = (x, x2) ∈ R

2, x ∈ R. Observe
from (2) with c = int R

2+ that C0 = int R
2+. For each u ∈ L(R,R

2) defined by (8) and
for each x ∈ X = R, we have

〈u,x〉 − f (x) = (u1x − x,u2x − x2) ∈ R
2, (13a)

A(u,f ) =
⋃

x∈R

{(ξ, η) ∈ R
2 : ξ = u1x − x,η = u2x − x2}. (13b)

Since C0 = int R
2+ we can prove that f ∗(u) �= ∅ for all u ∈ L(R,R

2). Indeed, let
u ∈ L(R,R

2) be defined by (8). If u1 = 1, then from (13)

A(u,f ) =
⋃

x∈R

{(ξ, η) ∈ R
2 : ξ = 0, η = u2x − x2}

= {(0, η) ∈ R
2 : η ∈] − ∞, u2

2/4]}.
Since C0 = int R

2+ we can verify that

f ∗(u) = A(u,f ) = {(0, η) ∈ R
2 : η ∈] − ∞, u2

2/4]},
which is obviously a nonempty set.

If u1 �= 1, i.e., u1 − 1 �= 0 then from ξ = u1x − x and η = u2x − x2, we obtain
η = aξ2 + bξ, where a = −1/(u1 − 1)2 < 0 and b = u2/(u1 − 1). Therefore, from
(13) A(u,f ) can be rewritten as A(u,f ) = {(ξ, η) ∈ R

2 : η = aξ2 + bξ}. Since the
function η = aξ2 + bξ of the variable ξ ∈ R is decreasing for ξ ≥ −b/2a, and is
increasing for ξ < −b/2a, and since C0 = int R

2+ we can verify that

f ∗(u) = {(ξ, η) ∈ R
2 : η = aξ2 + bξ, ξ ≥ −b/2a} �= ∅. (14)

We have thus showed that f ∗(u) �= ∅ for all u ∈ L(R,R
2).

We now claim that the conclusion of Part (ii) of Theorem 2.1 is incorrect. In-
deed, setting x0 = 0 ∈ X = R, we see that x0 is a solution of Problem (p). However,
u0 = −g(x0) ∈ − img is not a solution of Problem (d). This is because (7) cannot
be satisfied for u = ũ := [ 0

2

]
. Indeed, from (14), with u = ũ and u = u0 we have

(1/2,−5/4) ∈ f ∗(̃u) and (1,−1) ∈ f ∗(u0). Since g−1(−u0) = 0, we get

(1/2,1/4) = (0,0) + (1,−1) − (1/2,−5/4)

∈ 〈̃u − u0, g
−1(−u0)〉 + f ∗(u0) − f ∗(̃u).

But (1/2,1/4) ∈ int R
2+ = C0. Therefore, condition (7) is violated for u = ũ. The

conclusion of Part (ii) of Theorem 2.1 is thus incorrect.

The above counterexamples prove that, to obtain a result similar to that of The-
orem 2.1, we must use dual problems which are different from those of [8–10].
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Namely, in this section we will consider the following Problem (D) called the dual
problem of Problem (P):

Problem (D). Find u0 ∈ dom F ∗, v0 ∈ F ∗(u0) and x0 ∈ G−1(u0) such that

{A∗(x0,F
∗) − [u0(x0) − v0]} ∩ C0 = ∅, (15)

where G−1(u) = {x ∈ X : u ∈ G(x)}.
When applying to the case of Problem (p), the dual Problem (D) is the problem of

finding u0 ∈ −im g and v0 ∈ f ∗(u0) such that

[〈u − u0, g
−1(−u0)〉 + v0 − f ∗(u)] ∩ C0 = ∅, ∀u ∈ domf ∗.

Before going further, let us introduce some definitions. A triplet (x0, y0, u0) (resp.
(u0, v0, x0)) which satisfies all the requirements formulated in Problem (P) (resp.
Problem (D)) is called a solution of Problem (P) (resp. Problem (D)). If (x0, y0, u0)

(resp. (u0, v0, x0)) is a solution of Problem (P) (resp. Problem (D)), then by (6) [resp.
(15)],

u0(x0) − y0 ∈ MaxA(u0,F ),

[resp. u0(x0) − v0 ∈ MaxA∗(x0,F
∗)].

Thus, the definition of solutions of Problems (P) and (D) is introduced via the notion
of MaxA (A = A(u0,F ) or A = A∗(x0,F

∗)) which, as we have seen above, coin-
cides with the notion of efficiency or weak efficiency in vector optimization [10, 12]
if C is of the form (1) or (2). The notion of MaxA is also used in the definition of
the Fenchel conjugate map F ∗ which appears in Problem (D). In the next section we
will consider Problems (PB ) and (DB ) whose solutions are defined via the notion of
BMax A instead of MaxA.

We denote by sol(P) (resp. sol(D)) the set of all the solutions of Problem (P) (resp.
Problem (D)). Before giving a link between sol(P) and sol(D), let us introduce the
following notion.

Definition 2.2 The set-valued map F ∗∗ : X −→ 2Y defined by

F ∗∗(x) = Max A∗(x,F ∗) = {y ∈ A∗(x,F ∗) : [A∗(x,F ∗) − y] ∩ C0 = ∅}
is called the Fenchel biconjugate map of F .

Theorem 2.2

(i) If (x0, y0, u0) ∈ sol(P), then

y0 ∈ F ∗∗(x0), (16)

and there exists a point v0 ∈ F ∗(u0) such that

v0 = u0(x0) − y0 (17)

and (u0, v0, x0) ∈ sol(D).
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(ii) If (u0, v0, x0) ∈ sol(D) and if

F ∗∗(x0) ⊂ F(x0), (18)

then there exists a point y0 ∈ F(x0) such that

y0 = u0(x0) − v0 (19)

and (x0, y0, u0) ∈ sol(P).

Proof (i) Let (x0, y0, u0) ∈ sol(P) and let v0 be defined by (17). Using (3) with
(x, y,u) = (x0, y0, u0) we obtain v0 ∈ A(u0,F ). Together with (6), this yields
v0 ∈ F ∗(u0). From (4) with (u, v, x) = (u0, v0, x0) and F = F ∗, it follows that
u0(x0) − v0 ∈ A∗(x0,F

∗). By (17), this means that

y0 ∈ A∗(x0,F
∗). (20)

To prove that (u0, v0, x0) ∈ sol(D), since u0 ∈ dom F ∗, v0 ∈ F ∗(u0) and x0 ∈
G−1(u0), it remains to show that

y ∈ A∗(x0,F
∗) =⇒ y − [u0(x0) − v0] /∈ C0. (21)

Indeed, let y ∈ A∗(x0,F
∗) and let u ∈ dom F ∗ and v ∈ F ∗(u) be such that

y = u(x0) − v. (22)

By the very definition of F ∗(u), we obtain

[A(u,F ) − v] ∩ C0 = ∅. (23)

Using (3) with (x, y) = (x0, y0), we get u(x0) − y0 ∈ A(u,F ). Hence, by (23),

u(x0) − y0 − v /∈ C0. (24)

Taking (17) and (22) into account, we obtain from (24)

y − [u(x0) − v0] /∈ C0.

Thus, the implication (21) is established, as desired.
Since (u0, v0, x0) ∈ sol(D), we get from (15) and (17)

[A∗(x0,F
∗) − y0] ∩ C0 = ∅.

Together with (20), this yields (16), as required.
(ii) Let (u0, v0, x0) ∈ sol(D). Defining y0 by (19) we see from (4) with F = F ∗

that (20) holds. On the other hand, (15) and (19) yield

[A∗(x0,F
∗) − y0] ∩ C0 = ∅.
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Therefore, by the very definition of F ∗∗(x0) we get y0 ∈ F ∗∗(x0). Together with (18),
this yields y0 ∈ F(x0). In addition, since (u0, v0, x0) ∈ sol(D), we have v0 ∈ F ∗(u0),
which implies that

[A(u0,F ) − v0] ∩ C0 = ∅,

i.e., (6) holds since v0 = u0(x0) − y0. Thus, (x0, y0, u0) ∈ sol(P), as desired. �

We now give some sufficient conditions for the validity of (18).

Proposition 2.1 Condition (18) holds if

A∗(x0,F
∗) ⊂ [F(x0) ∩ A∗(x0,F

∗)] − C. (25)

Proof Since F ∗∗(x0) = MaxA∗(x0,F
∗) ⊂ A∗(x0,F

∗), we derive from (25) that
MaxA∗(x0,F

∗) ⊂ Q − C, where

Q = F(x0) ∩ A∗(x0,F
∗) ⊂ A∗(x0,F

∗). (26)

Applying Lemma 2.1 with A∗(x0,F
∗) in place of A, we obtain

F ∗∗(x0) = MaxA∗(x0,F
∗) ⊂ Q ⊂ F(x0). �

Proposition 2.2 Condition (18) holds if C ∪ −C = Y and if

F(x0) ∩ A∗(x0,F
∗) �= ∅. (27)

Proof By Proposition 2.1 it is enough to show that (25) holds. Indeed, assume to
the contrary that there exists a point y ∈ A∗(x0,F

∗) such that y /∈ Q − C where
Q is defined by (26). This implies that y /∈ y0 − C where y0 is an arbitrary point
belonging to the left side of (27). Since y − y0 /∈ −C and since C ∪ −C = Y we get
y − y0 ∈ C0. From y ∈ A∗(x0,F

∗) it follows that there exist u ∈ U and v ∈ F ∗(u)

such that y = u(x0) − v. Observing that y − y0 = u(x0) − y0 − v and y − y0 ∈ C0,
we conclude that

u(x0) − y0 − v ∈ C0. (28)

On the other hand, since u(x0) − y0 ∈ A(u,F ) and since v ∈ F ∗(u), we must have
u(x0) − y0 − v /∈ C0, a contradiction to (28). Thus, (25) holds, as required. �

The following result is derived from Theorem 2.2 and Proposition 2.2.

Theorem 2.3

(i) If (x0, y0, u0) ∈ sol(P) then (27) holds and there exists a point v0 ∈ F ∗(u0) such
that (17) is satisfied and (u0, v0, x0) ∈ sol(D).

(ii) Let C ∪ −C = Y . If (u0, v0, x0) ∈ sol(D) and if (27) holds then there exists a
point y0 ∈ F(x0) such that (19) is satisfied and (x0, y0, u0) ∈ sol(P).
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Proof

(i) By Theorem 2.2, all we have to prove is the validity of (27). Since (16) holds,
we obtain immediately from the very definition of F ∗∗(x0) that y0 ∈ A∗(x0,F

∗).
This proves (27) since y0 ∈ F(x0).

(ii) Apply Theorem 2.2 and Proposition 2.2. �

Let us observe that condition C ∪−C = Y in Theorem 2.3 is a strong assumption.
We now give examples proving that Theorem 2.2 can be applied without assuming
that C ∪ −C = Y .

Example 2.3 Consider Problems (P) and (D) where X = R, Y = R
2, U = L(R,R

2),

C = R
2+ ⊂ R

2, C0 = C \ {(0,0)}. Then obviously, C ∪ −C �= Y = R
2. Assume that

G : R −→ L(R,R
2) and F : R −→ 2R

2
are given by

G(x) =
[

0
x

]

,

F (x) = (x, x2) + {0} × R+ ⊂ R
2, x ∈ R.

To compute F ∗(u) with u ∈ L(R,R
2) defined by (8), observe that

〈u,x〉 − F(x) =
⋃

λ≥0

{(ξ, η − λ)},

where ξ = u1x − x, η = u2x − x2. If u1 = 1, then

A(u,F ) = {(0, η) ∈ R
2 : η ∈] − ∞, u2

2/4]},
and hence,

F ∗(u) = {(0, u2
2/4)} �= ∅. (29)

If u1 �= 1, i.e., u1 − 1 �= 0, then since ξ = u1x − x and η = u2x − x2, we obtain
η = aξ2 + bξ, where a = −1/(u1 − 1)2 < 0, b = u2/(u1 − 1). Thus,

A(u,F ) =
⋃

λ≥0

{(ξ, η − λ) ∈ R
2 : η = aξ2 + bξ},

and hence,

F ∗(u) = {(ξ, η) ∈ R
2 : η = aξ2 + bξ, ξ ≥ −b/2a} �= ∅. (30)

Now, setting x0 = 0 ∈ X = R, and observing that dom F ∗ = L(R,R
2), we have

A∗(x0,F
∗) = {〈u,x0〉 − F ∗(u) : u ∈ dom F ∗} =

⋃

u∈L(R,R2)

(−F ∗(u)). (31)

Using (31), where F ∗(u) is defined by (29) for u1 = 1 and by (30) for u1 �= 1, we
can conclude by a simple computation that A∗(x0,F

∗) = R
2 \ C0. Since C0 = R

2+ \
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{(0,0)} ⊂ R
2, this implies that

F ∗∗(x0) = Max A∗(x0,F
∗) = {(0,0)} ⊂ F(x0).

Therefore, (18) holds. Since (u0, v0, x0) ∈ sol(D) where u0 = [ 0
0

]
, v0 = (0,0) ∈ Y =

R
2 and x0 = 0 ∈ X = R, Theorem 2.2 can be applied.

Example 2.4 Consider Problems (P) and (D) where X,Y,U,G and F are as in Ex-
ample 2.3. Assume now that C = {(0,0)} ∪ int R

2+ ⊂ R
2. Then obviously, C ∪−C �=

Y = R
2. Let u ∈ L(R,R

2) be defined by (8). Then, we can check that F ∗(u) is given
by (30) if u1 �= 1. In the case u1 = 1, we have

F ∗(u) = {0}× ]−∞, u2
2/4] �= ∅. (32)

Now, setting x0 = 0 ∈ X = R and making use of (30) and (32), we can conclude by a
simple computation that A∗(x0,F

∗) = (R2 \R
2+)∪ ({0}×R+). Since C0 = int R

2+ ⊂
R

2, this implies that

F ∗∗(x0) = Max A∗(x0,F
∗) = {0} × R+ = F(x0).

Therefore, (18) holds and Theorem 2.2 can be applied, with u0, v0, x0 being as in
Example 2.3.

3 Duality in Generalized Vector Variational Inequalities with Proper
Conjugate Maps

In this section, we will introduce a generalized version of primal and dual vec-
tor variational inequality problems whose solutions are introduced via the notion of
proper efficiency of Benson (see [11, 12]). Observe that in the literature several def-
initions of proper efficiency were proposed. The reader is referred to [13] for a com-
prehensive survey where all these definitions and links between them can be found.
Let C,F,G and U be as in the previous section.

Definition 3.1

(i) The set-valued map F ∗
B : U −→ 2Y defined by

F ∗
B(u) = BMax A(u,F )

:= {v ∈ A(u,F ) : cl cone[A(u,F ) − v − C] ∩ C = {0}} (33)

is called the Benson conjugate map of F .
(ii) The set-valued map F ∗∗

B : X −→ 2Y defined by

F ∗∗
B (x) = BMax A∗(x,F ∗

B)

:= {y ∈ A∗(x,F ∗
B) : cl cone[A∗(x,F ∗

B) − y − C] ∩ C = {0}} (34)

is called the Benson biconjugate map of F .
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In this section, we are interested in the following two problems:
Problem (PB). Find x0 ∈ dom F , y0 ∈ F(x0) and u0 ∈ G(x0) such that

cl cone{A(u0,F ) − [u0(x0) − y0] − C} ∩ C = {0}. (35)

Problem (DB): Find u0 ∈ dom F ∗
B, v0 ∈ F ∗

B(u0) and x0 ∈ G−1(u0) such that

cl cone{A∗(x0,F
∗
B) − [u0(x0) − v0] − C} ∩ C = {0}. (36)

A triplet (x0, y0, u0) (resp. (u0, v0, x0)) which satisfies all the requirements for-
mulated in Problem (PB) (resp. Problem (DB)) is called a solution of Problem (PB)
(resp. Problem (DB)). If (x0, y0, u0) (resp. (u0, v0, x0)) is a solution of Problem (PB)
(resp. Problem (DB)), then

u0(x0) − y0 ∈ BMax A(u0,F ),

(resp. u0(x0) − v0 ∈ BMax A∗(x0,F
∗
B)).

Thus, the notion of solutions of Problems (PB) and (DB) is introduced via the concept
of BMax A (A = A(u0,F ) or A = A∗(x0,F

∗
B)) which corresponds to the Benson

proper efficiency in vector optimization (see [11, 12]). This notion is also used in the
definition of F ∗

B which appears in Problem (DB).
Let us denote by sol(PB) (resp. sol(DB)) the set of all the solutions of Problem

(PB) (resp. Problem (DB)). From Lemma 2.1 it is clear that sol(PB)⊂ sol(P). The
following result gives a link between sol(PB) and sol(DB).

Theorem 3.1

(i) If (x0, y0, u0) ∈ sol(PB) and if

y0 ∈ F ∗∗
B (x0), (37)

then there exists a point v0 ∈ F ∗
B(u0) such that (17) is satisfied and (u0, v0, x0) ∈

sol(DB).
(ii) If (u0, v0, x0) ∈ sol(DB) and if

F ∗∗
B (x0) ⊂ F(x0), (38)

then there exists a point y0 ∈ F(x0) such that (19) is satisfied and (x0, y0, u0) ∈
sol(PB).

Proof

(i) Let (x0, y0, u0) ∈ sol(PB). By (37), we have

y0 ∈ A∗(x0,F
∗
B), (39)

cl cone[A∗(x0,F
∗
B) − y0 − C] ∩ C = {0}. (40)

Now, defining v0 by (17) and observing that v0 ∈ A(u0,F ), we conclude from
(35) that v0 ∈ F ∗

B(u0). Since x0 ∈ G−1(u0) and since (36) is exactly condition
(40) with y0 = u0(x0) − v0 we see that (u0, v0, x0) ∈ sol(DB).
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(ii) Let (u0, v0, x0) ∈ sol(DB). Defining y0 by (19) and observing that v0 ∈ F ∗
B(u0)

we obtain (39). Together with (36) and (19), this proves that y0 ∈ F ∗∗
B (x0), i.e.,

y0 ∈ F(x0) (see (38)). Now, from u0(x0)− y0 = v0 ∈ F ∗
B(u0) and from (33) with

u = u0 it follows that (35) holds. Therefore, (x0, y0, u0) ∈ sol(PB), as desired. �

Remark 3.1 Condition (37) is introduced in [7] when F is single-valued and the
biconjugate map is defined via the set of weakly efficient points.

We now consider some sufficient conditions for the validity of (38). We delete the
detailed proof of the following Propositions 3.1 and 3.2 since it is quite similar to that
of Propositions 2.1 and 2.2. Observe that the assumptions of Proposition 3.2 assure
the validity of condition (4.1) below.

Proposition 3.1 Condition (38) holds if

A∗(x0,F
∗
B) ⊂ [F(x0) ∩ A∗(x0,F

∗
B)] − C. (41)

Proposition 3.2 Condition (38) holds if C ∪ −C = Y and if

F(x0) ∩ A∗(x0,F
∗
B) �= ∅. (42)

Theorem 3.2

(i) If (x0, y0, u0) ∈ sol(PB) and if (37) holds then (42) holds and there exists a point
v0 ∈ F ∗

B(u0) such that (17) is satisfied and (u0, v0, x0) ∈ sol(DB).
(ii) Let C ∪ −C = Y . If (u0, v0, x0) ∈ sol(DB) and if (42) holds then there exists a

point y0 ∈ F(x0) such that (19) is satisfied and (x0, y0, u0) ∈ sol(PB).

Proof

(i) We have seen in the proof of Theorem 3.1 that condition (37) implies that (39)
holds and (u0, v0, x0) ∈ sol(DB). To complete of our proof it remains to observe
from (39) and condition y0 ∈ F(x0) that (42) is satisfied.

(ii) Apply Theorem 3.1 and Proposition 3.2.
�

Example 3.1 Consider Problems (PB) and (DB), where X = R, Y = R
2, U =

L(R,R
2), C = R

2+ ⊂ R
2, and C0 = C \{(0,0)}. Then, obviously, C∪−C �= Y = R

2.

Assume that G : R −→ L(R,R
2) and F : R −→ 2R

2
are given by

G(x) =
[

0
x

]

,

F (x) =

⎧
⎪⎨

⎪⎩

[(0,0), (0,1)], if x = 0,

](x, x), (x,1)[, if x ∈ ]0,1[,
∅, if x /∈ [0,1[,

for all x ∈ R.
To compute F ∗

B(u) with u ∈ L(R,R
2) defined by (8), observe that
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A(u,F ) = {〈u,x〉 − F(x) : x ∈ [0,1[}

=
⎧
⎨

⎩

⋃

x∈]0,1[
](u1x − x,u2x − x), (u1x − x,u2x − 1)[

⎫
⎬

⎭
∪ [(0,−1), (0,0)].

If u1 = 1, then

A(u,F ) =
⎧
⎨

⎩

⋃

x∈]0,1[
](0, u2x − x), (0, u2x − 1)[

⎫
⎬

⎭
∪ [(0,−1), (0,0)]

=

⎧
⎪⎨

⎪⎩

[(0,−1), (0, u2 − 1)[, if u2 > 1,

[(0,−1), (0,0)], if u2 ∈ [0,1],
](0, u2 − 1), (0,0)], if u2 < 0,

and hence,

F ∗
B(u) =

{
{(0,0)}, if u1 = 1, u2 ≤ 1,

∅, if u1 = 1, u2 > 1.

If u1 �= 1, then we obtain

A(u,F ) = co{(0,−1), (0,0), (u1 − 1, u2 − 1)}
\ (](0,−1), (u1 − 1, u2 − 1)]∪](0,0), (u1 − 1, u2 − 1)]),

and hence,

F ∗
B(u) =

{
{(0,0)}, if u1 < 1 or u2 < 1,

∅, if u1 > 1, u2 ≥ 1.

Here, co denotes the convex hull. Now, setting x0 = 0 and observing that

domF ∗
B = {u ∈ L(R,R

2) : u1 = u2 = 1 or u1 < 1 or u2 < 1},
we have

A∗(x0,F
∗
B) = {〈u,x0〉 − F ∗

B(u) : u ∈ domF ∗
B} =

⋃

u∈domF ∗
B

(−F ∗(u)) = {(0,0)}.

This implies that

F ∗∗
B (x0) = Max A∗(x0,F

∗
B) = {(0,0)} ⊂ F(x0).

Therefore, (38) holds. Since (u0, v0, x0) ∈ sol(DB), where u0 = [ 0
0

]
, v0 = (0,0) ∈

Y = R
2 and x0 = 0 ∈ X = R, Theorem 3.1 can be applied.
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We will give a sufficient condition for the validity of condition (38) via a notion
of subdifferentiability of F and the graph of F, denoted by gr F ,

grF = {(x, y) ∈ X × Y : y ∈ F(x)}.

Definition 3.2 Let x ∈ domF . The set-valued map F is called Benson properly sub-
differentiable at (x, y) ∈ grF if there exists a map u ∈ U such that u(x)− y ∈ F ∗

B(u).
If this property holds for each y ∈ F(x) then the set-valued map F is called Benson
properly subdifferentiable at x.

Proposition 3.3 Let F be Benson properly subdifferentiable at x0 ∈ domF . Then,
(38) holds if

F(x0) ⊃ {y ∈ Y : cl cone[F(x0) − y − C] ∩ C ∩ cl cone[y − F(x0) − C] = {0}}.

Proof Observe that

y ∈ A∗(x0,F
∗
B) =⇒ ∃u ∈ U : [u(x0) − y] ∈ F ∗

B(u)

=⇒ cl cone[A(u,F ) − [u(x0) − y] − C] ∩ C = {0}
=⇒ cl cone[u(x0) − F(x0) − [u(x0) − y] − C] ∩ C = {0}
=⇒ cl cone[y − F(x0) − C] ∩ C = {0}.

On the other hand, by the Benson proper subdifferentiability of F at x0,

y0 ∈ F(x0) =⇒ [∃u ∈ U : y0 ∈ u(x0) − F ∗
B(u)] =⇒ y0 ∈ A∗(x0,F

∗
B).

This implies that F(x0) ⊂ A∗(x0,F
∗
B). Therefore, for each y ∈ Y ,

cl cone[A∗(x0,F
∗
B) − y − C] ∩ C = {0} =⇒ cl cone[F(x0) − y − C] ∩ C = {0}.

From the above discussion, we obtain (38) since

y ∈ F ∗∗
B (x0) ⇐⇒ [y ∈ A∗(x0,F

∗
B); cl cone[A∗(x0,F

∗
B) − y − C] ∩ C = {0}]

=⇒ cl cone[y − F(x0) − C] ∩ C ∩ cl cone[F(x0) − y − C] = {0}
=⇒ y ∈ F(x0).

This proves that F ∗∗
B (x0) ⊂ F(x0), as desired. �

Corollary 3.1 Let F be Benson properly subdifferentiable at x0 ∈ domF . Then, (38)
holds if

F(x0) ⊃ {y ∈ Y : [F(x0) − y] ∩ C0 ∩ −C0 = ∅}.

In Proposition 3.3 it is required that F is Benson properly subdifferentiable at x0.
We will give a sufficient condition for this property of F . In the rest of this paper
we will assume that X and Y are locally convex spaces, C is a convex cone of Y
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and U = L(X,Y ). We denote by 0X and 0Y the origin of X and Y, respectively. We
first give a necessary condition for the Benson proper subdifferentiability of F at
(x0, y0) ∈ grF .

Proposition 3.4 Let C = {0X} × C ⊂ X × Y . If F is Benson properly subdifferen-
tiable at (x0, y0) ∈ grF , then

cone[(x0, y0) − grF − C] ∩ C = {(0X,0Y )}. (43)

Proof We first observe from the proof of Proposition 3.3 that the Benson proper
subdifferentiability of F at (x0, y0) ∈ grF implies that

cl cone[F(x0) − y0 − C] ∩ C = {0Y }. (44)

Now, assume to the contrary that (43) is not satisfied. Then, there exist λ > 0, (x, y) ∈
grF, c′ ∈ C and c′′ ∈ C \ {0} such that

λ[(x0, y0) − (x, y) − (0X, c′)] = {0X, c′′)},
i.e., x = x0 and

λ(y0 − y − c′) = c′′ ∈ C \ {0Y }. (45)

Since x = x0 and (x, y) ∈ grF, it is clear that y ∈ F(x0). Hence, condition (45)
conflicts to (44) and Proposition 3.4 is thus established. �

We will prove in Proposition 3.5 that a condition stronger than (43) is sufficient
for the Benson proper subdifferentiability of F at (x0, y0). We will need a notion of
a base of a cone. A subset � of a convex cone C ⊂ Y is called a base of C if �

is convex, 0 /∈ cl� and cone� = C. Obviously, if C has a base then C is pointed,
i.e., C ∩ −C = {0Y }. The following lemma plays a key role in the proof of Proposi-
tion 3.5.

Lemma 3.1 Let X and Y be locally convex spaces and let C ⊂ Y be a convex cone
with compact base. Let U = L(X,Y ) and C = {0X} × C. If for x0 ∈ int domF and
y0 ∈ F(x0), there exists a closed convex cone K ⊂ X × Y such that

(x0, y0) − grF ⊂ K, (46)

K ∩ C = {(0X,0Y )}, (47)

then F is Benson properly subdifferentiable at (x0, y0), i.e., there exists u ∈ U =
L(X,Y ) such that u(x0) − y0 ∈ F ∗

B(u).

Proof Since K is a closed convex cone and since C is a convex cone with compact
base, we derive from (47) and Theorem 2.3 of [14] that there exists a pointed convex
cone D ⊂ X × Y such that
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K ∩ D = {(0X,0Y )}, (48)

C \ {(0X,0Y )} ⊂ int D. (49)

Since C = {0X} × C where C is a convex cone with compact base, it follows from
(49) that there exists a convex cone Ĉ ⊂ Y with 0Y ∈ Ĉ, int Ĉ �= ∅ and

{0X} × C \ {(0X,0Y )} ⊂ {0X} × int Ĉ ⊂ int D. (50)

Now, observing from (48) that K ∩ int D = ∅, we can derive by a separation theorem
that there exists a nonzero element (x∗, y∗) ∈ X∗ × Y ∗ such that

〈x∗, x〉 + 〈y∗, y〉 ≤ 〈x∗, d1〉 + 〈y∗, d2〉
for all (x, y) ∈ K and (d1, d2) ∈ int D where X∗ (resp. Y ∗) denotes the space of
linear continuous functionals defined on X (resp. Y ). Combining this with (46) and
(50), and taking account of the continuity of y∗, we obtain

〈x∗, x − x0〉 + 〈y∗, y − y0〉 ≤ 〈y∗, ĉ〉, (51)

for all (x, y) ∈ grF and ĉ ∈ Ĉ. Setting (x, y) = (x0, y0) in (51) we get 〈y∗, ĉ〉 ≥ 0
for all ĉ ∈ Ĉ, i.e., y∗ ∈ Ĉ+ (the set of linear continuous functionals y∗ ∈ Y ∗ which
are nonnegative on Ĉ). In view of (50) C ⊂ Ĉ and hence, y∗ ∈ C+. Now, observe
from (51) that y∗ �= 0Y ∗ . Indeed, otherwise we get 〈x∗, x − x0〉 ≤ 0, ∀x ∈ domF,

which implies that x∗ = 0X∗ since x0 ∈ int domF . This contradicts the nontriviality
of (x∗, y∗). Thus, y∗ ∈ C+ \ {0Y ∗} and hence, there exists c0 ∈ C with 〈y∗, c0〉 = 1.
Setting u(x) = −〈x∗, x〉c0, for each x ∈ X, we see that u ∈ L(X,Y ) and 〈y∗, u(x)〉 =
−〈x∗, x〉, ∀x ∈ X. Therefore, by (51),

λ〈y∗, u(x) − y − u(x0) + y0 − c〉 ≤ 0, ∀(x, y) ∈ grF, c ∈ Ĉ, λ ≥ 0.

Since y∗ ∈ Ĉ+ \ {0Y ∗}, this proves that

λ(u(x) − y − [u(x0) − y0] − c) /∈ int Ĉ, ∀(x, y) ∈ grF, c ∈ Ĉ, λ ≥ 0.

Therefore,

cl cone[A(u,F ) − [u(x0) − y0] − Ĉ) ∩ int Ĉ = ∅.

This implies that

cl cone[A(u,F ) − [u(x0) − y0] − C) ∩ C = {0}

since by (50) C \ {0Y } ⊂ int Ĉ. Therefore, u(x0) − y0 ∈ F ∗
B(u), as desired. �

Since C := {0X}×C is a subset of X×Y, each subset A ⊂ X×Y can be associated
to the set BMaxCA which is constructed as the set BMaxCA in Sect. 2 with A and C
instead of A and C, respectively. Namely,
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BMaxCA = {a ∈ A : cl cone[A− a − C] ∩ C = {(0X,0Y )}}.
So, if A = −grF and (x0, y0) ∈ grF , then the condition

−(x0, y0) ∈ BMaxC[−grF ] (52)

is equivalent to the following condition which is near to condition (43):

cl cone[(x0, y0) − grF − C] ∩ C = {(0X,0Y )}. (53)

Proposition 3.5 Let X and Y be locally convex spaces and let C ⊂ Y be a convex
cone with compact base. Let U = L(X,Y ) and x0 ∈ int domF . Then:

(i) F is Benson properly subdifferentiable at (x0, y0) ∈ grF if

−(x0, y0) ∈ BMaxC[−grF ]
and if [(x0, y0)−grF ] is nearly (−C)-subconvexlike in the sense of [15, 16], i.e.,
cl cone[(x0, y0) − grF − C] is a convex set.

(ii) F is Benson properly subdifferentiable at x0 if, for each y0 ∈ F(x0), the condi-
tions formulated in Part (i) are satisfied.

Proof Applying Lemma 3.1 with K = cl cone[(x0, y0) − grF − C] we obtain the
conclusion of Part (i). Part (ii) is an immediate consequence of Part (i). �
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