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Abstract This paper presents a three-stage optimization algorithm for solving two-
stage deviation robust decision making problems under uncertainty. The structure
of the first-stage problem is a mixed integer linear program and the structure of the
second-stage problem is a linear program. Each uncertain model parameter can in-
dependently take its value from a real compact interval with unknown probability
distribution. The algorithm coordinates three mathematical programming formula-
tions to iteratively solve the overall problem. This paper provides the application of
the algorithm on the robust facility location problem and a counterexample illustrat-
ing the insufficiency of the solution obtained by considering only a finite number of
scenarios generated by the endpoints of all intervals.

Keywords Robust optimization · Interval data uncertainty · Min-max regret robust
optimization · Deviation robust optimization

1 Introduction and Background

This paper addresses the problem of two-stage decision making under uncertainty,
where the uncertainty appears in the values of key parameters of a mixed integer
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linear programming (MILP) formulation,

max{�qT �x + �cT �y|W �x ≤ �h + T �y,V �x = �g + S �y, �x ≥ �0, �y ∈ {0,1}|�y|}.
In the model formulation, let the vector �y represent the first-stage decisions that have
to be made before the realization of uncertainty and let the vector �x represent the
second-stage decisions that can be made after the realization of uncertainty. Let the
vectors �c, �h, �g, �q and the matrices T , S, W , V represent parameters of the decision
model. Each uncertain parameter (except the parameters �q , W , V ) can independently
take its value from a real compact interval with unknown probability distribution. We
assume that the model parameters W and V are deterministic and each element of
the parameters �q can independently take its value from a finite set of real numbers.

Because of the incomplete information about the joint probability distribution of
the uncertain parameters in the problem, decision makers are not able to search for
the first-stage decisions with the best long run average performance. Instead, decision
makers are searching for the robust first-stage decisions that perform well across all
possible input scenarios without attempting to assign an assumed probability distribu-
tion to any ambiguous parameter. In this paper, we propose an optimization algorithm
that can efficiently identify the robust first-stage decisions under the deviation robust-
ness definition in Kouvelis and Yu [1] on interval data uncertainty of two-stage MILP
problems. The proposed algorithm sequentially solves and updates a relaxation prob-
lem until both the feasibility and optimality conditions of the overall problem are
satisfied. The feasibility and optimality verification steps involve the use of bilevel
programming, which coordinates a Stackelberg game (Von Stackelberg, [2]) between
the decision environment and decision makers; this is explained in detail in Sect. 2.
In addition, preprocessing procedures and problem transformation steps are presented
for improving the computational tractability of the proposed algorithm. The proposed
algorithm is proven to terminate at an optimal deviation robust solution (if one exists)
in a finite number of iterations.

Deviation robust optimization addresses optimization problems where some of the
model parameters are uncertain at the time of making the first-stage decisions. The
criterion for the robust first-stage decisions is to minimize the maximum regret be-
tween the optimal objective function value under perfect information and the result-
ing objective function value under the robust decisions over all possible realizations
of the uncertain parameters (scenarios) in the model. Because of this definition, de-
viation robust optimization is often referred as min-max regret robust optimization.
The work of Kouvelis and Yu [1] summarizes the state-of-art in deviation robust op-
timization up to 1997 and provides a comprehensive discussion of the motivation for
the min-max regret approach and various aspects of applying it in practice. Ben-Tal
and Nemirovski [3–6] address the robust solutions (min-max/max-min objective) by
allowing the uncertainty sets for the data to be ellipsoids and propose efficient al-
gorithms to solve convex optimization problems under data uncertainty. Averbakh
[7, 8] shows that polynomial solvability is preserved for a specific discrete opti-
mization problem (selecting p elements of minimum total weight out of a set of
m elements with uncertainty in the weights of the elements) when each weight can
vary within an interval under the deviation robustness definition. Bertsimas and Sim
[9, 10] propose an approach to address data uncertainty for discrete optimization
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and network flow problems that allows the degree of conservatism of the solution
(min-max/max-min objective) to be controlled. They show that the robust counter-
part of an NP-hard α-approximable 0–1 discrete optimization problems remains α-
approximable. They also propose an algorithm for robust network flows that solves
the robust counterpart by solving a polynomial number of nominal minimum cost
flow problems in a modified network. Assavapokee et al. [11] presents an algorithm
for solving scenario-based min-max regret and relative regret robust optimization
problems for two-stage MILP formulations.

In Sect. 2, we present the theoretical methodology of the proposed algorithm. In
Sect. 3, we illustrate some example applications of the proposed algorithm on robust
optimization problems with interval data uncertainty.

2 Methodology

This section begins by reviewing key concepts of the scenario based min-max regret
robust optimization and the concept of the extensive form formulation. The method-
ology of the proposed algorithm is then summarized and explained in detail, and each
of its three stages is specified. The section concludes with the proof that the algorithm
always terminates at the robust optimal solution (if one exists) in a finite number of
iterations.

We address the problem where the basic components of the model uncertainty are
represented by a set of all possible scenarios of the input parameters, referred as the
scenario set �̄. The problem contains two types of decision variables. Let the vector
�y denote binary choice first-stage decision variables and let the vector �xω denote
continuous second-stage recourse decision variables and let vectors �cω, �qω, �hω, �gω

and matrices Tω, Sω, Wω, Vω denote model parameters setting for each scenario
ω ∈ �̄. If the realization of the model parameter is known to be scenario ω a priori,
the optimal choice for the decision variables (�y, �xω) can be obtained by solving the
following model (1):

O∗
ω = max �qT

ω �xω + �cT
ω �y, (1a)

s.t. Wω �xω − Tω �y ≤ �hω, (1b)

Vω �xω − Sω �y = �gω, (1c)

�xω ≥ �0, �y ∈ {0,1}|�y|. (1d)

When the parameter uncertainty (ambiguity) exists, the search for the robust first-
stage solution comprises finding decisions �y such that the function maxω∈�̄(O∗

ω −
Z∗

ω(�y)) is minimized, where for each scenario ω ∈ �̄,

Z∗
ω(�y) = max �qT

ω �xω + �cT
ω �y,

s.t. Wω �xω ≤ �hω + Tω �y,

Vω �xω = �gω + Sω �y,

�xω ≥ �0.
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In the case when the scenario set �̄ is a finite set, the optimal choice of the first-stage
decision variables �y can be obtained by solving the following model (2):

min δ, (2a)

s.t. δ ≥ O∗
ω − �qT

ω �xω − �cT
ω �y, ∀ω ∈ �̄, (2b)

Wω �xω − Tω �y ≤ �hω, ∀ω ∈ �̄, (2c)

Vω �xω − Sω �y = �gω, ∀ω ∈ �̄, (2d)

�xω ≥ �0, ∀ω ∈ �̄, (2e)

�y ∈ {0,1}|�y|. (2f)

This model (2) is referred as the extensive form model of the problem. If an op-
timal solution for the model (2) exists, the resulting optimal setting of the decision
variables �y represents the optimal setting of the robust first-stage decisions. Unfor-
tunately, when the scenario set �̄ is an infinite set, the problem cannot be solved
directly by using the extensive form model.

We propose the algorithm which can overcome this limitation. Let the vector
ξ = (�c,T ,S, �h, �g) denote the uncertain parameters under interval data uncertainty
defining the objective function and constraints of the optimization problem. Under
the interval data uncertainty, the scenario set �̄ is an infinite set which is generated
by all possible values of the parameter vectors ξ and �q . As described below, we pro-
pose a three-stage algorithm for solving the deviation robust optimization problem
under the scenario set �̄.

Proposed Three-Stage Algorithm

Step 0. (Initialization) Choose a finite subset � ⊆ �̄ and set �U = ∞ and �L = 0.
Determine the value of ε (predetermined small nonnegative real value) and proceed
to Step 1.

Step 1. Solve the model (1) to obtain O∗
ω, ∀ω ∈ �. If the model (1) is infeasible for

any scenario in the scenario set �, the algorithm is terminated; the problem is ill-
posed. Otherwise, the optimal objective function value to the model (1) for scenario
ω is designated as O∗

ω . Proceed to Step 2.
Step 2. Solve the relaxation of the model (2) by considering only the scenario set
� instead of �̄. If the relaxed model (2) is infeasible, the algorithm is terminated
with the confirmation that no robust solution exists for the problem. Otherwise, set
Y� = �y∗ (optimal solution from the relaxed model (2)) and set �L = δ∗ (optimal
objective function value from the relaxed model (2)). If {�U − �L} ≤ ε, the ro-
bust solution associated with �U is the globally ε-optimal robust solution and the
algorithm is terminated. Otherwise the algorithm proceeds to Step 3.

Step 3. Solve the Bilevel-1 model specified in Sect. 2.2 by using the Y� informa-
tion from Step 2. If the optimal objective function value of the Bilevel-1 model
is nonnegative (feasible case), proceed to Step 4. Otherwise (infeasible case), set
� ← �∪{ω∗

1}, where ω∗
1 is the infeasible scenario for Y� generated by the Bilevel-1

model in this iteration and return to Step 1.
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Step 4. Solve the Bilevel-2 model specified in Sect. 2.3 by using the Y� informa-
tion from Step 2. Let ω∗

2 and �U∗ denote the scenario with maximum regret value
for Y� and the optimal objective function value generated by the Bilevel-2 model
respectively in this iteration. Set �U ← min{�U∗,�U }. If {�U − �L} ≤ ε, the ro-
bust solution associated with �U is the globally ε-optimal robust solution and the
algorithm is terminated. Otherwise, set � ← � ∪ {ω∗

2}, and return to Step 1.

We define the algorithm Steps 1 and 2 as the first-stage of the algorithm and the
algorithm Step 3 and Step 4 as the second-stage and the third-stage of the algorithm
respectively. Each of these three algorithm stages is detailed in the following subsec-
tions.

2.1 First-Stage Algorithm

The purposes of the first-stage algorithm are (i) to find the candidate robust decision
from a considered finite subset of scenarios �, (ii) to find the lower bound for the
min-max regret value, and (iii) to determine if the algorithm has discovered a global
optimal (or an ε-optimal) robust solution for the problem. The first-stage algorithm
utilizes two main optimization models: the model (1) and the relaxed model (2).
The algorithm calculates O∗

ω for all scenarios in the (small) finite subset � of �̄

(as needed). In each iteration, the set of scenarios in � is enlarged to include one
additional scenario generated by either the second-stage or the third-stage of the al-
gorithm. If the model (1) is infeasible for any generated scenario, the algorithm is
terminated with the conclusion that there exists no robust solution to the problem.
Otherwise, the optimal objective function values of the model (1) for all scenarios in
the set � are used as the required parameters O∗

ω in the relaxed model (2).
Once all required values of O∗

ω are obtained ∀ω ∈ �, the relaxed model (2) is
solved by considering only the scenario set �. If the relaxed model (2) is infeasible,
the algorithm is terminated with the conclusion that there exists no robust solution
to the problem. Otherwise, its results are the candidate robust decision Y� and the
lower bound of the min-max regret value �L obtained from the relaxed model (2).
The optimality condition, �U − �L ≤ ε, is then checked. If the optimality condition
is satisfied, the robust solution associated with �U is the globally ε-optimal robust
solution and the algorithm is terminated. Otherwise, the candidate robust solution is
forwarded to the second-stage.

2.2 Second-Stage Algorithm

The main purpose of the second stage is to find a parametric scenario in �̄ that make
the candidate robust decision Y� infeasible in the model (1). To achieve this goal, the
algorithm solves a bilevel programming problem referred to as the Bilevel-1 model
by following the two main steps. In the first step, some model parameters values in the
original Bilevel-1 model are predetermined at their optimal setting by following some
simple preprocessing rules. In the second step, the Bilevel-1 model is transformed
from its original form into a single-level MILP structure.
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One can find a model parameters setting that make the Y� solution infeasible
for the model (1) by solving the following bilevel programming problem (Bilevel-1
model). In the Bilevel-1 model, the leader tries to make the problem infeasible (any
slack variables negative) by controlling the parameters settings (T ,S, �h, �g). The fol-
lower problem tries to make the problem feasible (all slack variables nonnegative) by
controlling the continuous decision variables values (�x, �s, �s1, �s2, δ) under the fixed
parameters setting of the leader, when the setting of the binary decision variables
is fixed at Y�. The following model (3) demonstrates the general structure of the
Bilevel-1 model. Let L and E represent sets of row indices associating with less-than-
or-equal-to and equality constraints in the model (1) respectively. In the model (3),
δ represents a scalar decision variable and the vectors �0 and �1 represent the vectors
with the value of 0 and 1 respectively for all elements in the vectors. If the result-
ing optimal setting of δ (the minimum value of slack variables) is nonnegative, the
candidate solution Y� is guaranteed to be feasible over all possible scenarios in �̄.
Otherwise, the optimal parameters setting resulting from the Bilevel-1 model rep-
resents an infeasible scenario for the model (1) under the fixed first-stage decision
vector Y�

min δ, (3a)

s.t. hL
i ≤ hi ≤ hU

i , ∀i ∈ L, (3b)

T L
il ≤ Til ≤ T U

il , ∀i ∈ L,∀l, (3c)

gL
i ≤ gi ≤ gU

i , ∀i ∈ E, (3d)

SL
il ≤ Sil ≤ SU

il , ∀i ∈ E,∀l, (3e)

max δ, (3f)

s.t. W �x + �s = �h + T Y�, (3g)

V �x + �s1 = �g + SY�, (3h)

− V �x + �s2 = −�g − SY�, (3i)

δ�1 ≤ �s, δ�1 ≤ �s1, δ�1 ≤ �s2, (3j)

�x ≥ �0. (3k)

The current form of the model (3) has a bilevel linear structure. Because the struc-
ture of the follower problem of the model (3) is a linear program and it affects the
leader decisions only through it objective function, we can simply replace the fol-
lower problem of the model (3) with explicit representations of its optimality condi-
tions including its primal, dual, and strong duality constraints. In addition, from the
special structure of the model (3), all elements in the decision variables vector �h and
matrix T can be predetermined to either one of their bounds even before solving the
model (3).

For each element of the decision vector �h and matrix T , its optimal setting is
the lower bound of its possible values. The correctness of these simple rules is ob-
vious. After applying these simple preprocessing rules, the follower problem trans-
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formation, and the result of the following Lemma 2.1, the model (3) can be trans-
formed from a bilevel linear structure to a single-level MILP structure presented in the
model (4). These results greatly simplify the solution methodology of the Bilevel-1
model.

Lemma 2.1 The model (3) has at least one optimal solution S∗ and �g∗ in which each
element of S∗ and �g∗ takes on a value at one of its bounds.

Proof Each of these variables Sil and gi appears in only two constrains in the
model (3):

∑

j

Vij xj + s1i = gi +
∑

l

SilY�l and −
∑

j

Vij xj + s2i = −gi −
∑

l

SilY�l.

It is also easy to see that

s1i = −s2i and min{s1i , s2i} = −|s1i − s2i |/2.

This fact implies that the optimal setting of �x which maximizes min{s1i , s2i} will also
minimize |s1i − s2i |/2 and vice versa under the fixed setting of ξ . Because

|s1i − s2i |/2 =
∣∣∣∣gi +

∑

l

SilY�l −
∑

j

Vij xj

∣∣∣∣,

the optimal setting of Sil and gi will maximize

min
�x∈χ(Y�)

∣∣∣∣gi +
∑

l

SilY�l −
∑

j

Vij xj

∣∣∣∣, where

χ(Y�) = {�x ≥ �0|W �x ≤ �h + T Y�,V �x = �g + SY�}.

In this form, it is easy to see that the optimal setting of the variables Sil and gi will
take on one of their bounds. �

In the model (4), M represents a significantly large real number and w1i ,
∀i ∈ L,w+

2i and w−
2i , ∀i ∈ E represent dual variables of the follower problem. The

decision variables GW+
i , GW−

i , SW+
il , SW−

il are used to replace the nonlinear terms
giw

+
2i , giw

−
2i , Silw

+
2i , Silw

−
2i in the model respectively. After applying these transfor-

mations, the Bilevel-1 model can finally be solved using traditional MILP methods
by solving the model (4). The obtained solution is used to decide whether to add
scenario ω∗

1 , which is the combination of the optimal setting of T ,S, �h, �g from the
model (4) and any feasible combination of �c, �q,W,V to the scenario set � and return
to the first stage (if δ∗ < 0), or to forward the values of Y� and �L to the third stage
(if δ∗ ≥ 0)
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min δ, (4a)

s.t.
∑

j

Wij xj + si = hL
i +

∑

l

T L
il Y�l, ∀i ∈ L, (4b)

∑

j

Vij xj + s1i = gi +
∑

l

SilY�l, ∀i ∈ E, (4c)

−
∑

j

Vij xj + s2i = −gi −
∑

l

SilY�l, ∀i ∈ E, (4d)

Sil = SL
il + (SU

il − SL
il )(biSil),

SL
ilw

+
2i ≤ SW+

il ≤ SU
il w

+
2i ,

SL
ilw

−
2i ≤ SW−

il ≤ SU
il w

−
2i ,

SU
il w

+
2i − M(1 − biSil) ≤ SW+

il ≤ SL
ilw

+
2i + M(biSil),

SU
il w

−
2i − M(1 − biSil) ≤ SW−

il ≤ SL
ilw

−
2i + M(biSil),

biSil ∈ {0,1},

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀i ∈ E, ∀l, (4e)

gi = gL
i + (gU

i − gL
i )(bigi),

gL
i w+

2i ≤ GW+
i ≤ gU

i w+
2i ,

gL
i w−

2i ≤ GW−
i ≤ gU

i w−
2i ,

gU
i w+

2i − M(1 − bigi) ≤ GW+
i ≤ gL

i w+
2i + M(bigi),

gU
i w−

2i − M(1 − bigi) ≤ GW−
i ≤ gL

i w−
2i + M(bigi),

bigi ∈ {0,1},

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀i ∈ E, (4f)

δ ≤ si , ∀i ∈ L, δ ≤ s1i , ∀i ∈ E, δ ≤ s2i , ∀i ∈ E, (4g)
∑

i∈L

Wijw1i +
∑

i∈L

(Vij (w
+
2i − w−

2i )) ≥ 0, ∀j, (4h)

∑

i∈L

w1i +
∑

i∈E

(w+
2i + w−

2i ) = 1, (4i)

δ =
∑

i∈L

(
hL

i +
∑

l

T L
il Y�l

)
w1i

+
∑

i∈E

(
GW+

i − GW−
i +

∑

l

(SW+
il − SW−

il )Y�l

)
, (4j)

w1i ≥ 0, ∀i ∈ L, w+
2i ≥ 0, ∀i ∈ E, (4k)

w−
2i ≥ 0, ∀i ∈ E, xj ≥ 0, ∀j. (4l)

2.3 Third-Stage Algorithm

The main purpose of the third-stage algorithm is to identify a scenario ω∗
2 with the

largest regret value for the candidate robust first-stage decision Y� overall scenarios
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in �̄. We look for the scenario ω∗
2 such that

ω∗
2 ∈ arg max

ω∈�̄

{O∗
ω − Z∗

ω(Y�)}.

The mathematical model utilized by this stage is also a bilevel program referred to
as the Bilevel-2 model. The leader problem is tasked with finding the setting of the
vector ξ̄ = (�c,T ,S, �h, �g, �q) and the vector (�x1, �y1) that result in the maximum regret
value overall possible scenarios, maxω∈�̄{O∗

ω − Z∗
ω(Y�)}, for the candidate robust

solution Y�. The follower problem on another hand is tasked to respond with the
setting of vector �x2 that maximizes the value of Z∗

ω(Y�), under the setting of the
vector ξ̄ established by the leader problem. The structure of the Bilevel-2 model is
represented in the following model (5):

max qT �x1 + �cT �y1 − �qT �x2 − �cT Y�, (5a)

s.t. W �x1 ≤ �h + T �y1, (5b)

V �x1 = �g + S �y1, (5c)

cL
l ≤ cl ≤ cU

l , ∀l, (5d)

T L
il ≤ Til ≤ T U

il , ∀i ∈ L,∀l, (5e)

SL
il ≤ Sil ≤ SU

il , ∀i ∈ E,∀l, (5f)

hL
i ≤ hi ≤ hU

i , ∀i ∈ L, (5g)

gL
i ≤ gi ≤ gU

i , ∀i ∈ E, (5h)

qj ∈ {qj (1), qj (2), . . . , qj (mj)}, ∀j, (5i)

�x1 ≥ �0, �y1 ∈ {0,1}|�y1|, (5j)

max �qT �x2, (5k)

s.t. W �x2 ≤ �h + T Y�, (5l)

V �x2 = �g + SY�, (5m)

�x2 ≥ �0. (5n)

The solution methodology for solving the model (5) has the same two steps as solving
the Bilevel-1 formulation.

2.3.1 Parameter Preprocessing Step

From the structure of the model (5), some elements of the vector ξ̄ can be predeter-
mined to attain their optimal setting at one of their bounds.

Preprocessing Step for c: Each element cl of the parameter vector �c is represented
in the objective function of the model (5) as cly1l − clY�l . From any given value
of Y�l , the value of cl can be predetermined by the following simple rules. If the
value of Y�l is one, the optimal setting of cl is c∗

l = cL
l . Otherwise, the optimal

setting of cl is c∗
l = cU

l .
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Preprocessing Step for T : Each element Til of the parameter matrix T is presented
in the functional constraints of the model (5) as

∑

j

Wij x1j ≤ hi + Tily1l +
∑

k �=l

Tiky1k and

∑

j

Wij x2j ≤ hi + TilY�l +
∑

k �=l

TikY�k.

For any given Y� information, the value of Til can be predetermined at T U
il if the

value of Y�l is zero. In the case when the value of Y�l is one, the optimal setting of
Til satisfies the following set of constraints illustrated in (6) where the new variable
T Yil replaces the nonlinear term Tily1l in the model (5). The insight of this set of
constraints (6) is that, if the value of y1l is set to be zero by the model, the optimal
setting of Til is T L

il . Otherwise, the optimal setting of Til can take any value from the
compact interval [T L

il , T U
il ]

T Yil − Til + T L
il (1 − y1l ) ≤ 0, (6a)

−T Yil + Til − T U
il (1 − y1l) ≤ 0, (6b)

T L
il y1l ≤ T Yil ≤ T U

il y1l , (6c)

Til ≤ T L
il + y1l (T

U
il − T L

il ), (6d)

T L
il ≤ Til ≤ T U

il . (6e)

Preprocessing Step for q: Each element qj of the parameter vector �q is presented
in the objective function of the model (5) as qjx1j − qjx2j . Each parameter qj

can independently take its values from the ascending ordered set of real values
{qj (1), qj (2), . . . , qj (mj)}, where mj represents the number of possible values for qj .
For simplicity, the notations qL

j and qU
j are used to represent the terms qj (1) and

qj (mj) respectively. For any given Y� information, in the case where the value of
x2j is forced by other parameters setting to be zero, the parameter qj value can
be predetermined to be q∗

j = qU
j . In other cases, we add the decision variables

QX1j and QX2j to replace the terms qjx1j and qjx2j respectively in model (5)
and a set of variables and constraints illustrated in (7) to replace the constraint
qj ∈ {qj (1), qj (2), . . . , qj (mj)} in the model (5) where xU

rj and xL
rj represent the up-

per bound and the lower bound of variable xrj respectively for r = 1,2. A Special
Ordered Set of type One (SOS1) is defined to be a set of variables for which not more
than one member from the set may be nonzero

qj =
mj∑

s=1

qj (s)bij (s),

mj∑

s=1

bij (s) = 1, bij (s) ≥ 0, ∀s ∈ {1,2, . . . ,mj} and
⋃

∀s

{bij (s)} is SOS1, (7a)
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QX1j =
mj∑

s=1

qj (s)z1j (s), (7b)

xL
1j bij (s) ≤ z1j (s) ≤ xU

1j bij (s), z1j (s) ≤ x1j − xL
1j (1 − bij (s)),

z1j (s) ≥ x1j − xU
1j (1 − bij (s)), ∀s ∈ {1, . . . ,mj}, (7c)

QX2j =
mj∑

s=1

qj (s)z2j (s), (7d)

xL
2j bij (s) ≤ z2j (s) ≤ xU

2j bij (s), z2j (s) ≤ x2j − xL
2j (1 − bij (s)),

z2j (s) ≥ x2j − xU
2j (1 − bij (s)), ∀s ∈ {1, . . . ,mj}. (7e)

It is worth pointing out that the optimal setting of each parameter in the Bilevel-2
model does not always reside at its upper or lower bounds. Two counterexamples are
given below. The optimal solution for the first counterexample is h∗ = 5 with a leader
optimal objective function value of five. The leader objective function value is always
zero when p3 is set at either one of its bounds (0 or 10). The optimal solution for the
second counterexample is q∗ = 8 with a leader optimal objective value of 3008. The
leader objective values are 3006.5 and 3006 when q is set at its lower and upper
bounds respectively.

Counterexample 1

max 2x11 + x12 + x13 − 2x21 − x22 − x23,

s.t. x11 + x12 ≤ 10y1, x11 ≤ 5y2,

x12 ≤ h, x11 ≤ x12,

x11 + x13 ≤ 5y3, x11, x12, x13 ≥ 0,

0 ≤ h ≤ 10, y1, y2, y3 ∈ {0,1},
max 2x21 + x22 + x23,

s.t. x21 + x22 ≤ 10Y�1, x21 ≤ 5Y�2,

x22 ≤ h, x21 ≤ x22, x21 + x23 ≤ 5Y�3,

x21, x22, x23 ≥ 0, where Y�1 = 1, Y�2 = 0, Y�3 = 1.

Counterexample 2

max qx11 + 8x12 − 1000y1 − 1000y2 − 1000y3 − p4x21 − 8x22 + 1000Y1�

+ 1000Y2� + 1000Y3�,

s.t. x11 ≤ 6 − y1, x12 ≤ 6 − y2,

x11 + x12 ≤ 9 − y3, (1/3)x11 + x12 ≤ 6, x11 + (1/3)x12 ≤ 6,
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x11, x12, x13 ≥ 0,

q ∈ {7,8,12}, y1, y2, y3 ∈ {0,1},
max qx21 + 8x22,

s.t. x21 ≤ 6 − Y�1, x22 ≤ 6 − Y�2,

x21 + x22 ≤ 9 − Y�3, (1/3)x21 + x22 ≤ 6, x21 + (1/3)x22 ≤ 6,

x21, x22, x23 ≥ 0, where Y�1 = 1, Y�2 = 1, Y�3 = 1.

2.3.2 Problem Transformation Step

Because the follower problem of the model (5) has a linear program structure and it
affects the leader decisions only through its objective function, the follower problem
can be replaced by the explicit representation of its optimality conditions including
primal constraints, dual constraints, and complementary slackness conditions. Thus,
the model (5) can be transformed into a single level mixed integer nonlinear program-
ming problem with complementary slackness constraints as shown in the model (8):

max{�qT �x1 + �cT �y1 − �qT �x2 − �cT Y�}, (8a)

s.t. W �x1 − T �y1 ≤ �h, (8b)

V �x1 − S �y1 = �g, (8c)

W �x2 − T Y� + �s1 = �h, (8d)

V �x2 − SY� = �g, (8e)

WT �w1 + V T �w2 − �a = �q, (8f)

w1i s1i = 0, ∀i ∈ L, (8g)

ajx2j = 0, ∀j, (8h)

cL
l ≤ cl ≤ cU

l , ∀l, (8i)

T L
il ≤ Til ≤ T U

il , ∀i ∈ L, ∀l, (8j)

SL
il ≤ Sil ≤ SU

il , ∀i ∈ E, ∀l, (8k)

hL
i ≤ hi ≤ hU

i , ∀i ∈ L, (8l)

gL
i ≤ gi ≤ gU

i , ∀i ∈ E, (8m)

qj ∈ {qj (1), qj (2), . . . , qj (mj)}, ∀j, (8n)

�x1 ≥ �0, �x2 ≥ �0, �s1 ≥ �0,

�a ≥ �0, �w1 ≥ �0, �y1 ∈ {0,1}|�y1|. (8o)
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Finally, the model (8) is transformed into a single level MILP problem with com-
plementary slackness constraints as shown in the model (9) by including all addi-
tional constraints and variables presented in the preprocessing steps. The last step is
to handle the complementary slackness conditions. The direct approach of Bard and
Moore [12] is used, in which the constraints are branched directly rather than using
a classical relaxation method. The latter approach has been shown to be ineffective
[13] for bilevel programming problems because high numerical precision is required
to avoid the leader problem perturbing the follower problem optimal solution. More
theoretical concepts on Bilevel and Multilevel programming can be found in Bard
and Falk [14], Bard [15, 16], Hansen et al. [17], Migdalas et al. [18], and Heng and
Pardalos [19]

max �U∗ =
∑

j |Ind_qj =1

QX1j +
∑

j |Ind_qj =0

q∗
j x1j +

∑

l

c∗
l y1l −

∑

j |Ind_qj =1

QX2j

−
∑

j |Ind_qj =0

q∗
j x2j −

∑

l

c∗
l Y�l, (9a)

s.t.
∑

j

Wij x1j −
∑

l|Ind_Til=1

T Yil −
∑

l|Ind_Til=0

T ∗
il y1l ≤ hi, ∀i ∈ L, (9b)

∑

j

Vij x1j −
∑

l

SYil = gi, ∀i ∈ E, (9c)

∑

j

Wij x2j −
∑

l|Ind_Til=1

TilY�l −
∑

l|Ind_Til=0

T ∗
il Y�l + s1i = hi, ∀i ∈ L,(9d)

∑

j

Vij x2j −
∑

l

SilY�l = gi, ∀i ∈ E, (9e)

∑

i∈L

Wijw1i +
∑

i∈E

Vijw2i − aj = qj , ∀j such that Ind_qj = 1, (9f)

∑

i∈L

Wijw1i +
∑

i∈E

Vijw2i − aj = q∗
j , ∀j such that Ind_qj = 0, (9g)

SL
il y1l ≤ SYil ≤ SU

il y1l , ∀i ∈ E,∀l, (9h)

SYil ≤ Sil − SL
il (1 − y1l ), ∀i ∈ E,∀l, (9i)

SYil ≥ Sil − SU
il (1 − y1l ), ∀i ∈ E,∀l, (9j)

w1i s1i = 0, ∀i ∈ L, (9k)

ajx2j = 0, ∀j, (9l)

T L
il ≤ Til ≤ T U

il , ∀i ∈ L, ∀l, (9m)

SL
il ≤ Sil ≤ SU

il , ∀i ∈ E, ∀l, (9n)

hL
i ≤ hi ≤ hU

i , ∀i ∈ L, (9o)



310 J Optim Theory Appl (2008) 137: 297–316

gL
i ≤ gi ≤ gU

i , ∀i ∈ E, (9p)

x1j ≥ 0, x2j ≥ 0, s1i ≥ 0, aj ≥ 0, w1i ≥ 0,

y1l ∈ {0,1}, ∀i ∈ L, ∀j, ∀l. (9q)

Condition to add constraints Constraint reference Constraint index set

Ind_Til = 1 (6a–6d) For all i ∈ L, l (9r)

Ind_qj = 1 (7a–7e) For all j (9s)

where

Ind_Til =
{

1, if Til value cannot be predetermined,

0, otherwise,

Ind_qj =
{

1, if qj value cannot be predetermined,

0, otherwise,

T ∗
il =

{
Preprocessed value of Til, if Til can be preprocessed,

0, otherwise,

q∗
j =

{
Preprocessed value of qj , if qj can bepreprocessed,

0, otherwise.

For any branch and bound scheme, the branching rules are always critical. For
the model (9), branching priorities are recommended as follows: (i) complementary
slackness conditions, (ii) binary decisions on the parameters bounds, and (iii) first-
stage binary decisions. Using this approach, the model (9) can be solved. The optimal
objective function value �U∗ of the model (9) is used to update the value of �U

by setting �U to min{�U∗,�U }. The optimality condition is then checked. If the
optimality condition is not satisfied, add scenario ω∗

2 which is the combination of
the optimal settings of �c,T ,S, �h, �g, �q,W,V from the model (9) to the scenario set
� and return to the first-stage algorithm. Otherwise, the algorithm is terminated with
an ε-optimal robust solution which is the discrete solution with the maximum regret
of �U from the model (9). The following Lemma 2.2 provides the important result
that the algorithm always terminates at a globally ε-optimal robust solution in finite
number of algorithm steps.

Lemma 2.2 The algorithm presented terminates in a finite number of steps. After the
algorithm terminates with ε = 0, it has either detected infeasibility or has found an
optimal robust solution to the original problem.

Proof Notice that the relaxed model (2) is a relaxation of the original min-max regret
problem and the feasible region of the model (1) contains the feasible region of the
original problem. This has four important implications: (a) if the model (1) is infea-
sible, then the original min-max regret problem is also infeasible, (b) if the relaxed
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model (2) is infeasible, then the original min-max regret problem is also infeasible,
(c) �L ≤ min�y(maxω∈�̄(O∗

ω − Z∗
ω(�y))) for all iterations, and (d) if �y∗ is an optimal

solution to the original problem, then �y∗is a feasible solution to the relaxed model (2).
From the first and second implications, it is clear that if the algorithm terminates be-
cause either the model (1) or the relaxed model (2) is infeasible then the original
min-max regret problem is infeasible. Now suppose that the algorithm terminates in
Step 2 or Step 4 with �L = �U and the solution Y�. Notice that we can go to Step 4
only if Y� is a feasible solution to the overall problem, then

�U = max
ω∈�̄

(O∗
ω − Z∗

ω(Y�)) ≥ min
�y

(
max
ω∈�̄

(O∗
ω − Z∗

ω(�y))
)
.

Therefore, if �L = �U , then

max
ω∈�̄

(O∗
ω − Z∗

ω(Y�)) = min
�y

(
max
ω∈�̄

(O∗
ω − Z∗

ω(�y))
)

or Y� is an optimal solution to the original min-max regret problem. Because there
are a finite number of possible combinations of Y� and the proposed algorithm gen-
erates new value of Y� in each iteration before termination, the proposed three-stage
algorithm always terminates in a finite number of steps. It is obvious that the same
argument applies for a finite positive ε. �

3 Application and Example Problems of the Proposed Algorithm

In this section, we first present a counterexample illustrating the insufficiency of the
robust solution obtained by considering a finite number of scenarios generated by the
endpoints of all compact intervals. Finally, we apply the proposed algorithm to a case
study on a robust facility location problem for the simplified supply chains network.

3.1 Comparison of Proposed Algorithm and Endpoint Robust Solutions

In this section, we demonstrates a counterexample that illustrates the insufficiency of
the robust solution obtained by considering only a finite number of scenarios gen-
erated by the endpoints of all intervals under the interval data uncertainty. Let us
consider the following decision problem where the parameter h can take any real
value between 0 and 10

max 2x1 + x2 + x3 − y2,

s.t. x1 + x2 ≤ 10y1,

x1 ≤ 5y2,

x2 ≤ h,

x1 ≤ x2,

x1 + x3 ≤ 5y3,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

y1 ∈ {0,1}, y2 ∈ {0,1}, y3 ∈ {0,1}.
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The optimal robust solution to the problem, that h can only take its values from
its upper or lower bounds, can be obtained by solving the relaxed model (2) with
two scenarios (h = 0 and h = 10). The resulting optimal robust solution by con-
sidering only these two scenarios is (y1, y2, y3) = (1,0,1) with the min-max regret
value of zero. When applying the solution resulting from this approach to the prob-
lem that h can take any values from the real compact interval [0,10], the maximum
regret of this solution is actually equal to four when h = 5. The proposed algorithm
is now applied to this example problem by using two initial scenarios (h = 0 and
h = 10). The first-stage algorithm generates the candidate robust solution by setting
(y1, y2, y3) = (1,0,1) with the lower bound of zero. This candidate robust solution
is then forwarded to the second-stage of the algorithm for the feasibility check. After
performing the preprocessing step, the parameter h can be fixed at zero, which has
already been considered in the initial scenario set. At the third-stage, the model (9)
is solved and the upper bound on the min-max regret value is obtained. Because the
upper bound value resulting from this model (9) is 4, which is greater than the lower
bound value of zero, the algorithm forwards the setting of h at 5 (scenario 3) and
the upper bound of 4 to the first-stage of the algorithm. After one more iteration, the
algorithm terminates when the upper and lower bounds are equal at the value of one
with the robust solution of (y1, y2, y3) = (1,1,1). The maximum regret value of this
solution is one. These results illustrate the superiority of the proposed algorithm over
the use of a discrete robust optimization algorithm that considers each parameter at its
boundaries, which can generate a less than optimal solution and could be misleading
for the problem under the interval data uncertainty.

3.2 Application of the Proposed Algorithm to the Robust Facility Location Problem

In this subsection, we apply the algorithm to a hypothetical robust facility location
problem under the interval data uncertainty. We consider a supply chain in which
suppliers send material to factories that supply warehouses that supply markets [20].
Location decisions have to be made for both the factories and warehouses. Each fa-
cility cannot operate at more than its capacity and a linear penalty cost is incurred for
each unit of unsatisfied demand. The model requires the following parameters and
decision variables:

m number of markets
n number of potential factory locations
l number of suppliers
t number of potential warehouse locations

Dj annual demand from customer j

Ki potential capacity of factory site i

Sh supply capacity at supplier h

We potential warehouse capacity at site e

f1i fixed cost of locating a plant at site i

f2e fixed cost of locating a warehouse at site e

c1hi cost of shipping one unit from supplier h to factory i

c2ie cost of shipping one unit from factory i to warehouse e

c3ej cost of shipping one unit from warehouse e to market j
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pj penalty cost per unit of unsatisfied demand at market j

yi 1, if plant is opened at site i; 0, otherwise
x1hi transportation quantity from supplier h to plant i

x3ej transportation quantity from warehouse e to market j

ze 1, if warehouse is opened at site e; 0, otherwise
x2ie transportation quantity from plant i to warehouse e

sj quantity of unsatisfied demand at market j .

In the deterministic case, the goal is to identify factory and warehouse locations as
well as quantities shipped between various points in the supply chain that minimize
the total cost of the system. The overall problem can be formulated as presented in
the following model:

min
n∑

i=1

f1iyi +
t∑

e=1

f2eze +
l∑

h=1

n∑

i=1

c1hix1hi

+
n∑

i=1

t∑

e=1

c2iex2ie +
t∑

e=1

m∑

j=1

c3ej x3ej +
m∑

j=1

pj sj ,

s.t.
n∑

i=1

x1hi ≤ Sh, ∀h ∈ {1, . . . , l},

l∑

h=1

x1hi −
t∑

e=1

x2ie = 0, ∀i ∈ {1, . . . , n},

t∑

e=1

x2ie ≤ Kiyi, ∀i ∈ {1, . . . , n},

n∑

i=1

x2ie −
m∑

j=1

x3ej = 0, ∀e ∈ {1, . . . , t},

m∑

j=1

x3ej ≤ Weze, ∀e ∈ {1, . . . , t},

t∑

e=1

x3ej + sj = Dj, ∀j ∈ {1, . . . ,m},

x1hi ≥ 0, ∀h, ∀i, x2ie ≥ 0, ∀i, ∀e, x3ej ≥ 0, ∀e, ∀j,

sj ≥ 0, ∀j, yi ∈ {0,1}, ∀i, ze ∈ {0,1}, ∀e.

When some parameters in this model are uncertain, the goal becomes to identify
robust factory and warehouse locations as the first-stage decisions under the deviation
robustness definition. Transportation decisions are now the recourse second-stage de-
cisions, which can be made after all model parameters values are realized. Table 1
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Table 1 Approximated parameters information

Supplier (h) Sh Factory (i) f1i Ki Warehouse (e) f 2e We Market (j) Dj pj

San Diego 2500 Seattle 75000 2800 Sacramento 37500 2500 Portland 800 125

Denver 3000 San Franc 75000 2400 Oklahoma City 37500 2600 LA 1050 140

Kansas City 2000 Salt Lake 75000 2500 Lincoln 37500 2500 Phoenix 600 120

El Paso 1000 Wilmington 60000 2150 Nashville 40500 3000 Houston 1800 150

Cincinnati 800 Dallas 75000 2700 Cleveland 37500 2600 Miami 1500 125

Boise 500 Minneapolis 60000 2100 Fort Worth 36000 2100 New York 1250 130

Austin 1100 Detroit 81000 3000 Eugene 37500 2300 St. Louis 1050 120

summarizes information on the approximated parameters values associated with sup-
pliers, factories, warehouses, and markets. A variable transportation cost of $0.01 per
unit per mile is assumed in this example.

The key uncertain parameters that we consider in this example are the supply
quantity at each supplier, the potential capacity at each factory and warehouse, and
finally the penalty cost per unit of unsatisfied demand at each market. We assume that
each uncertain parameter, except the penalty cost, can take its values from 80% up to
120% of its approximated value reported in Table 1. Each uncertain unit penalty cost
can take its values from 80%, 100%, or 120% of its approximated value. In summary,
this example contains 21 uncertain parameters each of which can take its value form
a real compact interval and 7 uncertain parameters each of which can take its value
from a finite set of three real values.

The case study is solved by utilizing the proposed algorithm with ε = 0 and the
initial scenario set � containing 16 scenarios on a Windows XP-based Pentium(R)
4 CPU 3.60 GHz personal computer with 2.00 GB RAM using a C++ program and
CPLEX 10 for the optimization process. The algorithm terminates at an optimal ro-
bust solution within 6 iterations. The algorithm recommends opening production fa-
cilities at San Francisco, Dallas, Minneapolis, and Detroit and recommends opening
warehouse facilities at Sacramento, Nashville, Cleveland, and Fort Worth with the
maximum regret value of $106,675.54. The total computation time required is 48
minutes and 59 seconds. Figure 1 illustrates the convergence of the upper and lower
bounds on the min-max regret produced by the algorithm.

Finally, we compare the performance of the robust solution with the optimal so-
lution from the deterministic model when each parameter is fixed at the value re-
ported in Table 1. This deterministic solution recommends opening production facil-
ities at San Francisco, Dallas, and Detroit and recommends opening warehouse fa-
cilities at Sacramento, Oklahoma city, and Nashville with the maximum regret value
of $212,455.02 ($105,779.48 or 99.16% increase in the maximum regret value from
the robust solution). These results illustrate the significant impact of uncertainty on
the performance of the long-term decisions. They illustrate the applicability and ef-
fectiveness of the proposed algorithm.



J Optim Theory Appl (2008) 137: 297–316 315

Fig. 1 Upper and lower bounds on min-max regret value from the algorithm

4 Summary

This paper develops a deviation robust optimization algorithm for dealing with un-
certainty in model parameter values of MILP problems. The presented algorithm ef-
ficiently generates the deviation robust solution to the problem when each uncertain
parameter in a general MILP problem takes its value from a real compact interval.
The algorithm utilizes preprocessing steps and problem transformation procedures to
improve its computational performance. The algorithm is proven to either terminate
at an optimal robust solution or identify the nonexistence of the robust solution in a
finite number of iterations. At the end, the paper presents a case study and example
illustrating the applicability of the algorithm to practical optimization problems.
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