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Abstract This article presents a branch-and-bound algorithm for globally solving
the problem (P) of maximizing a generalized concave multiplicative function over a
compact convex set. Since problem (P) does not seem to have been studied previously,
the algorithm is apparently the first algorithm to be proposed for solving this problem.
It works by globally solving a problem (P1) equivalent to problem (P). The branch-
and-bound search undertaken by the algorithm uses rectangular partitioning and takes
place in a space which typically has a much smaller dimension than the space to
which the decision variables of problem (P) belong. Convergence of the algorithm
is shown; computational considerations and benefits for users of the algorithm are
given. A sample problem is also solved.

Keywords Global optimization · Branch-and-bound algorithms · Multiplicative
programming · Quadratic programming · Bilinear programming

1 Introduction

1.1 Problem Statement

The problem of central interest in this article is given by

(P) v = max
x∈X

f (x) � max
x∈X

g(x) +
p∑

i=1

fi(x)gi(x),

where p ≥ 2, g, fi and gi, i = 1,2, . . . , p, are concave functions defined on R
n,

X ⊆ R
n is a nonempty, compact convex set, and, for each i = 1,2, . . . , p,fi(x) > 0
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and gi(x) > 0 for all x ∈ X. Problem (P) does not appear to have been studied pre-
viously. Apparently, the problem in the literature most closely related to problem (P)
is the generalized convex multiplicative programming problem studied by Konno,
Kuno, and Yajima [1]. This is the problem obtained from (P) by minimizing (rather
than maximizing) f (x) over X under the same assumptions as for problem (P), ex-
cept that g,fi and gi, i = 1,2, . . . , p, are assumed to be convex, rather than concave,
functions on R

n. Adapting the terminology of Konno, Kuno and Yajima [1], we will
refer to problem (P) as the generalized concave multiplicative programming problem.
Although the generalized concave multiplicative programming problem appears to be
new, it has many important applications.

1.2 Applications

Many applications of problem (P) follow from the observation that the problem

(Q) w = maxh(x) +
p∑

i=1

[〈ai, x〉 + αi][〈bi, x〉 + βi],

s.t. x ∈ X,

where p and X are as in problem (P), h is a concave function on R
n, and no sign

restrictions are imposed upon 〈ai, x〉 + αi or 〈bi, x〉 + βi, i = 1,2, . . . , p, is a special
case of problem (P). To see this, as suggested by Konno, Kuno and Yajima [1], for
each i = 1,2, . . . , p, let

ri < min
{

min
x∈X

[〈ai, x〉 + αi],min
x∈X

[〈bi, x〉 + βi]
}
.

Next, in problem (P), let

g(x) = h(x) +
p∑

i=1

[ri〈ai, x〉 + ri〈bi, x〉 + ri(αi + βi) − r2
i ],

fi(x) = 〈ai, x〉 + (αi − ri), i = 1,2, . . . , p,

and

gi(x) = 〈bi, x〉 + (βi − ri), i = 1,2, . . . , p.

Then problem (P) is identical to problem (Q), and all of the required assumptions of
problem (P) are fulfilled.

It follows that the applications of problem (P) include, for example, all of the
applications of problem (Q). Since problem (Q) encompasses, for instance, general
quadratic programming, bilinear programming and linear zero-one programming as
special cases, these applications are quite numerous.

The general quadratic programming problem may be written

max
1

2
yT My + 〈d, y〉 + γ,

s.t. y ∈ Y,
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where Y ⊆ R
n is a nonempty polytope, M is an n × n symmetric matrix of rank

p,d ∈ R
n and γ ∈ R (see, e.g., Cambini and Sodini [2]). Given M , Tuy [3], for

example, gives a simple constructive method for finding linearly independent vectors
v1, v2, . . . , vp ∈ R

n and vectors w1,w2, . . . ,wp ∈ R
n such that, for all y ∈ R

n,

1

2
yT My = 1

2

p∑

i=1

〈vi, y〉〈wi, y〉.

Thus, the general quadratic programming problem can be expressed in the form of
problem (Q), and the applications of problem (P) include all of the applications of
general quadratic programming. Included among the latter, for example, are quadratic
zero-one programming problems [4], quadratic assignment problems [4], problems
in economies of scale [5], the constrained linear regression problem [6], VLSI chip
design problems [7], the linear complementarity problem [5], and portfolio analysis
problems [6].

Problem (Q) also subsumes the bilinear programming problem as a special case.
Let f ∈ R

q, u ∈ R
r , and let F and U be q × s and r × t matrices, respectively.

Assume that

Y = {y ∈ R
s |Fy ≤ f,y ≥ 0}

and

Z = {z ∈ R
t |Uz ≤ u, z ≥ 0}

are nonempty compact polyhedra. Then, the bilinear programming problem is given
by

min 〈a, y〉 + 〈b, z〉 + yT Cz,

s.t. y ∈ Y, z ∈ Z,

where a ∈ R
s , b ∈ R

t and C is an s × t matrix of rank p. From Konno and Yajima [8],
using a constructive procedure, the bilinear programming problem can be written in
the form

max 〈−a, y〉 + 〈−b, z〉 +
p∑

i=1

〈vi, y〉〈wi, z〉,

s.t. y ∈ Y, z ∈ Z,

where vi ∈ R
s ,wi ∈ R

t , i = 1,2, . . . , p. The latter problem is a special case of
problem (Q) with xT = [yT , zT ], h(x) = 〈−a, y〉 + 〈−b, z〉, (ai)T = [(vi)T ,0T ] and
(bi)T = [0T , (wi)T ], i = 1,2, . . . , p,αi = βi = 0, i = 1,2, . . . , p, and

X = {(y, z) ∈ R
s+t |Fy ≤ f,Uz ≤ u,y, z ≥ 0}.

Therefore, included among the applications of problem (P) are all of the applica-
tions of bilinear programming. These include, for example, location-allocation prob-
lems [9], constrained bimatrix games [10], the three-dimensional assignment prob-
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lem [11], certain linear max-min problems [12], and many problems in engineering
design, economic management and operations research.

A linear zero-one programming problem may be written as

(I) max 〈c, y〉,
s.t. yj ∈ {0,1}, j = 1,2, . . . , n,

y ∈ Y,

where c ∈ R
n and Y ⊆ R

n is a nonempty polytope. From Raghavachari [13], for
M > 0 sufficiently large, y∗ is an optimal solution to problem (I) if and only if y∗ is
an optimal solution to the problem

(IC) max 〈c, y〉 + M

n∑

j=1

(−yj )(1 − yj ),

s.t. 0 ≤ yj ≤ 1, j = 1,2, . . . , n,

y ∈ Y.

Since problem (IC) is a special case of problem (Q), it follows that all of the numerous
applications of linear zero-one programming are included among the applications
of problem (P). For an overview of some of these applications, see Nemhauser and
Wolsey [14].

1.3 Problem Classification

For each i = 1,2, . . . , p, from [15] each term fi(x)gi(x) in the objective function
f (x) of problem (P) is quasiconcave on X. However, since f (x) involves the sum of
these terms, f (x) is, in general, not a quasiconcave function. Therefore, problem (P)
may, in general, have local optimal solutions that are not global optimal solutions. For
example, consider the following instance of problem (Q), which, as we have seen, is
a special case of problem (P):

max (x1 + x2) + 4(−x1)(x2),

s.t. 2x1 + x2 ≥ 12,

x1 + 2x2 ≥ 12,

x1, x2 ≤ 6.

It can be shown that x0 = (6,3) and x1 = (3,6) are local optimal solutions for this
problem, each with objective function value −63, but that x0 and x1 are not global
optimal solutions. The global optimal value is −56 and is achieved at x2 = (4,4). It
follows that problem (P) is a global optimization problem.

1.4 Purpose, Significance and Content

The purpose of this article is to present an algorithm for globally solving the gener-
alized concave multiplicative programming problem (P). Since problem (P) does not
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seem to have been studied previously, the algorithm to be presented is apparently the
first to be proposed for this problem.

The algorithm implements a rectangular, branch-and-bound search that finds a
global optimal solution to a problem that is equivalent to problem (P). During the
search, the required upper bounds are computed by solving ordinary convex program-
ming problems. Each of these problems is guaranteed to have an optimal solution.

The algorithm has a number of potentially-attractive characteristics. First, the
branch-and-bound search takes place in R

p rather than in R
n or R

2p . In many appli-
cations, p is significantly smaller than n, so that this characteristic of the algorithm
is expected to considerably shorten the length of the search. Second, the main work
of the algorithm is confined to solving ordinary convex programming problems for
which many efficient codes are available. Third, these convex programs differ from
one another in only a small subset of their data. As a result, to speed their solution
times, an optimal solution to one problem can be used as a starting solution for solv-
ing the next problem.

The content of this article is as follows. In Sect. 2 we present the problem equiv-
alent to problem (P) that the algorithm solves. In Sect. 3 we explain the operations
of the algorithm and give a precise algorithm statement. Convergence properties of
the algorithm and computational considerations for implementing the algorithm are
given in Sect. 4. Section 5 reports the solution of a sample problem using the algo-
rithm. Some concluding remarks are given in Sect. 6. For brevity, proofs have been
omitted. These proofs can be found in [16].

2 Problem Reformulation

To globally solve problem (P), the branch-and-bound algorithm globally solves a
problem (P1) equivalent to problem (P). To help to understand the derivation of prob-
lem (P1), we will need the following definition.

Definition 2.1 Let w : C → R, where C ⊆ R
n. Then w is called a semistrictly qua-

siconcave function on C when

w(x2) > w(x1) implies that w[λx1 + (1 − λ)x2] > w(x1),

for all x2, x2 ∈ C and λ such that 0 < λ < 1.

Let I = {1,2, . . . , p}. For each i ∈ I , let

U0
i = max

x∈X
[√fi(x)][gi(x)].

Choose any i ∈ I . It is easy to show that, since fi(x) is concave on X,ci(x) = √
fi(x)

is also concave on X. From p. 163 of Avriel et al. [15], this implies that qi(x) =
[√fi(x)][gi(x)] is a semistrictly quasiconcave function on X. It is known (see, e.g.,
p. 88 of Avriel et al. [15]) that every local maximum of a semistrictly quasiconcave
function over a convex set is also a global maximum. Therefore, U0

i can be found by
any of a number of convex programming algorithms.
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Let H 0 = {u ∈ R
p|0 ≤ ui ≤ U0

i , i ∈ I }. Then H 0 is a full-dimensional rectangle
in R

p . The objective function of problem (P1) is the function G : H 0 → R given, for
each u ∈ H 0, by

G(u) = max
x∈X

{
g(x) +

∑

i∈I

[2ui

√
fi(x) − u2

i (1/gi(x))]
}
.

Although G is generally neither concave nor convex on H 0, by the following result,
it is continuous on H 0.

Lemma 2.1 The function G is continuous on H 0.

We now define the problem (P1) by

(P1) v1 = max
u∈H 0

G(u).

Notice by Lemma 2.1 that problem (P1), is well defined and always has a global
optimal solution. For any u ∈ R

p,u ≥ 0, define the problem (Su) by

(Su) max
x∈X

{
g(x) +

∑

i∈I

[2ui

√
fi(x) − u2

i (1/gi(x))]
}
.

Then, problems (P) and (P1) are equivalent in the sense of the following result.

Theorem 2.1 If u∗ is a global optimal solution to problem (P1), then any point x∗
that solves problem (Su) with u = u∗ is a global optimal solution for problem (P),
and v1 = G(u∗) = f (x∗) = v. If x∗ is a global optimal solution for problem (P),
then (u∗)T = (u∗

1, u
∗
2, . . . , u

∗
p) is a global optimal solution for problem (P1), where

u∗
i = [√fi(x∗)][gi(x

∗)], i ∈ I.

The branch-and-bound algorithm to be presented finds a global optimal solution
u∗ to problem (P1). Given u∗, to recover a global optimal solution for problem (P),
by Theorem 2.1, we may solve problem (Su) with u = u∗ for an optimal solution.
Notice for any fixed u ≥ 0 that problem (Su) is a convex programming problem. This
is because for each i ∈ I,

√
fi(x) is concave on X and, from Corollary 5.18(b) of

Avriel et al. [15], 1/gi(x) is convex on X. Since H 0 ⊆ {u ∈ R
p|u ≥ 0}, it follows

that given a global optimal solution u∗ to problem (P1), a global optimal solution for
problem (P) can be recovered by solving the convex program (Su) with u = u∗.

Although problem (P1) is a global optimization problem, we can state the follow-
ing simple necessary condition for a global optimal solution to this problem.

Proposition 2.1 If u∗ is a global optimal solution to problem (P1), then u∗
i > 0 for

all i ∈ I .
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3 Algorithm

To globally solve problem (P1), the algorithm to be presented uses a branch-and-
bound approach. There are three fundamental processes in the algorithm, a branching
process, an upper bounding process, and a lower bounding process.

The algorithm performs a branching process in R
p that iteratively subdivides the

p-dimensional rectangle H 0 of problem (P1) into smaller rectangles that are also of
dimension p. This process helps the algorithm identify a location in H 0 of a point
that is a global optimal solution for problem (P1). At each stage of the process, the
subdivision yields a more refined partition (Horst and Tuy [17]) of a portion of H 0

that is guaranteed to contain a global optimal solution. The initial partition Q0 con-
sists simply of {H 0}.

During a typical iteration k of the algorithm, k ≥ 1, a rectangle Hk−1 available
from iteration k − 1 is subdivided into two p-dimensional rectangles by a process
called bisection of ratio α where α is a prechosen parameter that satisfies 0.0 <

α ≤ 0.5. Let Hk−1 = {u ∈ R
p|Lk−1

i ≤ ui ≤ Uk−1
i , i ∈ I }, where Lk−1

i < Uk−1
i for

all i ∈ I , and let α satisfy 0.0 < α ≤ 0.5. The procedure for forming a bisection of
ratio α of Hk−1 into two subrectangles Hk−1

1 and Hk−1
2 can be described as follows

(Tuy [3]).

Step 1. Let Uk−1
j − Lk−1

j = maxi∈I {Uk−1
i − Lk−1

i }.
Step 2. Let vj satisfy

min{vj − Lk−1
j ,Uk−1

j − vj } = α(Uk−1
j − Lk−1

j ).

Step 3. Let

Hk−1
1 = {u ∈ R

p|Lk−1
j ≤ uj ≤ vj ,L

k−1
i ≤ ui ≤ Uk−1

i , i �= j},
Hk−1

2 = {u ∈ R
p|vj ≤ uj ≤ Uk−1

j ,Lk−1
i ≤ ui ≤ Uk−1

i , i �= j}.

The new partition Qk of the portion of H 0 remaining under consideration is then
given by

Qk = Qk−1\{Hk−1} ∪ {Hk−1
1 ,Hk−1

2 }.
The second fundamental process of the algorithm is the upper bounding process.

For each rectangle H ⊆ R
p created by the branching process, this process gives an

upper bound UB(H ) for the optimal value v(H) of the problem.

(P1(H)) max
u∈H

G(u).

For each rectangle H created by the branching process, UB(H ) is found by solving
a single convex program PR1(H ). To derive this convex program, we first need to
rewrite the function G : H 0 → R. Toward this end, for each i ∈ I , let

t̄i = max
x∈X

√
fi(x),
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and let si satisfy

0 < si ≤ min
x∈X

gi(x).

As noted previously, for each i ∈ I, ci(x) = √
fi(x) is a concave function on X.

Therefore, for each i ∈ I, t̄i can be found by solving a convex programming problem.
For each i ∈ I, si can be chosen to be a sufficiently small positive number or by
methods that we will discuss in Sect. 4.

Consider now the function F : H 0 → R which is given for any u ∈ H 0 by

(P(u)) F (u) = maxg(x) +
∑

i∈I

[2uiti − u2
i (1/si)],

s.t. ti − √
fi(x) ≤ 0, i ∈ I,

si − gi(x) ≤ 0, i ∈ I,

0 ≤ ti ≤ t̄i , i ∈ I,

si ≤ si , i ∈ I,

x ∈ X.

Notice that for each u ∈ H 0, the objective function in the problem P(u) defining F(u)

is continuous over the nonempty, compact feasible region of the problem. Therefore,
F : H 0 → R is well defined.

Lemma 3.1 For each u ∈ H 0,G(u) = F(u). In addition, if u ∈ H 0 and (x∗, t∗, s∗)
is an optimal solution to problem P(u), then G(u) = g(x∗) + ∑

i∈I [2ui

√
fi(x∗) −

u2
i (1/gi(x

∗))].

Let H = {u ∈ R
p|L ≤ u ≤ U} be a typical rectangle created by the branching

process, where L,U ∈ R
p and 0 ≤ Li < Ui for all i ∈ I . Then by Lemma 3.1, prob-

lems P1(H ) and PE1(H ) have the same optimal value v(H), where problem PE1(H )
is given by

(PE1(H)) max g(x) +
∑

i∈I

[2uiti − u2
i (1/si)],

s.t. ti − √
fi(x) ≤ 0, i ∈ I, (1a)

si − gi(x) ≤ 0, i ∈ I, (1b)

0 ≤ ti ≤ t̄i , i ∈ I, (1c)

si ≤ si , i ∈ I, (1d)

Li ≤ ui ≤ Ui, i ∈ I, (1e)

x ∈ X. (1f)

To find an upper bound UB(H ) for v(H), the algorithm solves a relaxed version of
problem PE1(H ) which is identical to problem PE1(H ), except that in the objective
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function of the relaxed problem, for each i ∈ I , a concave envelope of hi(ui, ti) � uiti
is substituted for hi(ui, ti).

Definition 3.1 (Horst and Tuy [17]) Let M ⊆ R
q be a compact convex set, and let

f : M → R be upper semicontinuous on M . Then f M : M → R is called the concave
envelope of f on M when

(i) f M(x) is a concave function on M .
(ii) f M(x) ≥ f (x) for all x ∈ M .

(iii) There is no function w(x) satisfying (i) and (ii) such that w(x̄) < f M(x̄) for
some point x̄ ∈ M .

For each i ∈ I , let

Mi = {(ui, ti) ∈ R
2|Li ≤ ui ≤ Ui,0 ≤ ti ≤ t̄i},

where H = {u ∈ R
p|Li ≤ ui ≤ Ui, i ∈ I } is a typical rectangle created by the branch-

ing process. Then, for each i ∈ I,0 ≤ Li < Ui , and, from Al-Khayyal and Falk [18],
the concave envelope of h

Mi

i of hi on Mi is given, for each (ui, ti) ∈ Mi by

h
Mi

i (ui, ti ) = min{t̄iui + Liti − t̄iLi,Uiti}. (2)

The upper bound UB(H ) for v(H) used in the algorithm is given by

UB(H) = maxg(x) +
∑

i∈I

[2h
Mi

i (ui, ti) − u2
i (1/si)],

s.t. (1a)–(1f),

where, for each i ∈ I,h
Mi

i (ui, ti) is given by (2). To calculate UB(H ), the algorithm
finds an optimal solution and the optimal value to the problem PR1(H ) given by

(PR1(H)) UB(H) = maxg(x) +
∑

i∈I

[2ri − u2
i (1/si)],

s.t. ri ≤ t̄iui + Liti − t̄iLi, i ∈ I, (3a)

ri ≤ Uiti , i ∈ I, (3b)

ti − √
fi(x) ≤ 0, i ∈ I,

si − gi(x) ≤ 0, i ∈ I,

0 ≤ ti ≤ t̄i , i ∈ I,

si ≤ si , i ∈ I,

Li ≤ ui ≤ Ui, i ∈ I, (3c)

ri ≥ 0, i ∈ I,

x ∈ X.
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Notice that the optimal value UB(H ) of problem PR1(H ) satisfies UB(H ) ≥ v(H).
This is because problems P1(H ) and PE1(H ) have the same optimal value v(H), and
because, by using Definition 3.1 and (2), it is easily verified that problem PR1(H ) is
equivalent to the problem obtained from problem PE1(H ) by substituting the concave
envelope h

Mi

i (ui, ti ) of hi(ui, ti) on Mi for hi(ui, ti) in the objective function of
problem PE1(H ) for all i ∈ I . It is also easy to see that the feasible region of problem
PR1(H ) is a nonempty, compact set. Since the objective function of problem PR1(H )
is continuous over this set, problem PR1(H ) always has an optimal solution. Finally,
it is easy to see that problem PR1(H ) involves the maximization of a concave function
over a convex set. This is because, for each i ∈ I , as observed earlier, the function
ci(x) = √

fi(x) is concave on X and, from p. 119 of Bazaraa, Sherali and Shetty [19],
the function

di(ui, si) = u2
i /si

is convex over the feasible region of the problem. Therefore, problem PR1(H ) is an
ordinary convex program and always has an optimal solution.

During each iteration k ≥ 0, the upper bounding process computes an upper bound
for the optimal value v1 of problem (P1). For each k ≥ 0, this upper bound UBk is
given by

UBk = max{UB(H)|H ∈ Qk}.
The lower bounding process is the third fundamental process of the branch and

bound algorithm. In each iteration of the algorithm, this process finds a lower bound
for v1. For each k ≥ 0, this lower bound LBk is given by

LBk = G(ûk),

where ûk is the incumbent feasible solution for problem (P1); i.e., among all of the
optimal solutions (r, s, t, u, x) for problems of the form PR1(H ) found through iter-
ation k,u = ûk achieves the largest value of G.

Based upon the results and algorithmic processes discussed in this section, the
branch-and-bound algorithm for globally solving problem (P1) may be stated as fol-
lows.

3.1 Branch-and-Bound Algorithm

Initialization:

(i) Choose α ∈ R such that 0 < α ≤ 1/2.
(ii) Determine an optimal solution (r0, s0, t0, u0, x0) and the optimal value UB(H 0)

to problem PR1(H 0). Set UB0 = UB(H 0), LB0 = G(u0), and û0 = u0.
(iii) Set Q0 = {H 0} and k = 1, and go to iteration k.

Iteration k:

(i) If LBk−1 = UBk−1, then terminate. The point ûk−1 is a global optimal solution
for problem (P1) and v1 = LBk−1. If LBk−1 �= UBk−1, continue.
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(ii) Subdivide Hk−1 into two rectangles Hk−1
1 and Hk−1

2 via the bisection of ratio
α procedure.

(iii) For each i = 1,2, find an optimal solution (rk−1
i , sk−1

i , tk−1
i , uk−1

i , xk−1
i ) and

the optimal value UB(Hk−1
i ) to problem PR1(Hk−1

i ).
(iv) Set

LBk = max{G(ûk−1),G(uk−1
1 ),G(uk−1

2 )}
and choose ûk so that LBk = G(ûk).

(v) Set Qk = Qk−1\{Hk−1} ∪ {Hk−1
1 ,Hk−1

2 )}.
(vi) Delete from Qk all rectangles H such that UB(H) ≤ LBk .

(vii) If Qk = ∅, set UBk = LBk , set k = k + 1 and go to iteration k. Otherwise, set

UBk = max{UB(H)|H ∈ Qk}.
(viii) Choose a rectangle Hk ∈ Qk such that

UB(Hk) = UBk.

(ix) Set k = k + 1 and go to iteration k.

For each k ≥ 1, step (vi) of iteration k executes the fathoming process; i.e., it elimi-
nates from further consideration rectangles H that need not be explored further for a
global optimal solution to problem (P1).

4 Convergence and Computational Considerations

By construction, when the branch-and-bound algorithm of Sect. 3 is finite, it termi-
nates for some k ≥ 1 in step (i) of iteration k with a global optimal solution ûk−1 and
the optimal value LBk−1 to problem (P1) at hand. It is also possible for the algorithm
to be infinite. In the latter case, the following result is a key to the convergence of the
algorithm.

Theorem 4.1 Suppose that the branch-and-bound algorithm is infinite. Let {Hq} be
an infinite subsequence of {Hk} generated by the algorithm such that Hq ′ ⊆ Hq

for each rectangle Hq and its successor Hq ′
in the subsequence. Let

⋂
q Hq =

limq Hq = {u∗}. Then u∗ is a global optimal solution for problem (P1).

Remark 4.1 Note that when the algorithm is infinite, it follows from Tuy [3] that a
subsequence {Ht } of {Hk} exists such that Ht ′ ⊆ Ht for each rectangle Ht and its
successor Ht ′ in the subsequence, and, from Corollary 5.4 of Tuy [3], for any such
subsequence {Ht },⋂t H

t = limt H
t = {ũ} for some ũ ∈ R

p . Therefore, whenever
the branch-and-bound algorithm is infinite, a subsequence {Hq} as in the statement
of Theorem 4.1 can be identified.

From Theorem 4.1 and its proof [16], we obtain the convergence properties of the
algorithm given in the next result.
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Corollary 4.1 Suppose that the branch-and-bound algorithm is infinite. Then

(i) Each accumulation point of {ûk} is a global optimal solution for problem (P1).
(ii) Each accumulation point of {uk} is a global optimal solution for problem (P1)

where, for each k (rk, sk, tk, uk, xk) denotes the optimal solution found by the
algorithm to problem PR1(Hk).

(iii) limk→∞ LBk = limk→∞ UBk = v1.

In practice, there are various computational considerations that may be taken into
account when implementing the algorithm. To close this section, we discuss four of
these.

First, users of the algorithm may want to employ a revised termination rule to
guarantee finiteness of the algorithm. Let ε > 0 be a prechosen, relatively-small real
number. A point û ∈ R

p is called an ε-global optimal solution and G(û) is called
an ε-global optimal value for problem (P1) when û ∈ H 0 and G(û) + ε ≥ G(u) for
all u ∈ H 0. An ε-global optimal solution for problem (P) is defined similarly. By
part (iii) of Corollary 4.1, if for each k ≥ 1, we replace step (i) of iteration k of the
algorithm with

“(i) If UBk−1 − LBk−1 ≤ ε, then terminate. The point ûk−1 is an ε-global optimal
solution for problem (P1). Otherwise, continue”,

then the algorithm will be finite and will remain valid. In this case, to recover an
ε-global optimal solution for problem (P), the following result can be used.

Proposition 4.1 Assume that û is an ε-global optimal solution for problem (P1).
Then any point x̂ that solves problem (Su) with u = û is an ε-global optimal solution
for problem (P).

Recall from Sect. 2 for each fixed u ≥ 0 that problem (Su) is a convex pro-
gramming problem. Therefore, from the discussion above and Proposition 4.1, if
the branch-and-bound algorithm with the modified termination rule is used to find
an ε-global optimal solution to problem (P1), the algorithm will be finite, and an
ε-global optimal to problem (P) can be recovered by solving a single convex pro-
gram.

A second computational consideration concerns the definition of H 0. For each
i ∈ I , let

L0
i = min

x∈X
[√fi(x)][gi(x)]. (4)

As noted earlier, for each i ∈ I, qi(x) = [√fi(x)][gi(x)] is a semistrictly quasicon-
cave function on X. From Avriel et al. [15], this implies that qi(x) is quasiconcave
on X for each i ∈ I . Therefore, for each i ∈ I , finding L0

i requires solving a global
optimization problem. However, in some cases, for at least some elements i ∈ I , com-
puting L0

i may not require too much effort. For example, if X is a polytope, then, for
each i ∈ I, qi(x) attains its minimum over X at one of the extreme points of X, and
several relatively-efficient concave minimization algorithms are available for com-
puting L0

i (see, e.g., Benson [20], Horst and Tuy [17]).
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When L0
i , i ∈ I , as defined by (4), can be computed, then, to globally solve prob-

lem (P), a user of the branch-and-bound algorithm may apply the algorithm to prob-
lem (P1) with H 0 redefined as

H 0 = {u ∈ R
p|L0

i ≤ u ≤ U0
i , i ∈ I }.

Since L0
i > 0, i ∈ I , this approach shrinks the domain of problem (P1), and the algo-

rithm may therefore converge more rapidly.
A third computational consideration concerns finding a value for si for each i ∈ I

such that

0 < si ≤ min
x∈X

gi(x). (5)

Let i ∈ I . If gi(x) happens to be an affine function, then a user of the algorithm may
set

si = min
x∈X

gi(x), (6)

since finding the minimum value of gi(x) over X amounts to solving a single convex
program. In this case, the user may also substitute the constraint

si − gi(x) = 0

for the constraint

si − gi(x) ≤ 0

in the definition of problem PR1(H ) for each rectangle H created by the algorithm.
If gi(x) is not affine, then at least three possibilities exist for finding a value for si

that satisfies (5). First, si may simply be chosen to be a positive number of much
smaller magnitude than the values that gi(x) takes over X. Second, si may be chosen
according to (6) by applying an appropriate concave minimization algorithm (see,
e.g., [20] or Horst and Tuy [17]) to the problem

min
x∈X

gi(x). (7)

Third, a value for si may be found that satisfies (5) by initiating an outer approx-
imation algorithm (see Horst and Tuy [17]) on (7) and terminating the algorithm
prematurely. This approach is viable because each iteration of an outer approxima-
tion algorithm for solving (7) gives a lower bound for the optimal value of (7) and the
sequence of lower bounds thereby generated is nondecreasing.

A fourth computational consideration concerns the solution of the convex pro-
gramming problems PR1(H ) for rectangles H generated by the algorithm. For each
k ≥ 1, in step (ii) of iteration k, a parent rectangle Hk−1 is subdivided into two
offspring rectangles Hk−1

1 and Hk−1
2 by the bisection of ratio α procedure. From

the steps of this procedure and the definition of problem PR1(H ), it is evident for
each i = 1,2 that problems PR1(H ) and PR1(Hk−1

i ) differ, at most, in three of
the coefficients of the linear constraints (3a)–(3c). Therefore, an optimal solution
to one problem can be used to good advantage as a starting solution for the next
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problem. A similar comment applies to the solutions of the convex programming
problems (Su). Recall that these problems must be solved during the lower bound-
ing process in order to evaluate G(u) as feasible solutions u for problem (P1) are
found.

5 Sample Problem

With the aid of LINGO (LINDO Systems [21]), we have used the branch-and-bound
algorithm to solve several sample problems. Below we describe one of these sample
problems and solution results. In this problem, LINGO was used to solve the convex
subproblems specified by the algorithm. The ε-global optimal solution and ε-global
optimal value are given to the nearest ten-thousandth.

Example 5.1 This example is in the form of problem (P) and is given by

v = max (x1 − x2) + (5 − 0.25x2
1)(0.125x2 + 1) + (0.25x1 + 1)(4 − 0.125x2

2),

s.t. 5x1 − 8x2 ≥ −24,

5x1 + 8x2 ≤ 44,

6x1 − 3x2 ≤ 15,

4x1 + 5x2 ≥ 10,

x1 ≥ 0.

Let X1 denote the feasible region of this problem. To solve this problem, we wrote
it in the form of problem (P1). In this example, the set of extreme points of X1 was
easy to find, so we were able to compute L0

i , i = 1,2, as defined by (4) by extreme
point search. The resulting problem (P1) in p = 2 variables is

v1 = max G(u1, u2),

s.t. 1.3750 ≤ u1 ≤ 3.1671,

2.1337 ≤ u2 ≤ 5.1567,

where, for each feasible solution (u1, u2) to the problem,

G(u1, u2) = max
x∈X1

[(x1 − x2) + 2u1

√
−0.25x2

1 + 5 − (u2
1/(0.125x2 + 1))

+ 2u2

√
0.25x1 + 1 − (u2

2/(−0.125x2
2 + 4))].

With ε = 0.05, the algorithm found the ε-global optimal solution (û)T =
(1.8695,5.1048) with ε-global optimal value 12.4373 after 77 iterations. The initial
upper bound was 13.3286, and the ε-global optimal value was found during iteration
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number 67. Solving problem (Su) with u = û yields the ε-global optimal solution
(x̂)T = (2.5000,0.0000) to the original formulation of the problem, with ε-global
optimal value 12.4373.

6 Concluding Remarks

In this article, we have introduced the generalized concave multiplicative program-
ming problem (P) for the first time. Problem (P) has numerous practical applications
in economics, statistics, finance, engineering design, and in many other areas. Since
this problem is a global optimization problem, it is particularly challenging to solve.
We have also proposed what is apparently the first algorithm for globally solving
problem (P). The algorithm implements a rectangular, branch-and-bound search and
has several potentially-attractive characteristics. First, the branch-and-bound search
takes place in a space which typically has much smaller dimension than the space
of the problem’s decision variables. Second, all subproblems that must be solved to
implement the algorithm are convex programming problems, each of which is guar-
anteed to have an optimal solution. Third, to speed the solution of these convex pro-
grams, an optimal solution to one problem can be used as a starting solution to the
next problem. It is hoped that this algorithm will offer a potentially useful tool for
globally solving the generalized concave multiplicative programming problem and
its applications.
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