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Abstract An interior-point method (IPM) defines a search direction at each interior
point of the feasible region. These search directions form a direction field, which
in turn gives rise to a system of ordinary differential equations (ODEs). Thus, it is
natural to define the underlying paths of the IPM as the solutions of the system of
ODEs. In Sim and Zhao (Math. Program. Ser. A, 2007, to appear), these off-central
paths are shown to be well-defined analytic curves and any of their accumulation
points is a solution to the given monotone semidefinite linear complementarity prob-
lem (SDLCP). Off-central paths for a simple example are also studied in Sim and
Zhao (Math. Program. Ser. A, 2007, to appear) and their asymptotic behavior near
the solution of the example is analyzed. In this paper, which is an extension of Sim
and Zhao (Math. Program. Ser. A, 2007, to appear), we study the asymptotic behav-
ior of the off-central paths for general SDLCPs using the dual HKM direction. We
give a necessary and sufficient condition for when an off-central path is analytic as a
function of

√
μ at a solution of the SDLCP. Then, we show that, if the given SDLCP

has a unique solution, the first derivative of its off-central path, as a function of
√

μ,
is bounded. We work under the assumption that the given SDLCP satisfies the strict
complementarity condition.
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1 Introduction

The notion of central path was introduced by Sonnevend [1] in 1985 for the interior
point method (IPM). Since then, people realized that the IPM is actually a homo-
topy method following the underlying paths and that many remarkable properties of
the IPM can be attributed to the nice geometry of these paths. Readers interested in
knowing more about the basic geometry of these paths may refer to [2–4].

In [5–9], it was found that, for solving a linear program (LP) or a linear comple-
mentarity problem (LCP), the number of iterations needed by a predictor-corrector
path-following algorithm to reduce the duality gap μ from μ0 to ε > 0 is equivalent to
the integral of the curvature of the central path from μ0 to ε. This equivalence relates
a discrete analysis (complexity analysis) to a continuous analysis (curvature of path)
and thus opens a new way to estimate upper and lower bounds for the complexity
of IPMs. In [10], it is shown that the complexity of their layered least squares path-
following LP algorithm depends only on the constraint matrix, by observing those
regions where the central path is straight or crossing over.

Another important role the underlying paths play in the study of IPMs is to show
its fast local convergence. Classical proof of the local convergence of an iterative
method, such as the Newton’s method, for finding the solution of a system of equa-
tions relies on the nonsingularity of the Jacobian matrix. However, the Jacobian ma-
trix of the equation system defining the central path in an IPM may be singular at the
optimal solution. Thus traditional approach of local convergence analysis does not
work for IPMs. Fast local convergence of IPMs has instead been successfully proved
by relating it to the boundedness of derivatives of the underlying paths in [11–14].

The study of fast local convergence is particularly important for the semidefinite
linear complementarity problem (SDLCP), with the semidefinite program (SDP) as
a special case, because, in contrast to LCP, the exact solution of a SDLCP cannot be
obtained from an approximate solution by determining a complementary basis.

There are various ways in which the underlying paths, using different search di-
rections, for SDLCPs are defined in the literature [15–18]. In [18], a new definition
of the underlying paths of IPMs for SDLCPs, using ordinary differential equations
(ODEs), is proposed. The motivation for defining paths in this way is to relate the
paths to the vector field of search directions of the IPM (see more details in [18]). In
this paper, we use this definition of paths for SDLCPs to study the asymptotic behav-
ior of the paths for general SDLCPs. As mentioned in earlier paragraphs, studying the
asymptotic behavior of paths is important in the investigation of local convergence of
IPMs for SDLCPs.

Throughout what follows, we restrict ourselves to the dual HKM direction and
assume that the SDLCP satisfies strict complementarity. The HKM direction and its
dual are among the most used directions in designing interior point algorithms, be-
sides, the AHO and NT directions. The asymptotic analyticity behavior of off-central
paths for the SDLCP using the AHO direction has been studied in [16, 17]. In [15],
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the asymptotic analyticity behavior of off-central paths for the SDP using the HKM
direction is studied in general. The authors in [15] show that the off-central paths
are analytic as a function of

√
μ in the limit. The off-central paths that the authors

in [15–17] used are defined by algebraic equations and are not directly related to
search directions of the IPM, while in [18] and this paper, they are defined using
ODEs obtained from search directions. In [18], the asymptotic analyticity behavior
of off-central paths, using the dual HKM direction, is investigated for a simple ex-
ample. In this paper, we attempt to investigate the asymptotic behavior of off-central
paths, using the dual HKM direction, for general SDLCPs.

In [18], it is shown, through an example, that there are two sets of off-central paths:
paths in one set are analytic at μ = 0 and those in the other set are not. For that exam-
ple, the authors find a condition which characterizes analytic and nonanalytic paths.
For general problems, similar conditions have not been found. In this paper, we show
that an off-central path (X(μ),Y (μ)) (whose definition is given in Definition 2.1) is
analytic with respect to

√
μ if and only if an off-diagonal submatrix of Y (or X) is

analytic with respect to
√

μ and the submatrix is equal to O(μ) as μ → 0. This result
is interesting on its own.

Another phenomenon observed in [18], again by an example, is that the first deriv-
ative of an off-central path with respect to μ is unbounded as μ → 0. A natural ques-
tion is whether the first order derivative of an off-central path with respect to

√
μ

is bounded as μ → 0. One may guess that the first order derivatives of those non-
analytic paths are likely to be unbounded near μ = 0 even as a function of

√
μ. Our

study in this paper shows a fact contrary to this intuition.
In Sect. 2, we first define SDLCPs and off-central paths for SDLCPs. We also

describe in detail a reformulation of the ODE system that described an off-central
path for the SDLCP. The main result in Sect. 3 is a necessary and sufficient condition
for when an off-central path, as a function of

√
μ (where μ is the parameter of the

path, and proportional to the duality gap between the primal and dual variables), is
analytic at a solution of the SDLCP. This condition is not intuitively obvious and may
provide some insight into the study of asymptotic analyticity behavior of off-central
paths. We also derive in this section a weak sufficient condition for convergence of an
off-central path. In Sect. 4, we show that if the given SDLCP has a unique solution,
then the first derivative of any off-central path, as a function of

√
μ, is bounded.

Finally, we give some concluding remarks and future directions in Sect. 5.

1.1 Notations and Common Definitions

The space of symmetric n × n matrices is denoted by Sn. Given the matrices X and
Y in �p×q , the standard inner product is defined by X • Y ≡ Tr(XT Y ), where Tr(·)
denotes the trace of a matrix. If X ∈ Sn is positive semidefinite (resp., positive defi-
nite), we write X � 0 (resp., X � 0). The cone of positive semidefinite (resp., positive
definite) symmetric matrices is denoted by Sn+ (resp., Sn++). Either the identity matrix
or the identity operator are denoted by I .

‖ · ‖ for a vector in �n refers the Euclidean norm; for a matrix in �p×q , it refers
to the Frobenius norm.

For a matrix X ∈ �p×q , we denote its component at the intersection of the ith
row and j th column by Xij . Also, Xi· denotes the ith row of X and X·j the j th
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column of X. In case X is partitioned into blocks of submatrices, then Xij refers to
the submatrix in the corresponding (i, j) position.

Given the square matrices Ai ∈ �ni×ni , i = 1, . . . ,m, diag(A1, . . . ,Am) is a
square matrix with Ai as its diagonal blocks arranged in accordance to the way they
are lined up in diag(A1, . . . ,Am). All the other entries in diag(A1, . . . ,Am) are taken
to be zero.

Given the functions f : � −→ E and g : � −→ �++, with � an arbitrary set and
E a normed vector space, and given a subset ˜� ⊆ �, we write f (w) = O(g(w))

for all w ∈ ˜� to mean that ‖f (w)‖ ≤ Mg(w) for all w ∈ ˜� and constant M > 0.
Moreover, for a function U : � −→ Sn++, we write U(w) = �(g(w)) for all w ∈ ˜�

if U(w) = O(g(w)) and U(w)−1 = O(g(w)−1) for all w ∈ ˜�. The latter condition
is equivalent to the existence of a constant M > 0 such that

1

M
I � 1

g(w)
U(w) � MI, ∀ w ∈ ˜�.

The meaning of the subset ˜� should be clear from the context whenever it is used.
Usually, ˜� = (0, w̄) for a small w̄ > 0.

A function f = (f1, . . . , fm) from an open subset O of �k to �m is analytic at a
point x = (x1, . . . , xk) ∈ O if each fi , i = 1, . . . ,m, can be written as a convergent
power series expansion about (x1, . . . , xk) in an open neighborhood of x. Further-
more, if x0 ∈ �k is on the boundary of O, we say that f is analytic at x0 (or can be
extended analytically to x0); we let f (x0) = limx→x0 f (x), if there exists an analytic
function g which is analytic at x0 and coincides with f wherever both are defined.

Note that the above applies also if an argument of f is a symmetric matrix, in
which case, we consider the variable to lie in an Euclidean space of appropriate di-
mension. If the range of f is in the space of matrices, we consider also it to be in an
appropriate Euclidean space when considering analyticity, so that the above applies.

2 Formulation and Reformulation of ODEs for the HKM Off-Central Path

Let us consider the following SDLCP:

XY = 0, (1)

A(X) + B(Y ) = q, (2)

X,Y ∈ Sn+ (3)

where A,B : Sn −→ �ñ are linear operators mapping Sn to the space �ñ, where
ñ := n(n + 1)/2. Hence, A and B have the form A(X) = (A1 • X, . . . ,Añ • X)T ,
resp. B(Y ) = (B1 • Y, . . . ,Bñ • Y)T , where Ai,Bi ∈ Sn for all i = 1, . . . , ñ.

We have the following assumption on the SDLCP throughout the paper:

Assumption 2.1

(a) SDLCP is monotone, i.e. A(X) + B(Y ) = 0 for X,Y ∈ Sn ⇒ X • Y ≥ 0.
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(b) There exist X1, Y 1 � 0 such that A(X1) + B(Y 1) = q .
(c) {A(X) + B(Y ) : X,Y ∈ Sn} = �ñ.

The above are basic assumptions used in the literature when SDLCP is studied in the
context of IPMs. Besides Assumption 2.1, we need also another assumption in this
paper, given below.

Assumption 2.2 There exists a strictly complementary solution (X∗, Y ∗) to the
SDLCP (1–3).

The analysis of the asymptotic behavior of an off-central path for a general SDLCP
is considered to be difficult without this assumption (Assumption 2.2). However, we
note that there has been some work done in this area for special classes of SDLCP
without the assumption; see for example [19].

Let us now define the off-central path for SDLCP passing through a point
(X0, Y 0), X0, Y 0 � 0, satisfying A(X) + B(Y ) = q .

Definition 2.1 The solution (X(μ),Y (μ)), μ > 0, to the equations

HP (XY ′ + X′Y) = 1

μ
HP (XY), (4)

A(X′) + B(Y ′) = 0, (5)

with the initial condition (X(1), Y (1)) = (X0, Y 0), X0, Y 0 � 0, is the off-central path
for SDLCP, corresponding to P , passing through (X0, Y 0). Here,

HP (U) := 1

2
(PUP −1 + (PUP −1)T )

and P ∈ �n×n is an invertible matrix.

Assuming that P is an analytic function of X,Y and that the matrix PXYP −1 is al-
ways symmetric (such P include well-known directions like the HKM (and its dual)
and NT directions), it is proved in [18] that the above definition is well-defined, and
that (X(μ),Y (μ)), X(μ),Y (μ) � 0, is unique, analytic over μ ∈ (0,∞). The moti-
vation for defining an off-central path as in Definition 2.1 is also given in [18].

Remark 2.1 The central path (Xc(μ),Yc(μ)) for SDLCP, which satisfies Xc(μ)Yc(μ)

= μI , is a special example of off-central path for SDLCP. When μ = 1, it satisfies

Tr(Xc(1)Yc(1)) = n.

Therefore, we require also the initial data (X0, Y 0) when μ = 1 in (4), (5) to satisfy

Tr(X0Y 0) = n.

In this case, it is easy to see, using (4), that the parameter μ in the ODE system (4),
(5) actually represents the duality gap, X(μ) • Y(μ), at the point (X(μ),Y (μ)) on
the path.
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Using the operation ⊗s and the map svec (with inverse smat), whose properties are
given on pp. 775–776 and the Appendix of [20] (we have listed the properties of
the operation ⊗s and the map svec in the Appendix to this paper for the readers’
convenience), we can rewrite (4), (5) as

⎛

⎜

⎜

⎜

⎝

svec(A1)
T svec(B1)

T

...
...

svec(Añ)
T svec(Bñ)

T

P ⊗s (P −T Y ) (PX) ⊗s P −T

⎞

⎟

⎟

⎟

⎠

(

svec(X′)
svec(Y ′)

)

= 1

μ

(

0
svec(HP (XY))

)

, (6)

where ñ = n(n + 1)/2.
As mentioned in Introduction, we consider only the dual HKM direction in this

paper. This corresponds to P = Y 1/2 [21]. Therefore, (6) becomes
(

A B
I X ⊗s Y−1

)(

svec(X′)
svec(Y ′)

)

= 1

μ

(

0
svec(X)

)

, (7)

with

A =
⎛

⎜

⎝

svec(A1)
T

...

svec(Añ)
T

⎞

⎟

⎠
, B =

⎛

⎜

⎝

svec(B1)
T

...

svec(Bñ)
T

⎞

⎟

⎠
.

As μ → 0, (X(μ),Y (μ)) will tend to the boundary of the feasible region. Thus,
they are expected to be singular at the limit. Therefore, the left-hand matrix in (7) is
not invertible, and may not be defined, in the limit as μ → 0 on an off-central path
for SDLCP. Hence using (7) is not likely to yield results on the asymptotic behavior
of off-central paths for SDLCP. To overcome this, we will make a transformation
to (7). We wish that in the transformed system the coefficient matrix on the left-hand
side will be invertible at μ = 0, and the original and new systems have the same
solution for μ > 0. If such a new system can be formulated and its solution can be
shown to be analytic (with respect to μ or

√
μ) at the μ = 0, then the solution of

the original system can be analytically extended to μ = 0. Therefore, the system of
ODEs obtained after the transformation will provide us an appropriate platform to
answer the question when an off-central path (X(μ),Y (μ)) converges and is analytic
at its limit point.

We attempt only to study the analyticity of an off-central path at its limit point
with respect to

√
μ instead of μ in this paper because

√
μ appears naturally in the

off-diagonal entries of X(μ),Y (μ), as shown in (8) and (9) below. This leads us to
naturally investigate asymptotic behavior of X(μ),Y (μ) with respect to

√
μ first.

In what follows, we suppress occasionally the dependence of a vector or matrix on
its parameters for the sake of clarity. Whether these matrices or vectors are dependent
on a parameter and the parameter involved should be clear from the context.

Let (X∗, Y ∗) be a strictly complementary solution to the SDLCP (1–3), which
exists by Assumption 2.2.

Since X∗ and Y ∗ commute, they are jointly diagonalizable by some orthogonal
matrix. So, using a suitable orthogonal similarity transformation of the matrices in
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the SDLCP (1–3), we may assume without loss of generality, that

X∗ =
(

�∗
11 0
0 0

)

, Y ∗ =
(

0 0
0 �∗

22

)

,

where �∗
11 = diag(λ∗

1, . . . , λ
∗
m) � 0 and �∗

22 = diag(λ∗
m+1, . . . , λ

∗
n) � 0. Here,

λ∗
1, . . . , λ

∗
n are real numbers greater than zero.

Hereafter, whenever we partition a matrix S ∈ Sn, we do it in a similar way; i.e., S

is always partitioned as
(S11 S12

ST
12 S22

)

, where S11 ∈ Sm,S22 ∈ Sn−m and S12 ∈ �m×(n−m).

In order to transform the ODE system (7) into a more “manageable” system of
ODEs, we perform a transformation of variables. For this purpose, we prove first a
few lemmas below. These lemmas are adapted from [17].

Lemma 2.1 On an off-central path, X(μ), Y(μ) are bounded for μ > 0 near 0.

Proof See [22]. �

Lemma 2.2 (see [17], Lemma 3.10) Y11(μ) and X22(μ) are equal to O(μ) and
‖X12(μ)‖ and ‖Y12(μ)‖ are equal to O(

√
μ).

Proof See [22]. �

Lemma 2.3 (see [17], Lemma 3.11) X11(μ) and Y22(μ) are equal to �(1), and
X22(μ) and Y11(μ) are equal to �(μ).

Proof See [22]. �

The above lemmas show that, for an off-central path (X(μ),Y (μ)), we have

X(μ) =
(

X11
√

μ˜X12√
μ˜XT

12 μ˜X22

)

(8)

and

Y(μ) =
(

μ˜Y11
√

μ˜Y12√
μ˜YT

12 Y22

)

, (9)

where X11, Y22, ˜X22, ˜Y11 are equal to �(1) and ‖˜X12(μ)‖,‖˜Y12(μ)‖ are equal to
O(1).

Letting

˜X(μ) =
(

X11 ˜X12

˜XT
12

˜X22

)

and ˜Y (μ) =
(

˜Y11 ˜Y12
˜YT

12 Y22

)

,

we can then write
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X(μ) =
(

I 0
0

√
μI

)

˜X(μ)

(

I 0
0

√
μI

)

,

Y (μ) =
(√

μI 0
0 I

)

˜Y(μ)

(√
μI 0
0 I

)

.

Lemma 2.4 ˜X(μ) and ˜Y (μ) are positive definite for all μ > 0 and any of their accu-
mulation points are also positive definite.

Proof See [22]. �

Let

X1(t) = X(t2), Y1(t) = Y(t2).

Similarly, let

˜X1(t) = ˜X(t2) and ˜Y1(t) = ˜Y(t2).

Then, X1, ˜X1 and Y1,˜Y1 are related by

X1(t) =
(

I 0
0 tI

)

˜X1(t)

(

I 0
0 tI

)

, (10)

Y1(t) =
(

tI 0
0 I

)

˜Y1(t)

(

tI 0
0 I

)

. (11)

To study the analyticity of (X(μ),Y (μ)) with respect to
√

μ at μ = 0 is the same
as studying the analyticity of (X1(t), Y1(t)) when t = 0. The following proposition
shows that it suffices to do this by studying the analyticity of (˜X1(t),˜Y1(t)) at t = 0.

Proposition 2.1 X1(t) is analytic at t = 0 if and only if ˜X1(t) is analytic at t = 0.
Similarly, Y1(t) is analytic at t = 0 if and only if ˜Y1(t) is analytic at t = 0.

Proof See [22]. �

Therefore, by the above proposition, we need study only the analyticity of ˜X1(t)

and ˜Y1(t) at t = 0 to conclude the property for X1(t) and Y1(t). An advantage of using
˜X1(t) and ˜Y1(t) rather than X1(t) and Y1(t) is because their accumulation points are
positive definite, by Lemma 2.4, which is a desirable property.

Hence, we are going to express the system of ODEs (7) in terms of ˜X1 and ˜Y1.
In terms of X1 and Y1, (7) becomes

1

2

(

A B
I X1 ⊗s Y−1

1

)

(

svec(X′
1)

svec(Y ′
1)

)

= 1

t

(

0
svec(X1)

)

. (12)

Let us reiterate again that, if we consider X1 and Y1 on an off-central path, then
the matrix on the extreme left in (12) is not invertible and may not even be defined
as t tends to zero (since Y−1

1 does not exist in the limit); hence it is not possible to
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analyze the asymptotic behavior of X1(t) and Y1(t) if we just use (12). This provides
the motivation for us to express (12) in terms of ˜X1 and ˜Y1, after which we will see
that further analysis is possible.

We have the following proposition:

Proposition 2.2 The off-central path for SDLCP, (X(μ),Y (μ)), μ > 0, is the so-
lution of the system of ODEs (7) with (X(1), Y (1)) = (X0, Y 0), if and only if
(˜X1(t),˜Y1(t)), t > 0, is the solution to the following system of ODEs:

(

A(t) B(t)

I ˜X1 ⊗s
˜Y−1

1

)(

svec(˜X′
1)

svec(˜Y ′
1)

)

=
( −G(t) −H(t)

1
t

(

I 0
0 −I

) ⊗s I − 1
t
(˜X1 ⊗s

˜Y−1
1 )

((

I 0
0 −I

) ⊗s I
)

)

(

svec(˜X1)

svec(˜Y1)

)

, (13)

with (˜X1(1),˜Y1(1)) = (X0, Y 0).
Here X(μ)(= X1(t)), ˜X1(t) and Y(μ)(= Y1(t)), ˜Y1(t) are related by (10)

and (11) respectively, where μ = t2, and

A(t)k· =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

svec
( (Ak)11 t (Ak)12

t (Ak)
T
12 t2(Ak)22

))T
, 1 ≤ k ≤ i1,

(

svec
( 0 (Ak)12

(Ak)
T
12 t (Ak)22

))T
, i1 + 1 ≤ k ≤ i1 + i2,

(

svec
( 0 0

0 (Ak)22

))T
, i1 + i2 + 1 ≤ k ≤ ñ,

(14)

B(t)k· =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

svec
( t2(Bk)11 t (Bk)12

t (Bk)
T
12 (Bk)22

))T
, 1 ≤ k ≤ i1,

(

svec
( t (Bk)11 (Bk)12

(Bk)
T
12 0

))T
, i1 + 1 ≤ k ≤ i1 + i2,

(

svec
( (Bk)11 0

0 0

))T
, i1 + i2 + 1 ≤ k ≤ ñ,

(15)

G(t)k· :=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

svec
( 0 (Ak)12

(Ak)
T
12 2t (Ak)22

))T
, 1 ≤ k ≤ i1,

(

svec
( 0 0

0 (Ak)22

))T
, i1 + 1 ≤ k ≤ i1 + i2,

0, i1 + i2 + 1 ≤ k ≤ ñ,

(16)

H(t)k· :=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

svec
( 2t (Bk)11 (Bk)12

(Bk)
T
12 0

))T
, 1 ≤ k ≤ i1,

(

svec
( (Bk)11 0

0 0

))T
, i1 + 1 ≤ k ≤ i1 + i2,

0, i1 + i2 + 1 ≤ k ≤ ñ.

(17)
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Proof See [22]. �

The importance of this proposition is that the coefficient matrix on the left-hand
side is nonsingular for all t ≥ 0 (even at t = 0), as will be shown in Proposition 2.3
below. This enables us to investigate the asymptotic behavior of the off-central paths
as t → 0 (or μ → 0).

In the following proposition, we observe an important property of the matrix
(A(t) B(t)

I ˜X1⊗s
˜Y−1

1

)

on the left-hand side of the system of equations (13).

Proposition 2.3
(βA(t) βB(t)

I ˜X1⊗s
˜Y−1

1

)

, where β �= 0, β ∈ �, is invertible for all t ≥ 0 and

˜X1, ˜Y1 positive definite.

Proof See [22]. �

Note that the matrix
(A(t) B(t)

I ˜X1⊗s
˜Y−1

1

)

in (13) is invertible at any accumulation point

of (˜X1(t),˜Y1(t)). This follows from Proposition 2.3 since any accumulation point of
˜X1(t) and ˜Y1(t) is positive definite, by Lemma 2.4. This fact implies that the matrix
is still well-defined and invertible at the limit as t tends to zero and this enables us to
study the asymptotic behavior of (˜X1(t),˜Y1(t)).

Using (13), we can give a necessary and sufficient condition for the pair
(˜X1(t),˜Y1(t)) of an off-central path to be analytic at t = 0. This will be studied
in the next section.

3 Asymptotic Analyticity Behavior of a HKM Off-Central Path

First, we have the following technical proposition:

Proposition 3.1 Let (˜X∗
1,˜Y ∗

1 ) be an accumulation point of (˜X1(t),˜Y1(t)) of an off-
central path as t approaches zero. Then,

(˜Y ∗
1 )12 = 0 ⇐⇒

(˜Y ∗
1 )−1

(

I 0
0 −I

)

˜Y ∗
1
˜X∗

1 + ˜X∗
1
˜Y ∗

1

(

I 0
0 −I

)

(˜Y ∗
1 )−1 =

(

2(˜X∗
1)11 0
0 −2(˜X∗

1)22

)

.

Proof See [22]. �

With this technical proposition, the following proposition follows immediately.

Proposition 3.2 Let (˜X1(t),˜Y1(t)) be a solution to the system of ODEs (13) for t > 0.
Suppose ˜X1(t) and ˜Y1(t) converge as t → 0. Then, limt→0(˜Y1)12(t) = 0.
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Proof See [22]. �

We are now ready to state a necessary and sufficient condition for ˜X1(t) and ˜Y1(t)

to be analytic at t = 0. We have the following theorem.

Theorem 3.1 Let (˜X1(t),˜Y1(t)) be a solution to the system of ODEs (13) for t > 0.
Then ˜X1(t), ˜Y1(t) are analytic at t = 0 if and only if (˜Y1)12(t) converges to zero as
t → 0 and is analytic at t = 0.

Proof See [22]. �

From the sufficiency proof of Theorem 3.1, we observe that a sufficient condition
for ˜X1(t), ˜Y1(t), and hence for an off-central path (X(μ),Y (μ)) to converge as t (or
μ) tends to zero is (˜Y1)12(t) = O(tα), that is, Y12(μ) = O(μ0.5(1+α)), for any α > 0.
Therefore, we have the following corollary.

Corollary 3.1 Let (X(μ),Y (μ)) be an off-central path for the SDLCP (1–3), μ > 0,
under Assumptions 2.1 and 2.2. Suppose that Y12(μ) = O(μ0.5(1+α)) for some α > 0.
Then, (X(μ),Y (μ)) converges as μ → 0.

Proof See [22]. �

Remark 3.1 For the special case of the central path, Corollary 3.1 gives a conver-
gence proof of the path to a solution of the SDLCP using the ODE approach, under
the assumption of strict complementarity. Using algebraic geometry results, in [23],
a convergence result is obtained for the central paths of SDPs, without the strict com-
plementarity assumption.

Using Theorem 3.1, we have the main theorem for the section.

Theorem 3.2 Let (X(μ),Y (μ)) be an off-central path for the SDLCP (1–3), μ > 0,
under Assumptions 2.1 and 2.2. Then X(μ),Y (μ) are analytic as a function of t =√

μ at t = 0 if and only if limμ→0 Y12(μ)/μ exists and the analyticity of Y12(μ)/μ

as a function of t = √
μ can be extended to t = 0.

Proof See [22]. �

From Theorem 3.2, we see that the asymptotic analyticity of an off-central path
for SDLCP as a function of

√
μ depends on only the asymptotic analyticity of one

of its off-diagonal entries. This is a rather surprising result. From [18], we know that
not all off-central paths are analytic at the solution of SDLCP. The above theorem
gives a criterion as to when an off-central path for a general SDLCP is analytic at the
solution.

To end this section, we remark that a similar theorem to Theorem 3.2 can also be
stated for the HKM direction.
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4 Boundedness of First Derivative of a HKM Off-Central Path

In [18], the authors show through a simple example that most off-central paths for
the SDLCP, (X(μ),Y (μ)), have unbounded first derivatives as μ tends to zero. This
suggests an undesirable consequence on the local convergence behavior of the IPM,
using the dual HKM direction, on the SDLCP given the close relation between the
boundedness of the derivatives of the off-central paths and the local behavior of inte-
rior point path-following algorithm when the iterates are near the solution of SDLCP.
It turns out that an off-central path for SDLCP, (X(μ),Y (μ)), does not behave too
badly if we perform a slight transformation on the parameter μ. We show in this
section that if we consider (X1(t), Y1(t)) = (X(t2), Y (t2)), where t = √

μ, then the
first derivatives of X1(t) and Y1(t) are bounded as t approaches zero. Note that we
consider only the case when the SDLCP (1–3) has a unique solution. That is, we have
an additional assumption on the SDLCP (1–3).

Assumption 4.1 The SDLCP (1–3) has a unique solution (X∗, Y ∗), which is strictly
complementary.

In this section, we assume without loss of generality that the SDLCP
(1–3) that we consider has already undergone the various equivalent transforma-
tions that we made in Sect. 2. Hence, the unique solution (X∗, Y ∗) can be written as
((

X∗
11 0
0 0

)

,
( 0 0

0 Y ∗
22

))

, where X∗
11, Y

∗
22 � 0.

By uniqueness of the solution to the given SDLCP, we have the following lemma.

Lemma 4.1 If (U11,V22) ∈ Sm × Sn−m is such that

⎛

⎜

⎝

(A1)11 • U11 + (B1)22 • V22
...

(Ai1)11 • U11 + (Bi1)22 • V22

⎞

⎟

⎠
= q1,

then U11 = X∗
11 and V22 = Y ∗

22.

Proof See [22]. �

The above lemma plays an important role in the proof of the boundedness of the
first derivatives of X1(t) and Y1(t) for t close to zero.

We have in Sect. 2 an ODE system for (X1(t), Y1(t)) given by

1

2

(

A B
I X1 ⊗s Y−1

1

)(

svec(X′
1)

svec(Y ′
1)

)

= 1

t

(

0
svec(X1)

)

.

To analyze the behavior of X′
1 and Y ′

1 as t → 0, let us first invert the matrix on the
left-hand side of (12) or the above system.
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Therefore, we have, after simplifications,

(

svec(X′
1)

svec(Y ′
1)

)

= 1

t

⎛

⎜

⎜

⎝

(( I 0

0 tI

) ⊗s

( I 0

0 tI

))

(˜X1 ⊗s
˜Y−1

1 )˜G−1
1 q + svec(X1)

−(( tI 0

0 I

) ⊗s

( tI 0

0 I

))

˜G−1
1 q + svec(Y1)

⎞

⎟

⎟

⎠

, (18)

where

˜G1 = B(t) −A(t)(˜X1 ⊗s
˜Y−1

1 ).

Note that it is advantageous to use (18) to analyze the behavior of X′
1 and Y ′

1
near t equal to zero, since ˜G1 is invertible for all t ≥ 0 and ˜X1,˜Y1 positive definite,
by Proposition 2.3. Hence, the vector on the right-hand side of (18) is defined in the
limit as t tends to zero for (X1(t), Y1(t)) of an off-central path.

We are now ready to state and prove the main theorem in this section.

Theorem 4.1 Under Assumptions 2.1 and 4.1, given an off-central path for the
SDLCP (1–3), (X(μ),Y (μ)), let X1(t) = X(t2) and Y1(t) = Y(t2). We have that
X′

1(t), Y
′
1(t) are bounded near t = 0.

Proof See [22]. �

5 Conclusion and Future Directions

In this paper we study the asymptotic behavior of an off-central path for the SDLCP,
using the dual HKM direction. The purpose of this paper is to provide a framework
upon which the asymptotic behavior of an off-central path for SDLCP, using the dual
HKM direction, can be analyzed, using (13) and (18), which can reveal more about
the properties of off-central paths than (12) near t = 0. From a practical point of view,
we are left with the following open questions:

(Q1) Given a problem in a specific class of SDLCP, how to determine if its paths are
all analytic, all nonanalytic, or a mixture?

(Q2) If a problem has both analytic and nonanalytic paths, what are the practical
conditions to distinguish them?

We do not attempt to answer these questions in this paper. In Sect. 3, we give a nec-
essary and sufficient condition for when an off-central path is analytic as a function
of

√
μ at a solution of SDLCP. This condition is closely related to the analysis of

the asymptotic analytic behavior of the paths for the example in [18]. In [18], we
obtain an algebraic condition for the asymptotic analyticity of the paths for the ex-
ample considered there. Here, we are unable to obtain a similar algebraic condition
and further analysis needs to be done in future to obtain a more practical necessary
and sufficient condition for the asymptotic analyticity. The asymptotic analyticity of
the off-central paths as a function of μ for general SDLCP will also be investigated
as future work. In Sect. 4, we show that an off-central path for the SDLCP, when
viewed as a function of t = √

μ, has bounded first derivative as t approaches zero.
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We assume that the SDLCP has a unique solution which is strictly complementary
in the section. Whether the same result holds without the uniqueness assumption is
still an open question. In [18], it indicates, through an example, that the usual interior
point path-following algorithm, based on paths as a function of μ (where μ repre-
sents the duality gap between the primal and dual variables), may not converge fast
to a solution of the SDLCP in general, since the first derivatives of the paths for the
example are unbounded as μ tends to zero. The results in this section suggests that it
may be worthwhile to investigate and design interior point path-following algorithm,
using underlying paths as a function of

√
μ, instead of μ, whose iterates possibly

converge rapidly to the unique solution of the SDLCP. A similar study on such new
interior point path-following algorithm has been done for the LCPs in [14, 24, 25],
where a parametrization different from the usual one is used for the underlying paths,
as in this paper.

Appendix

If U is an n × n symmetric matrix, then svec(U) is defined by

svec(U) := (u11,
√

2u21, . . . ,
√

2un1, u22,
√

2u32, . . . ,
√

2un2, . . . , unn)
T .

Properties of the symmetrized Kronecker product, ⊗s , used here are:

• (G ⊗s K)svec(H) = 1
2 svec(KHGT + GHKT ).

• svec(G)T svec(K) = G • K .
• G ⊗s K = K ⊗ G.
• (G ⊗s K)T = GT ⊗s KT .
• (G ⊗s K)(H ⊗s L) = 1

2 ((GH) ⊗s (KL) + (GL) ⊗s (KH)).
• If G and K are symmetric and positive definite, then so is G ⊗s K .
• If G is invertible, then G ⊗s G is invertible and (G ⊗s G)−1 = G−1 ⊗s G−1.
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