
J Optim Theory Appl (2007) 134: 353–370
DOI 10.1007/s10957-007-9263-4

New Branch-and-Cut Algorithm for Bilevel Linear
Programming

C. Audet · G. Savard · W. Zghal

Published online: 11 July 2007
© Springer Science+Business Media, LLC 2007

Abstract Linear mixed 0–1 integer programming problems may be reformulated as
equivalent continuous bilevel linear programming (BLP) problems. We exploit these
equivalences to transpose the concept of mixed 0–1 Gomory cuts to BLP. The first
phase of our new algorithm generates Gomory-like cuts. The second phase consists of
a branch-and-bound procedure to ensure finite termination with a global optimal solu-
tion. Different features of the algorithm, in particular, the cut selection and branching
criteria are studied in details. We propose also a set of algorithmic tests and proce-
dures to improve the method. Finally, we illustrate the performance through numeri-
cal experiments. Our algorithm outperforms pure branch-and-bound when tested on
a series of randomly generated problems.

Keywords Bilevel linear programming · Gomory cuts · Linear mixed 0–1 integer
programming · Branch-and-cut algorithms

1 Introduction

Bilevel programming is an optimization problem in which a subset of the decision
variables are constrained to lie in the optimal set of a second optimization problem,
parameterized by the other subset of variables. Closely related to the static Stackel-
berg equilibrium problem [1] and the mathematical programs with equilibrium con-
straints [2], the bilevel programming problem may be expressed as

max
x,y

{f (x, y) : (x, y) ∈ X, y ∈ S(x)}, (1)

Communicated by H.P. Benson.

Work of the authors was partially supported by FCAR, MITACS and NSERC grants.

C. Audet · G. Savard (�) · W. Zghal
GERAD and École Polytechnique de Montréal, Montreal, PQ, Canada
e-mail: gilles.savard@polymtl.ca

354 J Optim Theory Appl (2007) 134: 353–370

where S(x) denotes the set of optimal solutions of a mathematical program parame-
terized by the vector x, i.e.,

S(x) = arg max
w

{g(x,w) : (x,w) ∈ Y }, (2)

where f,g : R
nx+ny → R and X, Y are subsets of R

nx+ny . In game theory terminol-
ogy, the first player, called the leader, optimizes his own problem (1) by anticipating
the optimal reaction w of the second player, called the follower. This formulation cor-
responds to the optimistic formulation and implies that whenever the optimal solution
set S(x) does not reduce to a singleton for some x, the leader may select any solution
w among this indifferent reaction set that suits him best. Conversely, the pessimistic
formulation models the case where the leader protects himself against the worst pos-
sible situation (see Loridan and Morgan [3] for a discussion on these two concepts).
In this paper, we consider the optimistic formulation.

Bilevel programs are intrinsically hard to solve, being typically non convex and
non differentiable. In particular, it has been shown by Jeroslow [4] that linear bilevel
programming BLP, where all functions involved are linear, is NP-hard. This result
has been strengthened by Hansen et al. [5] by showing that BLP is strongly NP-
hard, and refined by Vicente, Savard and Júdice [6] who proved that obtaining a mere
certificate of local optimality is also strongly NP-hard. Due to this intractability, re-
searches on algorithms followed two main areas. The first concerns the theoretical
study of optimality conditions and the development of globally convergent algorithms
for the general bilevel program with a guarantee of suitable stationary conditions. In
this area, we mention work based on an implicit function approach (Outrata, Koc-
vara and Zowe [7]), on a classic approach such as SQP on a one-level reformulation
(Scholtes and Stohr [8]) and on smoothing approaches (Fukushima and Pang [9] and
Dussault et al. [10]). The second area concerns the development of exact algorithms
but is limited to particular subclasses of bilevel programs possessing some combi-
natorial properties such as linearity or bilinearity which allow the development of
efficient approaches. In particular, the property of extremal solution for BLP allowed
the development of exact algorithms based on vertex enumeration (see e.g. Candler
and Townsley [11], Bialas and Karwan [12] and Tuy, Migdalas and Värbrand [13]).
Complementary pivoting approaches (see e.g. Bialas, Karwan and Shaw [14] and
Júdice and Faustino [15]) have been proposed on the one-level optimization problem
obtained by replacing the second level optimization problem by its optimality condi-
tions. Exploiting the complementarity structure of this one-level reformulation, Bard
and Moore [16] and Hansen et al. [5] have proposed branch-and-bound algorithms
which appear to be among the most efficient.

As opposed to branch-and-bound methods, the cutting-plane approach is not fre-
quently used in BLP. This is probably due to the lack of convexity of the induced
region (formally defined in Sect. 2) and the difficulty of characterizing the optimal
solution. Cutting-plane methods found in literature are essentially based on Tuy’s
concavity cuts [17]. White et al. [18] use the aforementioned cuts in their penalty
function approach for solving BLP. For each penalty parameter value, Tuy’s method
is applied in order to maximize a convex function over a polytope. They show that
their approach is not as good as the Bard and Moore [16] branch-and-bound method

J Optim Theory Appl (2007) 134: 353–370 355

but outperforms the algorithm of Bialas and Karwan [12]. Marcotte, Shiquan and
Chen [19] proposed the first, stand alone, cutting-plane algorithm for solving BLP
with a guarantee of finite termination. The algorithm is based on the duality gap and
makes use of Tuy-like cuts [17] in order to shrink the feasible set of the relaxed prob-
lem. The algorithm has not been tested on numerical instances and the authors were
not expecting good results on medium size instances.

In this paper, we propose a finite and exact branch-and-cut algorithm for solving
the linear bilevel programming based on three new classes of valid cuts. We show
that these cuts are useful in reducing the relaxation gap of the one-level formulation
relaxation typically used in the branch-and-bound approaches. Combined within an
enumeration procedure, the resulting algorithm appears to outperform the existing
ones.

This paper is organized as follows. Section 2 contains equivalences between BLP
and the linear mixed 0–1 programming problem MIP0−1. We recall how to refor-
mulate any BLP instance into a MIP0−1 one and vice versa. These equivalences are
exploited in Sect. 3 to transpose the concept of MIP0−1 Gomory cuts into the BLP
framework. The branch-and-cut algorithm is presented in Sect. 4. Finally, numerical
experiments are conducted in Sect. 5 on some standard randomly generated test prob-
lems. An extended version of this work containing numerical results can be found
in [20].

2 Links between BLP and MIP 0–1

In its linear form, the optimistic bilevel programming problem (BLP) is expressed as1

(BLP) max
x,y

c1t x + d1t y

s.t. A1x + B1y ≤ b1, x ≥ 0n1 ,

y ∈ arg max
w

{d2tw : A2x + B2w ≤ b2, w ≥ 0n2},

where: x, c1 ∈ R
n1 , y,w,di ∈ R

n2 , bi ∈ R
mi , Ai ∈ R

mi×n1 , Bi ∈ R
mi×n2 for i =

1,2. The upper level problem (ULP) and the follower subproblem (FSP(x)) are

(ULP) max
x,y

{c1t x + d1t y : A1x + B1y ≤ b1, x ≥ 0n1 , y ≥ 0n2},
(FSP(x)) max

w
{d2tw : B2w ≤ b2 − A2x, w ≥ 0n2}.

The polyhedron defined by both upper and lower level linear constraints is called the
relaxed feasible region:

� = {(x, y) ∈ R
n1 × R

n2 : x ≥ 0n1 , y ≥ 0n2 , Aix + Biy ≤ bi, i = 1,2}.

1We use 1p and 0p to respectively denote a vector of 1 and a vector of 0 with dimension p ∈ N.

356 J Optim Theory Appl (2007) 134: 353–370

We assume throughout this work that the relaxed feasible region is nonempty and
bounded. Boundedness is necessary to the proof of Theorem 4.1. The leader’s relax-
ation problem LRBLP is obtained from BLP by omitting the second-level objective
function:

(LRBLP) max
(x,y)∈�

c1t x + d1t y.

A solution (x, y) ∈ � in which y is optimal for FSP(x) is called rational. The set
of rational solutions is called the induced region. It is a polyhedral set, usually non-
convex which may be disconnected or even empty [21] in presence of upper-level
constraints. When the induced region is nonempty, then an optimal solution of BLP
exists and at least one is attained at an extreme point of the polytope � [21].

We next consider the linear mixed 0–1 programming problem (MIP0−1), which
may be stated in its general form as

(MIP0−1) maxx,u{ctx + etu : Ax + Eu ≤ b, x ≥ 0n1 , u ∈ {0,1}nu}.
Here, x, c ∈ R

nx ; e,u ∈ R
nu ; b ∈ R

m; A ∈ R
m×nx ; E ∈ R

m×nu .
This problem may be reformulated as a bilevel program [22]. Conversely, BLP

may be reformulated into a MIP0−1 [23]. The reformulation is obtained through two
transformations. The first one converts the BLP into a one-level nonlinear program
by replacing the second-level problem by its KKT optimality conditions,

A2x + B2y ≤ b2, λt (b2 − A2x − B2y) = 0, y ≥ 0n2 ,

B2t λ ≥ d2, yt (B2t λ − d2) = 0, λ ≥ 0m2,

where λ ∈ R
m2 . The second transformation consists in linearizing the nonlinear com-

plementarity constraints by introducing two binary vectors u ∈ R
m2 and v ∈ R

n2 and
a sufficiently large finite constant L > 0 (existence of a finite value for L, under the
assumption of a bounded optimal solution, is discussed in [23]) to obtain

b2 −A2x −B2y ≤ L(1m2 −u), λ ≤ Lu, y ≤ L(1n2 −v), B2t λ−d2 ≤ Lv.

This leads to the following equivalent MIP0−1 reformulation of BLP:

(BLPr) max
x,y,λ,u,v

c1t x + d1t y

s.t. A1x + B1y ≤ b1,

A2x + B2y ≤ b2, −B2t λ ≤ −d2,

−A2x − B2y + Lu ≤ L1m2 − b2, λ − Lu ≤ 0m2,

y + Lv ≤ L1n2 , B2t λ − Lv ≤ d2,

x ≥ 0n1 , y ≥ 0n2 , λ ≥ 0m2,

u ∈ {0,1}m2, v ∈ {0,1}n2 .

The interest in these reformulations transcends the simple links between these two
problems. Indeed, these equivalences may be extended to algorithms designed for
them. More precisely, Audet et al. [22] show that solving any linear mixed 0–1

J Optim Theory Appl (2007) 134: 353–370 357

problem by a classical branch-and-bound algorithm [24] is equivalent to solving
its bilevel reformulation with the HJS algorithm [5] as they generate sequences of
subproblems which are identical via the reformulation. Various solution techniques
used for solving mixed 0–1 programs may be specialized for the bilevel linear pro-
grams.

3 Valid Cuts for Bilevel Linear Programming

In this section, we introduce three different types of valid inequalities for the BLP.
The first one is based on MIP0−1 Gomory cuts and is simply called Gomory cut. The
two other types are respectively called simple cuts and extended cuts.

First, recall that Gomory cuts [25, 26] were originally defined for MIP0−1.
They may be generated from any valid equality involving integer variables. Con-
sider the following generic equality

∑
j∈N ajpj + ∑

j∈J gj rj = b, where b ∈ R,
pj ∈ Z+ for j ∈ N = {1,2, . . . , np} and rj ∈ R+ for j ∈ J = {1,2, . . . , nr}, aj ∈ R

and gj ∈ R denote respectively coefficients associated to the variables pj and rj . De-
fine the sets of indices J+ = {j ∈ J : gj > 0} and J− = {j ∈ J : gj < 0}, and define
fj = aj − �aj�,∀j ∈ N and f0 = b − �b� to be the fractional parts of aj and b. The
corresponding Gomory cut may be expressed as

∑

j∈N :fj ≤f0

fjpj + f0

1 − f0

∑

j∈N :fj >f0

(1 − fj)pj +
∑

j∈J+
gj rj

− f0

1 − f0

∑

j∈J−
gj rj ≥ f0. (3)

3.1 Gomory Cuts (GC)

We exploit the mixed reformulation BLPr in order to derive valid cuts for BLP. Con-
sider the following linear relaxation of BLPr where the integrality constraints (corre-
sponding to the complementarity constraints) and binary variables are removed:

(LRP) max
x,y,λ

c1t x + d1t y

s.t. A1x + B1y ≤ b1, A2x + B2y ≤ b2, −B2t λ ≤ −d2,

x ≥ 0n1 , y ≥ 0n2 , λ ≥ 0m2 .

Note that the variables can be partitioned into two disjoint sets involving (x, y)

and λ. Moreover, the disjoint variable λ does not appear in the objective function.
One might be tempted to reduce the size of LRP and simply discard the constraints
involving λ. But, we will not do so, since the main result of this paper is to gen-
erate valid inequalities that involve primal variables x and y and dual variable λ.
Let (x, y,λ) be an optimal solution of the linear program LRP obtained by ap-
plying the simplex algorithm. We define two vectors s,μ ∈ R

n2+m2 as following:
s = [b2 −A2x −B2y, y]T , μ = [λ,B2t λ− d2]T . Hence, complementary constraints
may be expressed as: siμi = 0, ∀i ∈ {1,2, . . . , n2 + m2}. In the unlikely event that

358 J Optim Theory Appl (2007) 134: 353–370

every complementarity constraint is satisfied, the relaxed solution is rational and
therefore optimal for BLP. Now suppose that a complementarity constraint is vio-
lated, i.e. ∃i ∈ {1,2, . . . , n2 + m2} such that siμi
= 0. The choice of such constraint
is discussed in Sect. 4.1. A basic solution of the linear program (LRP) provides an
expression for si and μi ,

si = si0 −
∑

j∈NB

gj zj , (4)

μi = μi0 −
∑

j∈NB

hj zj , (5)

where zj represents a generic non-basic variable, NB is the set of indices of non-
basic variables, si0 and μi0 are respectively the value of si and μi and finally gj and
hj denote respectively the coefficients associated to the variables zj in (4) and (5). Let
J1

+ = {j ∈ NB : gj > 0} and J2
+ = {j ∈ NB : hj > 0}. The next theorem derives a

valid cut for the BLP from the complementarity constraint i.

Theorem 3.1 If the ith complementarity condition is violated by an optimal basic
solution (x, y,λ) of (LRP), then both inequalities

∑

j∈J1
+
gj zj ≥ uisi0, (6)

∑

j∈J2
+
hj zj ≥ (1 − ui)μi0, (7)

where ui ∈ {0,1}, are valid for BLP.

Proof Since the ith complementarity condition is violated, we consider its corre-
sponding constraints

si ≤ L(1 − ui), μi ≤ Lui, ui binary.

By introducing the nonnegative slack variables ω and ω′, one obtains

si + ω = L(1 − ui), μi + ω′ = Lui, ui binary.

Combining the above equations with the expression of si and μi in (4) and (5) yields

Lui + ω −
∑

j∈NB

gj zj = L − si0, (8)

Lui +
∑

j∈NB

hj zj − ω′ = μi0. (9)

Dividing (8) by L > 0 yields

ui + ω

L
−

∑

j∈NB

gj

L
zj = 1 − si0

L
. (10)

J Optim Theory Appl (2007) 134: 353–370 359

Deriving the Gomory cut (3) on equation (10), we obtain

ω

L
−

∑

j∈J−
1

gj

L
zj + 1 − si0/L

si0/L

∑

j∈J+
1

gj

L
zj ≥ 1 − si0

L
, (11)

where J+
1 = {j ∈ NB : gj > 0} and J−

1 = {j ∈ NB : gj < 0}. Combining (10)
and (11), we obtain the first inequality (6). Dividing the equation (9) by −L < 0
yields

−ui + ω′

L
−

∑

j∈NB

hj

L
zj = −μi0

L
. (12)

Deriving the Gomory cut (3) on equation (12), we obtain

ω′

L
−

∑

j∈J−
2

hj

L
zj + 1 − μi0/L

μi0/L

∑

j∈J+
2

hj

L
zj ≥ 1 − μi0

L
, (13)

where J+
2 = {j ∈ NB : hj > 0} and J−

2 = {j ∈ NB : hj < 0}. Combining (12)
and (13), we obtain the inequality (7). �

We will refer to inequalities (6) and (7) as Gomory cuts (GC) for BLP. An impor-
tant feature of these cuts is that they do not involve the large finite constant L. This
constant canceled out when equations (10) and (11) and equations (12) and (13) were
combined.

The same Gomory cuts (6) and (7) may be generated directly from the initial form
of BLP. This gives a different insight to their constructions. To give an alternative
proof of Theorem 3.1, we can consider the general class of linear programming prob-
lems

(P) max
z

{ct z : Az = b, z ≥ 0n},
where A ∈ R

m×n, b ∈ R
m, c ∈ R

n, z ∈ R
n. Let zi be a nonzero basic variable,

zi = zi0 −
∑

j∈NB

gj zj ,

where gj is the coefficient associated to zj . Imposing to zi to be null yields

zi0 −
∑

j∈J−∩NB

gj zj =
∑

j∈J+∩NB

gj zj .

Consequently the following cut:
∑

j∈J+∩NB

gj zj ≥ zi0, (14)

is a necessary condition to get zi = 0. We present an alternative proof of Theorem 3.1
that does not require the mixed reformulation.

360 J Optim Theory Appl (2007) 134: 353–370

Alternative Proof of Theorem 3.1 LRP is a linear program of type P. Substituting
zi0 = si0 in (14) gives (15) and zi0 = μi0 gives (16):

∑

j∈J1
+
gj zj ≥ si0, (15)

∑

j∈J2
+
hj zj ≥ μi0. (16)

At least one of the inequalities (15) and (16) is valid for the BLP. Hence, by introduc-
ing the binary variable ui the same valid inequalities (6) and (7) are derived. �

3.2 Simple Cuts (SC)

The next theorem generates valid cuts that do not involve binary variables when a
complementarity constraint i is violated, i.e. μi0si0
= 0.

Theorem 3.2 The inequality

∑

j∈(J1
+∪J2

+)

zj max

{
gj

si0
,

hj

μi0

}

≥ 1 (17)

is valid for BLP. We refer to inequality (17) as simple cuts (SC) for BLP.

Proof As stated in Sect. 3.1, either (15) or (16) is valid. Dividing the first inequality
by si0 and the second by μi0, one obtains the following inequalities:

∑

j∈J1
+

gj

si0
zj ≥ 1, (18)

∑

j∈J2
+

hj

μio

zj ≥ 1. (19)

Equation (17) follows by applying the disjunctive approach [27] to inequalities (18)
and (19). �

3.3 Extended Cuts (EC)

Binary variables introduced while generating Gomory cuts may appear in a basic
representation of si and μi , i.e. (4) and (5). These variables could be taken into ac-
count in the equation defining the cut. Let J and N denote respectively the sets of
indices of the continuous variables zj and binary variables wj . At any basic solution,
the non-basic variables are equal to zero, and therefore, si and μi may be expressed

J Optim Theory Appl (2007) 134: 353–370 361

as follows:

si = si0 −
∑

j∈NB ∩ J

gj zj −
∑

j∈NB ∩ N

g′
jwj , (20)

μi = μi0 −
∑

j∈NB ∩ J

hj zj −
∑

j∈NB ∩ N

h′
jwj , (21)

where g′
j and h′

j denote the coefficients associated to the variables wj in (20)
and (21). The next theorem gives a valid cut for BLP from the complementarity con-
straint i.

Theorem 3.3 The inequalities

∑

j∈J1
+ ∩ J

gj zj +
∑

j∈N

g′
j
>0, g′

j
<si0

g′
jwj +

∑

j∈N

g′
j
>0, g′

j
≥si0

si0wj ≥ uisi0, (22)

∑

j∈J2
+ ∩ J

hj zj +
∑

j∈N

h′
j
>0, h′

j
<μi0

h′
jwj +

∑

j∈N

h′
j
>0, h′

j
≥μi0

μi0wj ≥ (1 − ui)μi0, (23)

where ui ∈ {0,1}, are valid for BLP.

Proof By deriving the primal cut of GC (6), we obtain

∑

j∈J1
+ ∩ J

gj zj +
∑

j∈N :g′
j >0

g′
jwj ≥ uisi0,

with wj = 0 or wj = 1. Let j ∈ N such that g′
j > si0. Observe that if wj = 0, the

inequality obtained by replacing g′
j by si0 in (6) remains valid; and if wj = 1, then

wj ≥ ui , hence si0wj ≥ si0ui and the inequality obtained by replacing g′
j by si0 in

(6) is also valid. In conclusion, the inequality (22) is valid. In the same way, we prove
the validity of (23) by deriving the dual cut of GC (7). �

We will refer to inequalities (22) and (23) as extended cuts (EC) for BLP.

3.4 Relative Depths of Cuts

We propose to compare the depths of the three cuts: the Gomory cuts, the simple cuts
and the extended cuts. The comparison is based on the next definition.

Definition 3.1 Let �1:
∑

i πi
1zi ≥ π0

1 and �2:
∑

i πi
2zi ≥ π0

2 be two valid cuts.
�1 is deeper than �2 if πi

1 ≤ πi
2, ∀i and π0

1 ≥ π0
2.

Using the previous definition, the following proposition compares the depth of an
extended cut to a Gomory cut.

362 J Optim Theory Appl (2007) 134: 353–370

Proposition 3.1 The extended cuts (EC) are deeper than the Gomory cuts (GC):
more precisely (22) is deeper than (6) and (23) is deeper than (7).

Proof Let πj and π ′
j denote respectively the coefficients associated to the binary

variable wj in (22) and (23). The result follows by observing that πj = min{g′
j , sio} ≤

g′
j and π ′

j = min{h′
j ,μio} ≤ h′

j . �

Simple examples [20] show that there is no systematic dominance for the other
pairs of cuts. Nevertheless, the simple cut has the advantage of not introducing addi-
tional variables.

4 Branch-and-Cut Algorithm for BLP

In this section, we propose a branch-and-cut algorithm for BLP using the cuts de-
scribed in Sect. 3. The algorithm is composed of two phases. The first one (Sect. 4.1)
is a preprocessing phase whose goal is to improve the value of the upper bound on
the objective function value. It is an iterative step where at each iteration a valid in-
equality is generated and added to the linear relaxation. After a maximal number of
iterations, the second phase—an enumeration phase (Sect. 4.2)—is triggered in order
to ensure finite and exact convergence of the algorithm. A full description of the al-
gorithm is given in Sect. 4.3. An academic example is provided in [20] to illustrate
our approach, and to compare the three types of cuts.

4.1 Cutting-Plane Phase

We first propose to perform an iterative preprocessing phase which generates valid
cuts of one of the three types presented in Sect. 3. Each iteration is divided into
four steps: The application of tests [28] to conclude optimality and to terminate the
algorithm, the selection of a complementarity constraint, the introduction of cuts, and
finally the selection of the active ones (through a cleaning procedure).

Application of Tests

A test consists in verifying some properties of the current problem in hopes of con-
cluding optimality or of fixing some variables. We use the terminology presented in
Hansen et al. [28] for classifying tests in branch-and-bound framework.

The procedure first examines the set of complementarity constraints by applying
a rationality and a conditional test. The rationality test checks the rationality of the
LRP optimal solution. In the event that all complementary conditions are satisfied,
then the test concludes that the LRP solution is optimal for the current problem. The
conditional test is applied to all violated complementarity constraints. This test relies
on the following proposition:

Proposition 4.1 Let i be the index of a violated complementarity constraint.
Consider the expression of si (4) and μi (5) obtained after solving LRP with the

J Optim Theory Appl (2007) 134: 353–370 363

simplex algorithm:

(i) If gj ≤ 0, ∀j ∈ NB , then μi = 0 at optimality.
(ii) If hj ≤ 0, ∀j ∈ NB , then si = 0 at optimality.

Proof Since siμi
= 0 then si0 > 0 and μi0 > 0. As stated in Sect. 3.1, the condition∑
j∈J1

+∩NB gj zj ≥ si0 is necessary to get si = 0. In particular, if gj ≤ 0, ∀j ∈ NB ,
then si
= 0 at optimality and hence, μi = 0 at optimality.

The second part of the proposition can be shown in the same way. �

In summary, the conditional test examines the expressions of si and μi . When-
ever all coefficients associated to nonbasic variables in the expression of si (respec-
tively μi) are non positive then μi (respectively si) is fixed at 0.

Selection of a Complementarity Constraint

Let V denotes the set of indices of violated complementarity constraints, and S de-
notes the set of indices of complementarity constraints from which cuts were previ-
ously generated. The efficiency of the cuts procedure relies mainly on the selection
of the constraint i ∈ V from which the cut is generated. We now enumerate different
selection rules used in our algorithm:

(S1) Select an index i ∈ arg maxj∈V (μj sj) (same rule as in [16]).
(S2) If minj∈S{| 1

2 − uj |} = 1
2 then use the rule S1, otherwise select i ∈

arg minj∈S{| 1
2 − uj |}.

(S3) Select the first violated complementarity constraint: i = minj {j ∈ V }.
(S4) Select an index i ∈ arg maxj∈V {min(μj , sj)}.
(S5) Select i = minj {j ∈ V \ S}. If there are none, use S3.
(S6) Select the index i with largest penalty see [20] for details.

Introduction of Cuts

The introduction of cuts consists in adding a cut corresponding to the complementar-
ity constraint i selected by a pre-defined rule. The introduction of both Gomory and
extended cuts also relies on the value of the binary variable ui and on the constant L

appearing the reformulation (BLPr). The scheme for generating the cuts is:

1. If no cuts were previously generated from the complementarity constraint i, we
introduce a variable ui and generate the corresponding Gomory (or extended) cut.

2. Otherwise, the value of ui determines the type of cut: If 0 < ui < 1, we derive the
corresponding Gomory (or extended) cut. If ui = 1, we reintroduce the constraint:
si ≤ L(1 − ui). If ui = 0, we reintroduce the constraint: μi ≤ Lui .
The purpose of reintroducing constraints is to add strong cuts when the Gomory
ones become inefficient.

364 J Optim Theory Appl (2007) 134: 353–370

Cleaning Procedure

This procedure is necessary when the cutting-plane phase of the algorithm fails to
conclude optimality, and thus, the enumeration phase must be invoked. After gen-
erating cuts, the size of the relaxed problem LRP is reduced by removing every cut
whose corresponding slack variables are basic. This procedure aims at keeping the
LRP size small, thus reducing the computational effort in each node of the enumera-
tion tree.

4.2 Branch-and-Bound Phase

The second phase consists in the branch-and-bound algorithm (called HJS) proposed
by Hansen, Jaumard and Savard [5] without computing penalties and without deriving
monotony relations. This method uses two relaxations of the current subproblem: the
leader relaxation LRP which includes the valid cuts generated in preprocessing phase
and the follower relaxation FRP(x̄), which corresponds to the second level problem
with x fixed to x̄. HJS also considers the follower’s subproblem of the initial problem
FSP(x̄) described in Sect. 1.

Branching is done on the tightness of constraints in the follower’s subproblem by
associating a boolean variable αi to the ith complementarity condition. Setting αi

to 1 translates in fixing the ith second level primal constraint to equality in both LRP
and FRP. Setting αi to 0 implies fixing the corresponding dual constraint to equality.
If LRP contains a binary variable ui , then setting αi to 1 (respectively 0) implies
setting ui to 1 (respectively 0). Note that the α variables are not explicitly added to
the problem but are used as flags by the algorithm to manage the enumeration tree.
Any of the following conditions is sufficient to prune the current node:

1. Feasibility Test: Either LRP or the FRP has no feasible solution.
2. Optimality Test: The LRP optimal value is less than or equal to the incumbent

value.
3. Resolution Test: The optimal solution (x̄, ȳ) of LRP is rational.

As in the preprocessing phase, numerous branching rules are used:

(B1) Product Rule: Select αi in such a way that i ∈ arg maxj {sjμj } where the values
of sj and μj are obtained after solving LRP. This rule does not use the infor-
mation provided by FRP(x̄), such as the objective function of the follower’s
problem. This is the rule used by Bard and Moore [16].

(B2) HJS Rule: Same as the product rule, except that the value of μj is obtained
by the solution of the dual problem of FRP(x̄). This rule exploits informations
available in both LRP and FRP problems.

(B3) Max-Min Rule: Select αi in such a way that i ∈ arg maxj {min{sj ,μj }} where
the value of sj is obtained after solving LRP and μj is given by the solution of
the dual problem of FRP(x̄).

4.3 General Scheme of the Algorithm

Based on the two procedures detailed in Sects. 4.1 and 4.2, we propose a branch-
and-cut algorithm (CBB) to solve BLP under the assumption that the relaxed feasible

J Optim Theory Appl (2007) 134: 353–370 365

region is nonempty and bounded. All linear programs are solved by the Simplex
method, and therefore the solutions are vertices. The algorithm is stated as follows:

Phase I: Cutting-Plane Generation
For it = 1,2, . . . ,Max (where Max is the maximum number of iterations allowed)

Step 1. Rationality Test Let (x, y,λ) be an optimal solution of LRP.
If all complementarity constraints are satisfied then end: (x, y) is optimal.

Step 2. Conditional Test Apply the conditional test to all complementarity con-
straints. If any variable was fixed then go to step 1.

Step 3. Selection of a Complementarity Constraint Select a complementarity con-
straint i using a specific selection criterion.

Step 4. Introduction of Cuts Add the cut corresponding to the complementarity con-
straint i.

Phase II: Enumeration (Simplification of HJS [5])
Consider the LRP with the valid cuts generated in phase I and apply the HJS al-
gorithm [5] without computing penalties and without deriving monotony relations.
Further details for PHASE II are given in [20].

Note that in the first iteration of the cutting-plane phase, primal and dual variables
are not coupled in LRP. Therefore, in the first iteration, the rationality test uses λ = λ0
where λ0 is the dual optimal solution of FSP(0).

Theorem 4.1 Under the assumption of a bounded and nonempty relaxed feasible
region, the CBB algorithm solves the BLP in finite time.

Proof The CBB adds a preprocessing step that terminates in finite time to the HJS
algorithm, which was shown to be finite [5]. �

5 Numerical Results

The algorithm CBB was coded in C and uses the CPLEX 8.1 library to solve lin-
ear programs. Computational experiments are carried out on an ULTRA 60 station
under SOLARIS 2.7-05. In order to test the different algorithmic criteria and its ef-
fectiveness, a series of problems was randomly generated with the same sizes as in
Hansen et al. [5] with a density of 8% (the proportion of nonzero matrix entries).
The generating method is inspired by the one detailed in Audet et al. [29] for bi-
linear programming. All coefficients are randomly chosen with a uniform distrib-
ution. Each component of the vectors b1 and b2 is chosen between −40 and 40.
Those of A1 and B2 are chosen between −20 and 20. The elements of the matri-
ces A2 and B1 are taken from the interval [0,20]. The coefficients of the vector c1

belong to the interval [−10,10] and those of d1 belong to [10,20]. The elements of
the vector d2 are chosen between 0 and 10. Finally, the additional second level con-
straint

∑
j∈n1

xj + ∑
j∈n2

yj ≤ n1 + n2 is added to obtain a bounded relaxed prob-
lem.

366 J Optim Theory Appl (2007) 134: 353–370

The constant L required by the Gomory and Extended cuts was fixed to 100. The
entries in the following tables are mean values μ and standard deviation σ for 10
randomly generated problems.

A first class of tests aimed at streamlining the cutting-plane phase without
the cleaning procedure. In each series of experiments, the quality of the upper
bound is assessed by computing the relative decrease of the objective function δ =
(Fn − Fopt)/(Fini − Fopt) where Fn is the value of the objective function after n cuts
iterations, Fini is the initial value and Fopt is the optimal value. Results are reported
in [20]. Note that the results obtained by applying extended cuts are the same as
those obtained with Gomory cuts. Results show that the quality of the upper bound
is sensitive to the selection criterion. The best results are obtained by applying S1,
S2 or S6. The first rule S1 was adopted in the remaining experiments since it re-
quires less computational effort. In all series of tests the simple cuts outperforms the
Gomory cuts. This observation is illustrated in the top part of Fig. 1 which reports the
mean decrease of the objective function δ versus the number of cutting-plane itera-
tions. There is a strict monotonic decrease in the average upper bound as the number
of cuts increases. The decrease in the objective function value reaches 24% using
Gomory cuts and 36% using simple cuts. This decrease leads to a reduction of the
number of nodes in branch-and-bound trees [20]. As expected, a significant reduction
of the number of nodes in branch-and-bound tree is obtained when adding cuts. The
bottom part of Fig. 1 presents the mean size of branch-and-bound tree in function of
the cut generation iteration number. The average reduction in the number of nodes
reaches 43% using simple cuts and 31% using Gomory cuts. These results are the
first premises of the effectiveness of our algorithm and introduce the second class of
experiments in which we study the entire branch-and-cut algorithm by computing the
number of the branching nodes (nds) and the branching time (T(s), in second) since
the time of cutting-plane phase never exceeds 0.1 s. In these series of experiments,
the cleaning procedure is activated in order to reduce the branching time. Results
show an extreme sensitivity of the number of nodes and cpu time to the selected
branching rule. As in [5], the most efficient branching rule is HJS rule (see [20] for
numerical results). The last series of experiments aims at evaluating the effectiveness
of our algorithm. Table 1 compares the results of the pure branch-and-bound algo-
rithm B&B with two versions of our branch-and-cut algorithm (CBB) using HJS rule
with �m2

3 � Simple cuts iterations. The first version (CBB1) does not call the cleaning
procedure but the second one does. In addition to the number of nodes, the branch-
ing time and the objective function decrease, the table displays improvements rate
(%) for comparison with pure branch-and-bound. These numerical experiments sug-
gest that the branch-and-cut algorithm CBB(2) outperforms pure branch-and-bound
in terms of number of nodes explored and computing times on all series of prob-
lems excepted the series 7 and 8 where B&B takes slightly less time than CBB(2).
Moreover, the cleaning procedure appears to enhance the computational results. This
procedure reduces considerably the computational efforts: The mean improvement
of computational time shifts from 26% to 31% in comparison to pure branch-and-
bound.

J Optim Theory Appl (2007) 134: 353–370 367

Fig. 1 Average decrease in the objective function value of LRP and of the number of nodes generated by
the enumeration scheme

368 J Optim Theory Appl (2007) 134: 353–370

Ta
bl

e
1

C
om

pa
ri

so
n

be
tw

ee
n

B
&

B
,C

B
B

1
an

d
C

B
B

2

A
lg

or
ith

m
B

&
B

C
B

B
(1

)
C

B
B

(2
)

Pr
ob

le
m

N
od

es
t(

s)
δ
(%

)
N

od
es

t(
s)

δ
(%

)
N

od
es

t(
s)

1
n

1
=

35
,
n

2
=

35
μ

|σ
28

51
|35

88
3.

8|5
.0

30
.5

|23
.9

18
68

|30
93

2.
9|5

.0
2

21
.6

|13
.1

20
33

|30
27

3.
0|4

.7

m
1

=
7,

m
2

=
21

%
–

–
–

34
.4

%
23

.6
%

–
28

.6
%

21
.0

%

2
n

1
=

60
,
n

2
=

30
μ

|σ
34

22
|77

89
6.

3|1
4.

4
43

.8
|20

.8
76

5|7
38

1.
8|1

.8
43

.8
|20

.8
76

6|7
38

1.
7|1

.7

m
1

=
9,

m
2

=
27

%
–

–
–

77
.6

%
71

.8
%

–
77

.6
%

73
.4

%

3
n

1
=

45
,
n

2
=

45
μ

|σ
16

51
3|1

51
68

33
.0

|31
.7

25
.9

|12
.7

10
04

9|5
01

0
22

.9
|11

.8
25

.9
|12

.7
10

04
3|5

00
2

21
.8

|11
.3

m
1

=
9,

m
2

=
27

%
–

–
–

39
.1

%
30

.6
%

–
39

.1
%

33
.9

%

4
n

1
=

70
,
n

2
=

30
μ

|σ
28

60
|26

17
6.

4|5
.9

47
.1

|0.
26

12
66

|17
22

3.
5|4

.7
36

.5
|0.

3
18

65
|19

82
4.

9|5
.2

m
1

=
10

,
m

2
=

30
%

–
–

–
55

.7
%

45
.3

%
–

34
.7

%
23

.4
%

5
n

1
=

60
,
n

2
=

40
μ

|σ
17

28
9|2

55
08

40
.3

|61
.2

46
.2

|18
.3

69
55

|99
46

18
.5

|24
.4

46
.2

|18
.3

68
12

|95
37

16
.7

|21
.0

m
1

=
10

,
m

2
=

30
%

–
–

–
59

.7
%

54
.0

%
–

60
.6

%
58

.5
%

6
n

1
=

50
,
n

2
=

50
μ

|σ
23

77
0|1

90
01

55
.1

|45
.5

28
.4

|17
.1

10
80

8|1
07

98
30

.3
|31

.6
25

.4
|19

.3
10

66
8|1

08
12

27
.6

|29
.5

m
1

=
10

,
m

2
=

30
%

–
–

–
54

.5
%

45
.0

%
–

55
.1

%
49

.9
%

7
n

1
=

70
,
n

2
=

50
μ

|σ
77

50
3|7

71
99

23
4|2

26
22

.6
|14

.9
66

85
7|4

48
16

25
2|1

63
22

.6
|15

.0
67

65
3|4

46
45

23
4|1

54

m
1

=
12

,
m

2
=

36
%

–
–

–
13

.7
%

−7
.7

%
–

12
.7

%
−0

.3
%

8
n

1
=

60
,
n

2
=

60
μ

|σ
14

63
53

|10
32

68
46

7|3
37

.4
18

|16
.5

13
50

63
|97

95
3

55
0|4

11
18

|16
.5

13
50

15
|97

94
9

48
8|3

69

m
1

=
12

,
m

2
=

36
%

–
–

–
7.

7%
−1

7.
7%

–
7%

−4
.5

%

9
n

1
=

70
,
n

2
=

60
μ

|σ
26

94
60

|43
44

65
10

02
|16

41
41

|17
22

71
26

|31
10

61
10

72
|14

44
35

|19
18

61
67

|30
20

49
75

2|1
20

4

m
1

=
13

,
m

2
=

39
%

–
–

–
15

.7
%

−7
.0

%
–

30
.9

%
24

.9
%

J Optim Theory Appl (2007) 134: 353–370 369

6 Conclusions

Based on the links that unify the bilevel linear programming BLP and mixed linear
programming MIP0−1, this paper presents different valid inequalities for the BLP.
A branch-and-bound algorithm (CBB) based on the aforementioned cuts in a pre-
processing phase is proposed. Tested in a series of randomly generated problems, the
CBB outperforms the pure branch-and-bound algorithm in terms of computing times,
reduction of gap between upper and lower bounds on the objectives and in terms of
number of nodes explored by the B&B.

References

1. Van Stackelberg, H.: The Theory of Market Economy. Oxford University Press, Oxford (1952)
2. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge

University Press, Cambridge (1996)
3. Loridan, P., Morgan, J.: ε-Regularized two-level optimization problems: approximation and existence

results. In: Fifth French-German Conference on Optimization. Lecture Notes in Mathematics, vol.
1405, pp. 99–113. Springer, Berlin (1989)

4. Jeroslow, R.: The polynomial hierarchy and a simple model for competitive analysis. Math. Program.
32, 146–164 (1985)

5. Hansen, P., Jaumard, B., Savard, G.: New branch-and-bound rules for linear bilevel programming.
SIAM J. Sci. Stat. Comput. 13, 1194–1217 (1992)

6. Vicente, L.N., Savard, G., Júdice, J.J.: Discrete linear bilevel programming problem. J. Optim. Theory
Appl. 89, 597–614 (1996)

7. Outrata, J.V., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilib-
rium Constraints. Kluwer Academic, Dordrecht (1998)

8. Scholtes, S., Stohr, M.: Exact penalization of mathematical programs with equilibrium constraints.
SIAM J. Control Optim. 37, 617–652 (1999)

9. Fukushima, M., Pang, J.S.: Complementarity constraint qualifications and simplified b-stationarity
conditions for mathematical programs with equilibrium constraints. Comput. Optim. Appl. 13, 111–
136 (1999)

10. Dussault, J.-P., Marcotte, P., Roch, S., Savard, G.: A smoothing heuristic for a class of bilinear bilevel
programs. Cahier du GERAD, GERAD (2004)

11. Candler, W., Townsley, R.: A linear two-level programming problem. Comput. Oper. Res. 9, 59–76
(1982)

12. Bialas, W., Karwan, M.: Two-level linear programming. Manag. Sci. 30, 1004–1020 (1984)
13. Tuy, H., Migdalas, A., Värbrand, P.: A global optimization approach for the linear two-level program.

J. Glob. Optim. 3, 1–23 (1993)
14. Bialas, W., Karwan, M., Shaw, J.: A parametric complementarity pivot approach for two-level linear

programming. Operations Research Program Report 80-2, State University of New York at Buffalo
(1980)

15. Júdice, J., Faustino, A.: A sequential LCP method for bilevel linear programming. Ann. Oper. Res.
34, 89–106 (1992)

16. Bard, J.F., Moore, J.: A branch-and-bound algorithm for the bilevel programming problem. SIAM J.
Sci. Stat. Comp. 11, 281–292 (1990)

17. Tuy, H.: Concave programming under linear constraints. Sov. Math. 5, 1437–1440 (1964)
18. White, D., Anandalingam, G.: A penalty function approach for solving bilevel linear programs.

J. Glob. Optim. 3, 397–419 (1993)
19. Marcotte, P., Shiquan, W., Chen, Y.: A cutting-plane algorithm for the linear bilevel programming

problem. CRT Report 925 (1993)
20. Audet, C., Savard, G., Zghal, W.: New branch-and-cut algorithm for bilevel linear programming.

GERAD Report G-2004-13, GERAD (2004)
21. Savard, G.: Contributions à la programmation mathématiques à deux niveaux. PhD Thesis, École

Polytechnique de Montréal (1988)

370 J Optim Theory Appl (2007) 134: 353–370

22. Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and mixed 0–1 program-
ming problems. J. Optim. Theory Appl. 93, 273–300 (1997)

23. Fortuny-Amat, J., McCarl, B.: A representation and economic interpretation of a two-level program-
ming problem. J. Oper. Res. Soc. 32, 783–792 (1981)

24. Beale, E.M.L., Small, R.E.: Mixed integer programming by a branch-and-bound technique. Proc. 3rd
IFIP Congress 2, 450–451 (1965)

25. Gomory, R.: An algorithm for the mixed integer problem. Technical Report RM-2537, Rand Corpo-
ration (1960)

26. Nemhauser, G.L., Wolsey, L.A.: Integer Programming and Combinatorial Optimization. Wiley–
Interscience, New York (1988)

27. Wolsey, L.A.: Integer Programming. Collection Wiley–Interscience Series in Discrete Mathematics
and Optimization. Wiley–Interscience, Hoboken (1998)

28. Hansen, P., Jaumard, B., Lu, S.H.: A framework for algorithms in globally optimal design. J. Mech.
Trans. Autom. Des. 111, 353–360 (1989)

29. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A symmetrical linear maxmin approach to disjoint
bilinear programming. Math. Program. 85, 573–592 (1999)

	New Branch-and-Cut Algorithm for Bilevel Linear Programming
	Abstract
	Introduction
	Links between BLP and MIP 0-1
	Valid Cuts for Bilevel Linear Programming
	Gomory Cuts (GC)
	Simple Cuts (SC)
	Extended Cuts (EC)
	Relative Depths of Cuts

	Branch-and-Cut Algorithm for BLP
	Cutting-Plane Phase
	Application of Tests
	Selection of a Complementarity Constraint
	Introduction of Cuts
	Cleaning Procedure

	Branch-and-Bound Phase
	General Scheme of the Algorithm

	Numerical Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

