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Abstract We develop a primal-dual simplex algorithm for multicriteria linear pro-
gramming. It is based on the scalarization theorem of Pareto optimal solutions of
multicriteria linear programs and the single objective primal-dual simplex algorithm.
We illustrate the algorithm by an example, present some numerical results, give some
further details on special cases and point out future research.
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1 Introduction

Multiobjective linear programming has been a topic of research since the 1960s. Nat-
urally, early research focused on extensions of the simplex algorithm to deal with
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multiple objectives. Algorithms based on the simplex method have been proposed,
see the brief review and the references in [1]. Steuer developed an implementation
(called ADBASE [2]) of his multicriteria simplex method.

More recently, algorithms to solve multiobjective linear programs (MOLP) in ob-
jective space have been developed. These are motivated by the fact that the dimension
of the objective space is usually much smaller than the one of the decision space, and
therefore the number of efficient extreme points in objective space is much smaller
than the number of Pareto optimal extreme points in decision space. Research along
these lines is included in [3] and the references therein.

After the discovery of interior point algorithms to solve linear programs (LP) in
polynomial time, efforts to apply such methods to deal with MOLP are evident, most
notably [4], and other works which comprise both affine scaling [5] and primal-dual
[6] interior point methods to find a most preferred Pareto optimal solution for a deci-
sion maker.

Another focus of interest in MOLP is based on scalarization. Recall that every
Pareto optimal solution of an MOLP is an optimal solution of a scalar LP that min-
imizes a weighted sum of the objectives. This has drawn interest to weight space
decomposition methods. Such decomposition can be done with respect to efficient
bases of the MOLP or with respect to extreme points of the Pareto optimal set in
decision space or the efficient set in outcome space [7, 8].

Duality theory of (single objective) linear programming is the basis of the primal-
dual simplex algorithm. Duality theory for multiobjective linear programming has
been studied (see, e.g., [9]) but as far as we know that has not lead to the develop-
ment of dual or primal-dual simplex methods for multiobjective linear programming.
One of the reasons for this might be that multiobjective duality theory cannot easily
be used to develop an algorithm analogous to the single objective case, due to the
different structure of the complementary slackness condition.

However, primal-dual simplex algorithms have proven to be very efficient for sev-
eral classes of single objective linear programming problems, in particular those re-
lated to network optimization problems. These include the Hungarian method for
assignment problems, the augmenting path method for minimum cost flow problems,
Dijsktra’s algorithm for shortest path problems, etc. (see, e.g., [10]).

In this paper we introduce a primal-dual simplex algorithm for MOLP in order to
investigate whether these features can be extended to multiobjective problems. We
develop this algorithm with a view to applications in network optimization problems.
As in the single objective case, it cannot be expected that the primal-dual simplex
algorithm is competitive with primal simplex algorithms for solving a general mul-
tiobjective linear program. But when solving an LP with a network structure, some
steps of the primal-dual simplex algorithm can be carried out very efficiently. Once
a primal-dual simplex algorithm for multiobjective linear programming is available,
these issues can be investigated for the multiobjective case, too.

In this paper we use scalarization of MOLP and single objective duality theory to
develop such an algorithm. In addition to finding efficient solutions of a multiobjec-
tive linear program our algorithm will also compute a weight space decomposition.
This is extremely important for the development of algorithms to solve multiobjec-
tive combinatorial optimization problems. Most exact algorithms for these problems
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are based on the two phase method (see, e.g., [11]). This approach implies finding so-
lutions of weighted sum scalarizations of these problems in the first phase, yielding
supported Pareto optimal solutions (or supported efficient points) and the associated
weight space decomposition. The second phase uses the weight space decomposition
to find Pareto optimal solutions that are not optimal for any weighted sum problem.
At present, the two phase method has been very successfully used for biobjective
combinatorial optimization problems, but not yet for more than two objectives. Thus,
if our primal-dual simplex method can be applied to solve linear network problems
with three criteria, an important advance in the solution of integer network problems
with three criteria can be made. For this research to become possible, we develop a
multicriteria primal-dual simplex algorithm in this paper.

2 Multiobjective Linear Programming

We consider the following multiobjective linear programming problem:

(MOLP) min
(
(c1)T x, . . . , (ck)T x

)T
,

s.t. Ax = b,

x ≥ 0,

where ci ∈ R
n for i = 1, . . . , k are the objective functions, A ∈ R

m×n is the constraint
matrix, b ∈ R

m is the right hand side vector and x ∈ R
n is a vector of variables.

The superscript T over a vector or matrix denotes the transpose of the corresponding
vector or matrix. We shall denote the feasible set of the MOLP by X. In the following
we assume, without loss of generality, that X is non empty. The objective function
can be written as CT x, where C ∈ R

n×k has columns ci .
A solution x∗ ∈ X of MOLP is (weakly) Pareto optimal if there is no x ∈ X such

that CT x ≤ CT x∗ and CT x �= CT x∗ (CT x < CT x∗). If x∗ is (weakly) Pareto opti-
mal, CT x∗ is called (weakly) efficient. The set of Pareto optimal solutions is denoted
by XPar and the set of efficient points is denoted Yeff := CT XPar.

A fundamental result of multiobjective linear programming states that (weakly)
Pareto optimal solutions of MOLP can be characterized as optimal solutions of single
objective linear programs with a convex combination of objectives ci, i = 1, . . . , k.

Let � = {λ ∈ R
k : λ ≥ 0,

∑k
i=1 λi = 1} and �0 = {λ ∈ R

k : λ > 0,
∑k

i=1 λi = 1}. We
will refer to � respectively �0 as parameter space or weight space.

Theorem 2.1 A feasible point x ∈ X is (weakly) Pareto optimal for MOLP if and
only if there exists λ ∈ �0 (λ ∈ �) such that x is an optimal solution of

(P(λ)) min c(λ)T x :=
k∑

i=1

λi(c
i)T x,

s.t. Ax = b,

x ≥ 0.
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A proof of this result can be found in [12]. In the following, we will refer to the
components of the vector

c(λ)T = (c1(λ), . . . , cn(λ)),

with

cj (λ) =
k∑

i=1

λic
i
j , for j = 1, . . . , n.

Our algorithm is based on duality theory of P(λ). The dual D(λ) of P(λ) is given by

(D(λ)) max uT b,

s.t. uT A ≤ c(λ)T .

From duality theory follows that the complementary slackness conditions between
P(λ) and D(λ) in our case are: If x is primal feasible and u is dual feasible, then x

and u are optimal for their respective problems if and only if (uT A − c(λ)T )x = 0.

Combining Theorem 2.1 and the complementary slackness condition we get:

Theorem 2.2 A feasible solution x ∈ X is (weakly) Pareto optimal for MOLP if and
only if there exists some λ ∈ �0 (∈ �) and u being a feasible solution of D(λ) such
that (uT A − c(λ)T )x = 0.

In order to develop the primal-dual multiobjective simplex algorithm it is neces-
sary to have feasible dual problems. Notice that this is the same hypothesis made in
the scalar case. For any λ ∈ �, dual feasibility implies boundedness of the objective
value of P(λ). One condition to guarantee this is stated in the following lemma.

Lemma 2.1 The problems D(λ) are feasible ∀λ ∈ � if min{cT x : x ∈ X} is bounded
∀c in cone(C), where cone(C) is the cone generated by the columns of C.

Corollary 2.1 Let c̄ be the componentwise minimum of the vectors ci , i = 1, . . . , k.
Then, D(λ) is feasible for all λ ∈ � if min{c̄T x : x ∈ X} is bounded.

Special easy and interesting cases, because all the combinatorial optimization
problems belong to this class, are those cases where all ci ≥ 0 for i = 1, . . . , k or
X is a bounded set. In the former case, u = 0 is a feasible solution of D(λ) ∀λ ∈ �.
In the latter case c̄ guarantees feasibility, in fact, this condition is stronger because it
ensures that there exists a common feasible point for D(λ) ∀λ ∈ �.

3 Primal-Dual Simplex Algorithm for Multiobjective Linear Programming

As pointed out in the introduction, it is well-known in the multiobjective linear pro-
gramming literature that there exists a finite partition of the parameter space � such
that any Pareto optimal solution of MOLP is associated with an element of this par-
tition. Therefore, it is worth analyzing the structure of the primal-dual subsets of the
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parameter space. In the description of the algorithm, we follow [13] and make adap-
tations where necessary.

Let us assume that we are given a set �̄ ⊂ � and a dual solution u�̄ which is
feasible for D(λ) for all λ ∈ �̄ (we will briefly discuss how to deal with other cases
in Sect. 5). For λ ∈ �̄, we define the set

Q(λ) = {
j : (u�̄)T aj = cj (λ)

}
, (1)

where aj is the j th column of matrix A. Notice that there might be different sets
Q(λ) for different values of λ ∈ �̄. We will say that �̂ ⊂ � is maximal with respect
to Q(λ) if, for some λ̂ ∈ �̂,

Q(λ̂) = Q(λ), ∀λ ∈ �̂ and Q(λ̂) �= Q(λ), ∀λ ∈ � \ �̂. (2)

Therefore, for any maximal set �̂ we denote Q(�̂) = Q(λ̂) for some λ̂ ∈ �̂ and set
u

�̂
(λ) = u�̄ ∀λ ∈ �̂. For this set Q(�̂), we define the restricted primal problem

(RP(�̂)) min 1T y,

s.t. Ax + y = b,

xi = 0, i �∈ Q(�̂),

x, y ≥ 0,

where 1 is a vector of ones. If the optimal objective value of RP(�̂) is zero, its optimal
solution x̂ is optimal for P(λ) for any λ ∈ �̂. This follows easily from the single
objective primal-dual algorithm and complementary slackness conditions, just as in
the single objective case. If this, however, is not the case, we can formulate the dual
of RP(�̂), called DRP(�̂),

(DRP(�̂)) max wT b,

s.t. wT aj ≤ 0, j ∈Q(�̂),

w ≤ 1.

Let ŵ(�̂) be an optimal solution of DRP(�̂). If there is no j �∈ Q(�̂) such that
ŵ(�̂)T aj > 0 we conclude that P(λ) is infeasible for all λ ∈ �̂, a fact which again
follows easily from the single objective primal-dual algorithm and complementary
slackness. In this case MOLP is infeasible. Otherwise we define, for λ ∈ �̂,

ε̂(λ) = min
j

{
cj (λ) − (u

�̂
(λ))T aj

ŵ(�̂)T aj

: ŵ(�̂)T aj > 0

}
. (3)

Notice that ε̂(λ) might have different definitions for different values of λ ∈ �̂. We will
say that �∗ ⊂ �̂ is maximal with respect to ε̂(λ) if for some j such that ŵ(�̂)T aj > 0
it satisfies

ε̂(λ) = cj (λ) − (u
�̂
(λ))T aj

ŵ(�̂)T aj

, ∀λ ∈ �∗, (4a)

ε̂(λ) �= cj (λ) − (u
�̂
(λ))T aj

ŵ(�̂)T aj

, ∀λ ∈ �̂ \ �∗. (4b)
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Denote

ε̂�∗(λ) = ε̂(λ), λ ∈ �∗.

Then, define

u�∗(λ) = u
�̂
(λ) + ε̂�∗(λ)ŵ(�̂), ∀λ ∈ �∗. (5)

In this way we arrive at a refinement of �̄ into a partition of smaller sets �∗ ⊂ �̄, for
each of which we know an improved dual feasible solution u�∗(λ) that is feasible for
D(λ) for all λ ∈ �∗. We can now treat these sets �∗ as new sets �̄ and continue in
the same way.

Notice that the restricted primal and dual problems RP(�̂) and DRP(�̂) depend
on �̂ only in the way the columns from A are chosen according to Q(�̂). However,
the coefficients of those problems are independent of any λ values so that ŵ(�̂)

is well defined. The previous description leads to the formulation of Algorithm 3.1
as a branching scheme reflecting refinements of the partition of �̂ according to the
computation of Q(�̂) and ε̂�∗(λ).

Algorithm 3.1 (Primal-dual simplex method for MOLP)

Step 1 Choose u�̄, a dual feasible solution of D(λ) for all λ ∈ �̄ and compute the
partition {�̂i : i ∈ I0} of �̄ in the sense of (2).

Step 2 For each i ∈ I0, compute Q(�̂i) as in (1), set u
�̂i

(λ) = u�̄ for all λ ∈ �̂i and

L= L∪ {(�̂i , u�̂i
(λ)}.

Step 3 While L �= ∅, choose (�̂, u
�̂
(λ)) ∈ L and solve RP(�̂).

• If the optimal value is 0, stop consideration of �̂. An optimal solution of
P(λ) for all λ ∈ �̂ is found. Set L= L \ {(�̂, u

�̂
(λ))}.

• Otherwise solve DRP(�̂) and let ŵ(�̂) be an optimal solution.
– If there is no j �∈ Q(�̂) such that ŵ(�̂)T aj > 0, P(λ) is infeasible for all

λ ∈ �̂ and the multiobjective linear program is infeasible.
– Otherwise, compute the partition {�∗

l : l ∈ I ∗} of �̂, where each �∗
l is

maximal in the sense (4). For each l ∈ I ∗, compute ε̂�∗
l
(λ) according to

(3) and update u�∗
l
(λ) according to (5). Compute Q(�∗

l ) and set L =
L∪ {(�∗

l , u�∗
l
(λ))}. Set L= L \ {(�̂, u

�̂
(λ))}.

In order to prove finiteness and correctness of the algorithm, we first prove that u

is always an affine function of λ.

Lemma 3.1 At each stage of the algorithm, u
�̂
(λ) is an affine function of λ ∈ �̂.

Proof At step 1, u
�̂
(λ) = u�̄ is constant. Now assume u

�̂
(λ) is an affine function of

λ for λ ∈ �̂. We show that it remains an affine function of λ after the update (5) in
step 3. For any �∗ ⊂ �̂ as in the algorithm u�∗(λ) = u

�̂
(λ)+ ε̂�∗(λ)ŵ(�̂) ∀λ ∈ �∗.

Here u
�̂
(λ) is an affine function of λ by assumption, ŵ(�̂) is constant and ε̂�∗(λ)

is of the form (cj (λ) − u
�̂
(λ)T aj )/ŵ(�̂)T aj . By assumption on u

�̂
(λ), because

ŵ(�̂) is constant, and because cj (λ) is affine in λ this is an affine function of λ. �
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Theorem 3.1 Let the MOLP be nondegenerate. Then, Algorithm 3.1 is finite and at
termination the output gives an optimal solution of P(λ) for each λ ∈ �.

Proof To prove finiteness of the algorithm we proceed in two steps.
(i) The number of branches from each node is finite.
To show this, we need to show that there is a finite number of subsets �̂ of � (in

Step 2) and �∗ of �̂ (in Step 3) considered. Observe that these refinements depend
on the calculation of Q(�̂) and ε̂�∗(λ) respectively.

For the computation of Q(�̂) we consider the equations u(λ)T aj = cj (λ) (see
(1)) which are linear equations in λ for λ ∈ �̂ according to Lemma 3.1. There is a
finite number of systems of equalities of this type, choosing from the n columns of
A. The solution set of each of these is a polyhedron and therefore a finite number of
polyhedral subsets �̂ ⊂ � has to be considered.

For the computation of ε̂�∗(λ) note that finding the minimum in (3) amounts to
the computation of the lower envelope of affine functions which is defined by a finite
number of those functions. So, again, a finite number of subsets of �∗ ⊂ �̂ has to be
considered.

(ii) The length of each branch is finite.
After the computation of Q(�̂), we have that ŵ(�̂)T aj ≤ 0 for all j ∈ Q(�̂). If

there is no j ∈ {1, . . . , n}\Q(�̂) such that ŵ(�̂)T aj > 0 the vector u
�̂
(λ)+εŵ(�̂) is

feasible for the dual D(λ), λ ∈ �̂ for all ε ≥ 0. As ε increases this yields an unbounded
solution to the dual D(λ), i.e. an infeasible primal P(λ) and therefore an infeasible
MOLP.

If, on the other hand ŵ(�̂)T aj > 0 for at least one j , u
�̂
(λ)+εŵ(�̂) is feasible for

the dual D(λ), λ ∈ �̂ for small positive ε. We increase ε(λ) to the first point where one
of inequalities ŵT (λ)aj < cj (λ), j �∈ Q(�̂) becomes an equality. This determines
ε̂�∗(λ) for λ ∈ �∗ ⊆ �̂ and an index k(�∗). The new u�∗(λ) vector corresponds to
an increased value of the dual objective u�∗(λ)T b = u

�̂
(λ)T b + ε̂�∗(λ)ŵ(�̂)T b. In

addition, the corresponding new set Q(�∗) now includes the index k(�∗). Any other
index i that corresponded to a positive value of xi in the associated restricted primal
is in the new set Q(�∗), because by complementary slackness ŵ(�̂)T ai = 0 for such
an i and thus u�∗(λ)T ai = u

�̂
(λ)T ai + ε̂�∗(λ)ŵ(�̂)T ai = ci(�

∗). This means that
the old optimal solution is feasible for the new restricted primal and that if xk(�∗)
enters the basis the value of the associated restricted primal will decrease.

In summary, it has been shown that at each step either an improvement in the
associated primal is made or an infeasibility condition is detected. Assuming non-
degeneracy, this implies that no basis of the associated primal is repeated and since
there are only a finite number of possible bases, an optimal solution for a subset of �

(which is possibly a subset of �∗), is reached in a finite number of steps. Optimality
of the algorithm follows, because we consider partitions of the set �, and the fact
that the single objective primal-dual algorithm is correct (i.e. produces an optimal
solution of P(λ) for each λ ∈ �̄). �

Notice that the nondegeneracy assumption is purely technical and the result holds
as long as a mechanism that prevents cycling among a set of bases of the primal
is employed—those problems for which the single objective primal-dual simplex
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method is most successful are always degenerate, a fact that does not cause any prob-
lem for the resulting combinatorial algorithms.

In order to effectively apply the algorithm the computation of Q(�̂) and of ε̂�∗
must be described in more detail.

Since u�̄ and aj do not depend on λ, we have that uT
�̄
aj = cj (λ) defines a hy-

perplane hj (λ) = {λ : uT
�̄
aj = cj (λ)} for all j = 1, . . . , n. Consider the family of hy-

perplanes H = {hj (λ), j = 1, . . . , n}. H induces an arrangement on �̄. This arrange-
ment of hyperplanes is the partition of �̄ into the connected pieces induced by the
hyperplanes in H. Notice that any face �̂i of this arrangement with dimension not
greater than k − 2 is maximal in the sense (2), Q(�̂i) being the set of indices of
the hyperplanes which determine this face. According to [14] the construction of an
arrangement of n hyperplanes in dimension k − 1 (the dimension of �) can be done
in O(nk−1) time. Therefore, the complexity of performing the steps before the while
loop of Algorithm 3.1 is bounded above by O(nk−1).

The following lemma shows that often we do not even have to compute the
arrangement of hyperplanes.

Lemma 3.2 Assume that the entries of C are such that cj (λ) > 0 for all j = 1, . . . , n

and all λ ∈ �̄. Then, u�̄ = 0 is feasible for D(λ) for all λ ∈ �̄ and the partition
computed in Step 1 consists of �̄ only.

Proof As mentioned after Corollary 2.1, under the assumptions of the lemma u�̄ =
0 is feasible for D(λ)∀λ ∈ �̄. Since the left hand side of the constraints in D(λ)
becomes 0, but the right hand side is strictly positive, we have Q(λ) = ∅∀λ ∈ �̄. �

Lemma 3.3 In Step 3 of Algorithm 3.1, we have

Q(�∗
l ) =

{
s : ε̂�∗

l
(λ) = cs(λ) − u

�̂
(λ)T as

ŵ(�̂)T as

∀λ ∈ �∗
l with ŵ(�̂)T as > 0

}

∪ {
s ∈Q(�̂) : ŵ(�̂)T as = 0

}
.

Proof We have that s ∈ Q(�∗
l ) if and only if u�∗

l
(λ)T as = cs(λ) for all λ ∈

�∗
l . Moreover, since u�∗

l
(λ) = u

�̂
(λ) + ε̂�∗

l
(λ)ŵ(�̂), we have that u�∗

l
(λ)T as =

u
�̂
(λ)T as + ε̂�∗

l
(λ)ŵ(�̂)T as . Thus,

(i) If s ∈ Q(�̂) then u
�̂
(λ)T as = cs(λ) for all λ ∈ �̂. Thus, since �∗ ⊆ �̂, we have

that s ∈Q(�∗
l ) if and only if ŵ(�̂)T as = 0.

(ii) If s �∈ Q(�̂), then u�∗
l
(λ)T as < cs(λ)T . Thus, we have that s ∈ Q(�∗

l ) if and

only if ŵ(�̂)T as �= 0. Moreover, since u
�̂
(λ)T as < cs(λ)T and ε̂�∗

l
(λ) > 0 then

ŵ(�̂)T as must be greater than 0. Therefore, isolating ε̂�∗
l
(λ) in the expression

defining u�∗
l
(λ), we have that s ∈Q(�∗

l ) if and only if

s ∈
{
r : ε̂�∗

l
(λ) = cr(λ) − u

�̂
(λ)T ar

ŵ(�̂)T ar

∀λ ∈ �∗ with ŵ(�̂)T ar > 0

}
. �
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Notice that, in Step 3, the computation of Q(�∗) does not induce a refinement of
�∗

l because the set of indices which determine the value of ε̂�∗
l
(λ) is constant in �∗

l

(by the definition of �∗
l ) and ŵ(�̂)T as does not depend on λ. Thus, within the while

loop, the refinement of �̂ is only produced by the computation of ε̂�∗
l
(λ).

Moreover, the computation of ε̂�∗
l
(λ) for λ ∈ �∗

l in step 3 reduces to determining
the lower envelope of the finite set of affine hyperplanes

{
cj (λ) − u

�̂
(λ)T aj

ŵ(�̂)T aj

with ŵ(�̂)T aj > 0

}
.

The lower envelope of a finite set of hyperplanes is a convex polyhedron. This poly-
hedron can be computed using geometric duality: Identify each hyperplane with the
dual point; then the lower envelope of the original hyperplanes coincides with the
convex hull of the dual points (in the dual space). Convex hulls of n points in dimen-
sion k can be computed in O(nk) (see [14]). Hence, transforming back the convex
hull to the primal space, the lower envelope of the original set of hyperplanes is ob-
tained with the same complexity. With this we have proven the following lemma.

Lemma 3.4 All sets �∗ considered in the algorithm are (open or closed) polyhedra.

Some further results are useful for implementation of the algorithm.

Lemma 3.5 Let �1, �2 ⊆ � such that Q(�1) ⊆ Q(�2). Additionally, assume that
x is an optimal solution of P(λ) ∀λ ∈ �1. Then, x is also optimal for P(λ), ∀λ ∈ �2.

Proof Because x is optimal for P(λ) for all λ ∈ �1 we know that x, y = 0 is an
optimal solution of RP(�1). Therefore x, y = 0 is feasible (and thus optimal) for
RP(�2) because Q(�1) ⊆ Q(�2) and hence x is optimal for P(λ) for all λ ∈ �2. �

A special case where the situation of Lemma 3.5 occurs is shown in Lemma 3.6.

Lemma 3.6 Q(�′) ⊆ Q(cl(�′)) for �′ ⊆ �, where cl denotes the closure of a set.

Proof This follows because in the equations u(λ)T aj = cj (λ) both u(λ) and cj (λ)

are affine and continuous functions of λ. �

In the algorithm the distinction between open and closed sets and the choice of Q

using the open sets only may be used to distinguish Pareto optimal and weakly Pareto
optimal solutions. We also observe that if in the course of the algorithm we have two
subsets �1, �2 with a common optimal solution x of P(λ) then this solution is also
optimal in P(λ) for all λ ∈ conv(�1 ∪ �2) and any subsets of this can be eliminated
from further investigation.
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4 Illustrative Example and Numerical Results

We first illustrate the algorithm using an example from [15, page 385].

min (−x1,−x2,−x3),

s.t. x1 + x2 + x3 + s1 = 5,

x1 + 3x2 + x3 + s2 = 9,

3x1 + 4x2 + s3 = 16,

x1, x2, x3, s1, s2 ≥ 0.

The feasible set has seven Pareto optimal extreme points that define two Pareto opti-
mal facets, see Fig. 1.

We apply the algorithm with �̄ = �0 = {λ ∈ R
3 : 0 < λi < 1, λ1 + λ2 + λ3 = 1}.

For illustration purposes we will eliminate λ3 from inequalities defining subsets
of �0. We shall also apply Lemmas 3.5 and 3.6 throughout and only consider open
sets. Clearly, u�̄ = (−1,0,0) is feasible for D(λ) for all λ ∈ �0 and Q(λ) = {5,6}
for all λ ∈ �0. Therefore, we can initialize L= {�0} and enter the while loop.

(�0) The optimal objective value of RP(�0) is 5 and the optimal solution of the re-
stricted dual DRP(�0) is ŵ(�0) = (1,0,0). Thus, ε̂(λ) = min{−λ1 +1,−λ2 +
1,−λ3 + 1}. Computing the lower envelope of these three functions in �0

yields the refinement of �0 into �1,�2, and �3 and the dual solutions shown
in Table 1. Thus, L= {�1,�2,�3} (see Fig. 2(a)).

(�1) We obtain RP(�1), which has an optimal value of 0 and yields the Pareto
optimal solution (x�1, s) = (5,0,0,0,4,1). Thus, �1 can be discarded and
L= {�2,�3}.

(�2) RP(�2) has optimal value 2 and the optimal solution of DRP(�2) is ŵ(�2) =
(1,−1/3,0). Thus, ε̂(λ) = min{−(3/2)(λ1 − λ2),−(3/2)(λ3 − λ2), λ2} and
computing the lower envelope of these three functions in �2 yields the refine-
ment �4,�5,�6 shown in Table 1. This leaves us with L= {�3,�4,�5,�6}.

(�3) RP(�3) has optimal value 0 with (x�3 , s) = (0,0,5,0,4,16), so that �3 is
discarded and L= {�4,�5,�6} (see Fig. 2(b)).

Fig. 1 The feasible set of the
example. The Pareto optimal set
is shaded
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Fig. 2 The partition of �

(�4) RP(�4) has optimal value 2/5 and the optimal solution of DRP(�4) is (1, 1/5,

−2/5). This yields ε̂(λ) = min{(5/6)(λ1 − λ3), (1/2)(3λ1 − λ2), (5/2)(λ2 −
λ1)}. Computing the lower envelope of the three functions yields the parti-
tion of �4 into �7,�8, and �9 shown in Table 1. Hence, we have L =
{�5, . . . ,�9}.

(�5) We find that RP(�5) has optimal value 0 with (x�5, s) = (0,2,3,0,0,8), so
that we can discard �5 and L= {�6, . . . ,�9}.

(�6) The reduced primal RP(�6) has optimal value 0 for (x�6, s) = (0,3,0,2,0,3).
We discard �6 and have L= {�7,�8,�9} (see Fig. 2(c)).

(�7) The reduced primal RP(�7) has optimal value 0 with (x�7 , s) = (8/3,2,1/3,0,

0,0) and we are left with L= {�8,�9}.
(�8) The reduced primal RP(�8) has optimal value 0 with (x�8 , s) = (11/5,12/5,0,

2/5,0,0) and we are left with L= {�9}.
(�9) The reduced primal RP(�9) has optimal value 0 with (x�9 , s) = (4,1,0,0,1,0)

and the algorithm terminates. The final partition of � is shown in Fig. 2(c).
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Fig. 3 The branching scheme of the primal-dual algorithm

The total effort to find a weight space decomposition and a Pareto optimal solution
for each subset of the weight space consisted of the solution of 10 restricted primals
(7 of which just confirm optimality), three restricted duals, and three lower envelopes
of affine functions of two variables.

Figure 3 shows a schematic summary of the algorithm for this example.
The algorithm has been implemented for the assignment problem with three ob-

jectives [16]. Five instances with a size ranging from 5 × 5 to 25 × 25 with a step of
5 have been generated and solved. The objective function coefficients have been ran-
domly selected from the integers {0, . . . ,20}. The computer used for the experiments
is equipped with a PowerPC G4 1 Ghz processor with 512 MB of RAM, and runs
under the OS X operating system. The algorithm has been implemented in C. The bi-
nary has been obtained using the compiler gcc with the optimizer option -O3. For the
computation of the convex hull we have used the software qhull 3.1 [17], available at
www.qhull.org. It was not possible to solve problems of larger size due to numerical
imprecision in the qhull code. The number of Pareto optimal solutions and the CPU
times are shown in Table 2.
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Table 1 Refinement of �0

�i Q(�i) u�i (λ)

�1 = {λ ∈ �0 : λ1 > λ2, λ1 > λ3} {1,5,6} (−λ1 + 1,0,0)

�2 = {λ ∈ �0 : λ2 > λ1, λ2 > λ3} {3,5,6} (−λ2 + 1,0,0)

�3 = {λ ∈ �0 : λ3 > λ1, λ3 > λ2} {2,5,6} (−λ3 + 1,0,0)

�4 = {λ ∈ �2 : λ2 > 1 − 2λ1, {1,2,6} ((1/2)(λ2 − 3λ1),

λ2 < 3λ1} (1/2)(λ1 − λ2),0)

�5 = {λ ∈ �2 : λ2 < 1 − 2λ1, {2,3,6} ((1/2)(λ2 − 3λ3),

λ2 < (3/4)(1 − λ1)} (1/2)(λ3 − λ2),0)

�6 = {λ ∈ �2 : λ2 > 3λ1, {2,4,6} (0,−(1/3)λ2,0)

λ2 > (3/4)(1 − λ1)}
�7 = {λ ∈ �4 : λ2 < (1/8)(5 − λ1), {1,2,3} ((1/6)(3λ2 − 4λ1 − 5λ3),

λ2 > (1/2)(5λ1 − 1)} (1/6)(4λ1 − 3λ2 − λ3),

(1/3)(λ3 − λ1))

�8 = {λ ∈ �4 : λ2 > (1/8)(5 − λ1)} {1,2,4} (0, (1/5)(4λ1 − 3λ2),

1/5(λ2 − 3λ1))

�9 = {λ ∈ �4 : λ2 < (1/2)(5λ1 − 1)} {1,2,5} (3λ2 − 4λ1,0, λ1 − λ2)

Table 2 Numerical results obtained by Algorithm 3.1 for the assignment problem with three objectives

Instance size Pareto optimal solutions CPU time (sec.)

5 × 5 10 0.01

10 × 10 43 0.28

15 × 15 81 2.63

20 × 20 146 28.15

25 × 25 245 121.21

5 Special Cases

In this section we first summarize some remarks concerning special cases.
If our algorithm is applied to a closed set �̄, e.g. the closed parameter space �,

it may find weakly Pareto optimal solutions which are not Pareto optimal. These can
be eliminated after termination of the algorithm. In addition, if �̄ = � or �̄ = �0

at termination of the algorithm, the final maximal subsets �∗
l define the complete

partition of the parameter space.
As a consequence of Theorem 3.1, the list of Pareto optimal solutions found after

termination (if �̄ = �0 or �̄ = �) can be used to completely describe the efficient
set Yeff = CT XPar, although not the complete set XPar. However, the list of Pareto
optimal points at termination yields a set of optimal bases of P(λ) for λ ∈ �0 which
can be used to generate the complete set XPar by known procedures, e.g., [18].

The algorithm can also handle problems where D(λ) is infeasible for λ in some
subset �′ ⊂ �̄ by simply considering as initial parameter space �̄ \ �′. In this case,
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�′ would have to be known in advance, and several initial dual feasible solutions for
several (possibly disconnected) subsets of �̄ are needed at the start.

Further improvements can be made in the case of two objective functions, consider
(λ1, λ2) = (λ1,1 − λ1). Thus, we can identify subsets �̄, �̂ and �∗ with intervals in
[0,1]. In this case computations of Q(�̂) and ε̂�∗(λ) for λ ∈ �∗ can be done very
efficiently. Computation of Q(�̂) involves intersection of at most n intervals. This
can be done in O(n logn) by ordering according to the left endpoint. In addition, the
computation of ε̂�∗(λ) is also doable in O(n logn) using Hershberger and Shuri’s
algorithm [19] for the lower envelope of affine functions of one variable.

6 Concluding Remarks

In this paper we have presented a primal-dual simplex algorithm for multiobjective
linear programming. Because we base the algorithm on duality of scalarized linear
programs P(λ), we can compute in parallel both Pareto optimal solutions and the
partition of the parameter space. We also avoid degeneracy in the primal representa-
tion of vertices. The algorithm allows to use parallel computation to generate Pareto
optimal solutions for each parameter λ ∈ � by exploiting the branching structure
obtained through partition of the parameter space.

It also gives another interpretation of Pareto optimal solutions as the sensitivity
analysis of several right hand side vectors in scalar linear programming problems.

The major disadvantage of the algorithm is that we may have to explore exponen-
tially many nodes. But notice that this cannot be avoided by any algorithm because
of the possibly exponentially many extreme points of the efficient set.

Finally, we would like to discuss applications to combinatorial problems. Single
objective primal-dual algorithms have been very successfully applied to combinator-
ial problems with totally unimodular constraint matrix such as flow, path, assignment,
and matching problems [10]. Using our algorithm we can generate all Pareto optimal
solutions of these problems which are optimal solutions for some scalarization P(λ)
of the multiobjective combinatorial problem (supported Pareto optimal solutions).
However, in multiobjective combinatorial optimization it is known that there exist
Pareto optimal solutions which are not optimal for any scalarization with λ ∈ �, even
if the constraint matrix A is totally unimodular.

Our algorithm can be used to find supported Pareto optimal solutions. In this con-
text it is important to note that RP(λ) and DRP(λ) are not parametric problems (i.e.,
their coefficients do not depend on λ). Thus the same methods for their solution can
be used that have been so efficiently used in the single objective case.

Most algorithms that guarantee to find unsupported Pareto optimal solutions pro-
ceed in two phases. First, supported Pareto optimal solutions and a weight space
decomposition are computed. Then unsupported Pareto optimal solutions are found,
using the weight space decomposition and other techniques [20]. This technique has
been applied to biobjective network flow [21], knapsack [22] and assignment [11]
problems.

However, no effective implementation for the same problems with three objectives
is available. This is due to the lack of methods to compute supported Pareto optimal
solutions and a weight space decomposition simultaneously. With our algorithm this
problem can be overcome. Such extensions are currently under investigation.
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