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Abstract Using the additive weight method of vector optimization problems and
the method of essential solutions, we study some continuity properties of the map-
ping which associates the set of efficient solutions S(f ) to the objective function f .
To understand such properties, the key point is to consider the stability of additive
weight solutions and the relationship between efficient solutions and additive weight
solutions.
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1 Introduction

There is an extensive literature on stability, well-posedness, and sensitivity analy-
sis in optimization. However, compared to the case of scalar optimization, stability
and well-posedness analysis has not well developed in vector optimization. We refer
to [1–7] for related papers on convergence of efficient sets and stability analysis.

The method of essential solutions has been used widely in various fields recently. It
plays a crucial role in the study of the stability of solutions including fixed point prob-
lems, Nash equilibrium problems, and optimization problems, as discussed in [8–11].
In [11] Yu has proved the upper semicontinuity properties and the generic lower semi-
continuity properties of the weakly efficient solutions in vector optimization prob-
lems and has also pointed out that most vector optimization problems (in the sense
of Baire categories) are essential (or stable), i.e., their weakly efficient solutions are
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all essential. We know that the efficient solution sets can not have the desired prop-
erties which weakly efficient solution sets have for vector optimization problems. In
fact, the sets of efficient solutions are not always upper semicontinuous. Therefore,
the results concerned with the stability of efficient solution sets are not so straightfor-
ward as those of weakly efficient solutions. The situation with respect to continuity of
efficient solutions is more complicated than in the case of weakly efficient solutions.

On the other hand, the additive weight method plays an important role in the study
of vector optimization problems. The major concern of this paper is to obtain some
results about stability and generic stability of efficient solutions of vector optimiza-
tion problems. The key ideas are to use the stability of additive weight solutions,
the method of essential solution, and the relationship between efficient solutions and
additive weight solutions. In [9] authors have proved some stability results for addi-
tive weight solutions of vector optimization problems. In this paper, we will use the
method of additive weight solution to investigate the stability of the efficient solu-
tions. Firstly, we show that the sets of efficient solutions are partly upper semicontin-
uous though they are not upper semicontinuous. And then, based on this result, we
prove that most vector optimization problems (in the sense of Baire categories) have
at least one essential efficient solution. More precisely speaking, the sets of efficient
solutions are almost lower semicontinuous for most vector optimization problems.
Finally, we give a full characterization of the essential efficient solution.

2 Generic Stability

Throughout this paper, X denotes a nonempty and compact subset of a metric space
(or a nonempty, compact and convex subset of a vector metric space), 2X the collec-
tion of nonempty subsets of X, and Cm(X) the space of all of continuous functions
from X to Rm with uniform convergence norm ‖f − g‖ = maxx∈X ‖f (x) − g(x)‖.

The general vector optimization problem corresponding to X and f (·) =
(f1(·), . . . , fm(·)) ∈ Cm(X) is denoted by VP and written as follows:

(VP) minf (x), s.t. x ∈ X.

Let us recall some definitions.

Definition 2.1 Let f (x) = (f1(x), . . . , fm(x)) ∈ Cm(X), where f1(x), . . . , fm(x)

are real-valued functions defined on X. Then x∗ ∈ X is said to be an efficient so-
lution of f , if there exists no y ∈ X such that:

fi(y) ≤ fi(x
∗), for all i = 1, . . . ,m,

fi(y) < fi(x
∗), for some i.

Let S(f ) denote the set of efficient solutions of f . The set of all efficient points
is denoted by Min(f ) = {f (x∗): x∗ ∈ S(f )}. Then S is a set-valued mapping from
Cm(X) to 2X . This mapping is called the efficient solution mapping on Cm(X). An
important question arising in vector optimization problems is about the continuity
properties (or stability) of the mapping S.
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Let

Rm+ = {w = (w1, . . . ,wm) ∈ Rm: wi ≥ 0, i = 1, . . . ,m}
and

Rm++ = {w = (w1, . . . ,wm) ∈ Rm: wi > 0, i = 1, . . . ,m}.
For any w ∈ Rm+ and f = (f1, . . . , fm) ∈ Cm(X), let

Ff,w(x) =
m∑

i=1

wifi(x), ∀x ∈ X.

Definition 2.2 x∗ ∈ X is said to be an additive weight solution of f = (f1, . . . , fm) ∈
Cm(X) with respect to weight factor w = (w1, . . . ,wm), if

Ff,w(x∗) = min
x∈X

Ff,w(x).

Remark 2.1

(i) For each f ∈ Cm(X), let T(f,w) denote the set of all additive weight solutions
of f with respect to w. Then, T is a set-valued mapping from Cm(X) to 2X .

(ii) T(f,w) �= ∅ for each w ∈ Rm+ and T (f,w) ⊂ S(f ) for each w ∈ Rm++.

Definition 2.3 Let Y be a Hausdorff topological space, and F : Y �→ 2X a set-valued
mapping. Then:

(i) F is said to be upper semicontinuous (u.s.c.) at y ∈ Y if, for each open set
G ⊃ F(y), there exists an open neighborhood O(y) of y such that G ⊃ F(y′)
for any y′ ∈ O(y). If F is upper semicontinuous on Y and F(y) is compact for
each y ∈ Y , we say that F is an usco mapping.

(ii) F is said to be lower semicontinuous (l.s.c.) at y ∈ Y if, for each open set G ∩
F(y) �= ∅, there exists an open neighborhood O(y) of y such that G∩F(y′) �= ∅
for any y′ ∈ O(y).

(iii) F is said to be almost lower semicontinuous (a.l.s.c.) at y ∈ Y if there exists
x ∈ F(y) such that, for each open neighborhood N(x) of x, there exists an open
neighborhood O(y) of y such that N(x) ∩ F(y′) �= ∅ for any y′ ∈ O(y).

The following example provides a mapping that is a.l.s.c. but not l.s.c.

Example 2.1 Let X = [0,1] and define F : X �→ 2X by

F(x) =
{ [0,1], x = 0,

{0}, x ∈ (0,1].
It is easy to check that F is a.l.s.c. but not l.s.c. at 0.

Definition 2.4 For each f ∈ Cm(X), x∗ ∈ S(f ) (resp. x∗ ∈ T(w,f )) is said to be
an essential efficient solution (resp. essential additive weight solution) of f provided
that for any open neighborhood N(x∗) of x∗ in X, there exists an open neighborhood
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O(f ) of f in Cm(X) such that N(x∗) ∩ S(f ′) �= ∅ (resp. N(x∗) ∩ T(f ′,w) �= ∅) for
all f ′ ∈ O(f ). Further, f is said to be E-essential or E-stable (resp. WT-essential or
WT-sable) if all its efficient solutions (resp. additive weight solutions) are essential.

Remark 2.2 An optimal solution x∗ is called essential if each objective function suf-
ficiently close to f has a optimal solution arbitrarily close to x∗.

Definition 2.5 For each f ∈ Cm(X), let e(f ) be a nonempty closed subset of S(f ).
Then e(f ) is said to be an essential efficient set of f provided that for any open
set U ⊃ e(f ), there exists an open neighborhood O(f ) of f in Cm(X) such that
U ∩ S(f ′) �= ∅ for any f ′ ∈ O(f ).

Remark 2.3 If e(f ) = {x∗} is an one point set, then x∗ is an essential efficient solu-
tion of f .

Let us recall some definitions of proper efficiency (see [12–16]).

Definition 2.6 For each f ∈ Cm(X), x∗ ∈ S(f ) is said to be a Hu-proper efficient
solution (x∗ ∈ Hu(f )) provided that

cl conv cone
[(

f (X) − f (x∗)
) ∪ Rm+

] ∩ −Rm+ = {0},
where convS denotes the convex hull of S.

Definition 2.7 For each f ∈ Cm(X), x∗ ∈ S(f ) is said to be a Ge-proper efficient
solution (x∗ ∈ Ge(f )) provided that there exists M > 0 such that, for each x ∈ X

and i ∈ {1, . . . ,m} with fi(x) < fi(x
∗), there is at least one j ∈ {1, . . . ,m} (j �= i)

satisfying

fi(x
∗) − fi(x)

fj (x) − fj (x∗)
≤ M.

Remark 2.4

(i) Let Be(f ) and Bo(f ) denote the sets of proper efficient solutions in the sense
of Benson and Borwein, respectively. Then, Hu(f ) ⊂ Be(f ) ⊂ Bo(f ) and
Ge(f ) ⊂ Be(f ) ⊂ Bo(f ) (see [16]).

(ii) For each w ∈ Rm++, T(w,f ) ⊂ Hu(f ) ⊂ Be(f ) ⊂ Bo(f ) and T(w,f ) ⊂
Ge(f ) ⊂ Be(f ) ⊂ Bo(f ).

Lemma 2.1 Let f ∈ Cm(X).

(i) f is E-essential (resp. WT-essential) if and only if the mapping S : Cm(X) �→ 2X

(resp. T(·,w) : Cm(X) �→ 2X) is l.s.c. on Cm(X).
(ii) There exists an essential solution x∗ ∈ S(f )(resp. x∗ ∈ T(·,w)) if and only if the

mapping S : Cm(X) �→ 2X (resp. T(·,w) : Cm(X) �→ 2X) is a.l.s.c. on Cm(X).

Lemma 2.2 [17, Theorem 2] Let X be a metric space, Y be a Baire space, and
F : Y �→ 2X be an usco mapping. Then, there is a dense Gδ subset Q′ of Y such that
F is l.s.c. at each y ∈ Q′.
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Lemma 2.3 For each w ∈ Rm+ , T(·,w) : Cm(X) �→ 2X is an usco mapping on
Cm(X).

Proof Since F(f,w) is continuous and X is compact, it is easy to see that T(f,w) is
compact for each f ∈ Cm(X).

Suppose T(·,w) not to be upper semicontinuous at f ∈ Cm(X). Then, there exists
an open set U of X with U ⊃ T(f,w) and a sequence {f n} ⊂ Cm(X) with f n → f

such that for each n ∈ N , one can find xn ∈ T(w,f n) satisfying xn /∈ U . Since X is
compact and {xn} ⊂ X, without loss of generality, we may assume that xn → x0. It
follows from xn /∈ U that x0 /∈ U and x0 /∈ T(f,w). Then, there exists some x′ ∈ X

such that Ff,w(x′) − Ff,w(x0) < 0. Therefore, for all x ∈ X, we have

Ff n,w(x′) − Ff n,w(x) = Ff n,w(x′) − Ff,w(x′) + Ff,w(x′) − Ff,w(x0)

+ Ff,w(x0) − Ff,w(x) + Ff,w(x) − Ff n,w(x)

=
m∑

i=1

wi

(
f n

i (x′) − fi(x
′)
) + Ff,w(x′) − Ff,w(x0)

+ Ff,w(x0) − Ff,w(x) +
m∑

i=1

wi

(
f n

i (x) − fi(x)
)

≤
m∑

i=1

wi‖f n − f ‖ + Ff,w(x′) − Ff,w(x0)

+ Ff,w(x0) − Ff,w(x) +
m∑

i=1

wi‖f n − f ‖

≤ 2‖f n − f ‖ + Ff,w(x′) − Ff,w(x0) + Ff,w(x0) − Ff,w(x).

Since f n → f and Ff,w is continuous at x0, we have ‖f n − f ‖ → 0 when n → ∞
and Ff,w(x) − Ff,w(x0) arbitrarily close to 0 when x sufficiently close to x0.
Hence there exists some open neighborhood O(x0) of x0 and n1 ∈ N such that
Ff n,w(x′) − Ff n,w(x) < 0 for all x ∈ O(x0) and n ≥ n1. Moreover, since xn → x0,
there exists n2 ≥ n1 such that xn2 ∈ O(x0) and thus, Ff n2 ,w(x′) < Ff n2 ,w(xn2). Con-
sequently, xn2 /∈ T(w,f n2), contradicting the assumption xn ∈ T(w,f n). This lemma
is proven. �

We emphasize that, in general, the efficient solution mapping is neither u.s.c. nor
l.s.c., as shown in the following two examples.

Example 2.2 Let X = [0,1] × [0,1] and C2(X) be the space of continuous functions
from X to R2. Define f,fn : X �→ R2 by

f (x, y) = (x, y),

fn(x, y) =
((

1 − 1

n

)
x − 1

n
y,y

)
, ∀(x, y) ∈ X.



390 J Optim Theory Appl (2007) 134: 385–398

Then, f and fn are all linear functions and fn → f when n → ∞. In this case, we
have

Min(f ) = {(0,0)},
Hu(f ) = Ge(f ) = Be(f ) = Bo(f ) = S(f ) = {(0,0)},

Min(fn) =
{(

−1

n
y,y

)
: y ∈ [0,1]

}
,

Hu(fn) = Ge(fn) = Be(fn) = Bo(fn) = S(fn) = {(0, y): y ∈ [0,1]}.
It is easy to check that none of S, Hu, Ge, Bo, and Be is u.s.c. at f .

Example 2.3 Let us consider a special case of scalar optimization. Let C1(X) denote
the space of continuous functions from X to R, where X = [0,1]. Define f,fn : X �→
R as follows:

f (x) =

⎧
⎪⎨

⎪⎩

−4x + 1, x ∈ [
0, 1

4

)
,

0, x ∈ [ 1
4 , 3

4

)
,

4x − 3, x ∈ [ 3
4 ,1

]
,

fn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

−4x + 1, x ∈ [
0, 1

4

)
,

1
n
x − 1

4n
, x ∈ [ 1

4 , 12n−1
16n−4

)
,

4x − 3, x ∈ [ 12n−1
16n−4 ,1

]
.

Then f and fn are all convex functions and fn → f . In this case, we have

Min(f ) = {0}, S(f ) =
[

1

4
,

3

4

]
.

Min(fn) = {0}, S(fn) =
{

1

4

}
.

It is clear that S is not l.s.c. at f . In fact, x = 1
4 is the unique essential solution in

efficient solution set [ 1
4 , 3

4 ]. On the other hand, note that x∗ = 1
2 is a optimal solu-

tion of this scalar optimization, hence x∗ is obviously a proper efficient one (such
as positive proper efficiency, Hu-proper efficiency, Ge-proper efficiency, Be-proper
efficiency, and Bo-proper efficiency). But x∗ is not an essential solution.

Theorem 2.1 Let S : Cm(X) �→ 2X be the efficient solution mapping. Then:

(i) There exists an u.s.c. mapping S0 : Cm(X) �→ 2X such that S0(f ) ⊂ S(f ) for
each f ∈ Cm(X). We say that S is partly upper semicontinuous.

(ii) For each f ∈ Cm(X) and w ∈ Rm++, the set of additive weight solutions T(f,w)

is an essential efficient set of f .

Proof (i) For any w ∈ Rm++, let S0(f ) = T(f,w), ∀f ∈ Cm(X). Then statement (i)
of Theorem 2.1 is directly obtained from Remarks 2.1 and 2.3.
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(ii) Let w ∈ Rm++. According to Remark 2.1 and Definition 2.5, T(·,w) is an u.s.c.
mapping and T(f,w) ⊂ S(f ) for all f ∈ Cm(X). Then for any open set U ⊃ T(f,w)

there exists some open neighborhood O(f ) of f such that T(f ′,w) ⊂ U for all
f ′ ∈ O(f ). Observing that T(f ′,w) ⊂ S(f ′), we conclude that U ∩ S(f ′) ⊇ U ∩
T(f ′,w) = T(f ′,w) �= ∅. Thus T(f,w) ⊂ S(f ) is essential efficient set of f . �

Corollary 2.1 The proper efficient solution mappings Hu, Ge, Be and Bo are all
partly u.s.c.

Proof It is directly obtained from Remark 2.4 and Lemma 2.3. �

The following results dealing with the essential solutions are directly derived from
Lemmas 2.2, 2.3 and Theorem 2.1.

Lemma 2.4 For each fixed w ∈ Rm+ , there exists a dense Gδ subset Q of Cm(X) such
that T(·,w) is l.s.c. at each f ∈ Q.

Theorem 2.2 There exists a dense Gδ subset Q of Cm(X) such that, for each f ∈ Q,
there is at least one x∗ ∈ T(f,w) ∈ S(f ) (w ∈ Rm++) such that x∗ is an essential
efficient solution, i.e., S is a.l.s.c. at every f ∈ Q.

Proof This assertion follows from Remark 2.1(ii) and Lemma 2.4. Take an arbitrary
w = (w1, . . . ,wm) ∈ Rm++. It follows from Lemma 2.4 that there exists a dense Gδ

subset Q of Cm(X) such that T(·,w) is l.s.c. at each f ∈ Q. For each f ∈ Q, let
x∗ ∈ T(f,w) ⊂ S(f ). Since T(·,w) is l.s.c. at f , for any open neighborhood N(x∗)
of x∗, there exists an open neighborhood O(f ) of f such that N(x∗) ∩ T(f ′,w) �= ∅
for all f ′ ∈ O(f ). To show that x∗ is an essential efficient solution, it is clearly
enough to show that N(x∗) ∩ S(f ′) �= ∅. Observing that T(f ′,w) ⊂ S(f ′) and
N(x∗) ∩ T(f ′,w) �= ∅, we complete the proof. �

Remark 2.5

(i) Theorem 2.2 shows that in the sense of Baire categories, most vector optimization
problems have at least one essential efficient solution.

(ii) Note the proof of Theorem 2.2 and Remark 2.4(ii). It follows that the essential
solution x∗ in Theorem 2.2 is also a proper efficient solution, i.e., x∗ ∈ T(w,f ) ⊂
Hu(f ) ⊂ Be(f ) ⊂ Bo(f ) and x∗ ∈ T(w,f ) ⊂ Ge(f ) ⊂ Be(f ) ⊂ Bo(f ).

Corollary 2.2 Proper efficient solution mappings Hu, Ge, Be and Bo are a.l.s.c. at
some dense Gδ subset Q of Cm(X).

3 Further Properties of Essential Efficient Solutions

In this section, we will give some further results concerning with the properties of
essential efficient solutions.
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Let X be a convex set in a linear space. f = (f1(x), . . . , fm(x)) ∈ Cm(X) is said
to be strongly quasiconvex if, for any x1 �= x2 ∈ X and t ∈ (0,1), fi satisfies

fi(tx1 + (1 − t)x2) < max{fi(x1), fi(x2)}, ∀i = 1, . . . ,m.

The next theorem gives a sufficient condition to ensure that an efficient solution is
essential; which is an immediate consequence of Theorem 2.1.

Theorem 3.1 Let x∗ ∈ S(f ) be an efficient solution of f . If there is some w ∈ Rm++
such that x∗ is the unique additive weight solution of F(w,f )(x), then x∗ is essential.

Proof Let w ∈ Rm++ and x∗ be the unique additive weight solution of F(w,f )(x). Then
T(f,w) = {x∗} and {x∗} is an essential set of f due to Theorem 2.1(ii). Observing
Remark 2.3, we conclude that x∗ is essential. �

Example 3.1 Let X = [−1,1] and f : X �→ R2 be defined by

f (x) =
{

(0,−t), 0 ≤ t ≤ 1,

(t,0), −1 ≤ t < 0.

Then, f is continuous quasiconvex on compact convex set X.
In this case, we have

Min(f ) = {(−1,0), (0,−1)}, S(f ) = {−1,1}.
Then, t = −1 is the unique additive weight solution of f with respect to weighting
factor w whenever w = (w1,w2) satisfies 0 < w2 < w1. Hence t = −1 is an essential
efficient solution by Theorem 3.1. Similarly, t = 1 is also an essential solution by
choosing 0 < w1 < w2.

The following example show that the converse of Theorem 3.1 is false in general;
that is, an essential efficient solution is not always an unique additive weight solution
subject to some weight factor.

Example 3.2 Let X = [0,1] and f : X �→ R2 be defined by

f (x) = (x − 1,−x), ∀0 ≤ x ≤ 1.

Then, f is continuous and affine on compact convex set X.
In this case, we have

Min(f ) = {(x − 1,−x): x ∈ [0,1]}, S(f ) = [0,1].
It is easy to check that the efficient solution set [0,1] = T (f, (1/2,1/2)) and every
point in [0,1] is an essential efficient solution. For each x ∈ (0,1), x is an essential
efficient solution. Since w0 = (1/2,1/2) is the unique weight factor up to positive
scalars, there is no weight factor w such that x becomes the unique additive solution
subject to w.
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Theorem 3.2 Let f ∈ Cm(X) and x∗ ∈ S(f ). Then, x∗ is essential if and only if,
for each open neighborhood U(x∗) of x∗, there exists x̄ ∈ U(x∗) such that x̄ ∈ S(f )

and f −1(f (x̄)) ∩ [X \ U(x∗)] = ∅, i.e., there is no efficient solution in X \ U(x∗)
corresponding to the optimal value f (x̄).

Proof (I) We prove the sufficient part. Suppose to the contrary that x∗ is not es-
sential. Then, there exists some open neighborhood U(x∗) of x∗ and f n → f

such that S(f n) ∩ U(x∗) = ∅. Since X is compact, there exists an open neigh-
borhood V (x∗) of x∗ such that V (x∗) ⊂ U(x∗). Let x̄ ∈ U(x∗), x̄ ∈ S(f ), and
f −1(f (x̄)) ∩ [X \ V (x∗)]) = ∅.

(i) First, we prove that, for each n = 1, . . . , there exists xn ∈ V (x∗) such that
d(xn, x̄) < 1

n
and for such xn we can choose yn ∈ X \ V (x∗) such that

f n
i (yn) ≤ f n

i (xn), for all i = 1, . . . ,m,

f n
i (yn) < f n

i (xn), for some i.

If not, then for some n0, there exists an open neighborhood O(x̄) of x̄ such that
O(x̄) ⊂ V (x∗) and for each x ∈ O(x̄) there is no element y ∈ X \ V (x∗) satisfying

f
n0
i (y) ≤ f

n0
i (x), for all i = 1, . . . ,m,

f
n0
i (y) < f

n0
i (x), for some i.

Let S(f n0 ,D) denote the set of efficient solutions of f n0 subject to the feasi-
ble region D ⊂ X. By the compactness of V (x∗) and the continuity of f n0 , it is
clear that S(f n0,V (x∗)) �= ∅. If S(f n0 ,V (x∗)) ∩ O(x̄) �= ∅, then we can choose
z∗ ∈ S(f n0 ,V (x∗)) ∩ O(x̄). Hence, there is no element y ∈ V (x∗) such that

f
n0
i (y) ≤ f

n0
i (z∗), for all i = 1, . . . ,m,

f
n0
i (y) < f

n0
i (z∗), for some i.

According to the assumption of O(x̄) and z∗ ∈ O(x̄), it follows that z∗ ∈ S(f n0),
contradicting S(f n0) ∩ U(x∗) = ∅. If S(f n0 ,V (x∗)) ∩ O(x̄) = ∅, let x0 ∈ O(x̄).
Then x0 /∈ S(f n0,V (x∗)). This shows that there is some y0 ∈ V (x∗) such that

f
n0
i (y0) ≤ f

n0
i (x0), for all i = 1, . . . ,m,

f
n0
i (y0) < f

n0
i (x0), for some i.

Let K = {x ∈ V (x∗): f
n0
i (x) ≤ f

n0
i (y0), i = 1, . . . ,m.}. It is clear that K �= ∅ and

K ⊂ V (x∗) ⊂ U(x∗). Since f n0 is continuous and K is compact, it is easy to see
that S(f n0 ,K) �= ∅. Choose z∗ ∈ S(f n0,K) and note that x0 ∈ O(x̄), f (y0) ≤ f (x0)

and K = {x ∈ V (x∗): f
n0
i (x) ≤ f

n0
i (y0), i = 1, . . . ,m.}. It is routinely to check that

z∗ ∈ S(f n0) which contradicts S(f n0) ∩ U(x∗) = ∅.
(ii) Now, we arrive to a contradiction. By (i), take a sequence {xn} ⊂ V (x∗) such

that d(xn, x̄) < 1
n

and choose yn ∈ X \ V (x∗) such that

f n
i (yn) ≤ f n

i (xn), for all i = 1, . . . ,m,

f n
i (yn) < f n

i (xn), for some i.
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Since X is compact, without loss of generality, we may assume that yn → y∗ ∈ X \
V (x∗). Then, y∗ �= x̄ and

fi(y
∗) − fi(x̄)

= fi(y
∗) − fi(yn) + fi(yn) − f n

i (yn) + f n
i (yn) − f n

i (xn)

+ f n
i (xn) − fi(xn) + fi(xn) − fi(x̄)

≤ f n
i (yn) − f n

i (xn) + fi(y
∗) − fi(yn) + fi(xn) − fi(x̄) + 2‖f − f n‖

≤ fi(y
∗) − fi(yn) + fi(xn) − fi(x̄) + 2‖f − f n‖,

for all i = 1,2, . . . ,m. Let n → ∞. Observing f n → f , yn → y∗ and xn → x̄,
we have that fi(y

∗) ≤ fi(x̄) for all i = 1,2, . . . ,m. Since x̄ is efficient solution of
f , it implies f (y∗) = f (x̄) which contradicts the assumption f −1(f (x̄)) ∩ [X \
V (x∗)] = ∅.

(II) For the necessary part, suppose to the contrary that there exist some es-
sential efficient solution x∗ ∈ S(f ) and some open neighborhood U(x∗) such that
f −1(f (x)) ∩ [X \ U(x∗)] �= ∅ for each efficient solution x ∈ U(x∗). Let yx ∈
f −1(f (x)) ∩ [X \ U(x∗)]. Then yx �= x and f (yx) = f (x). Choose an open neigh-
borhood V (x∗) of x∗ such that V (x∗) ⊂ U(x∗).

Since X is compact, by the Urysohn lemma we can construct continuous function
β such that β(x) = 0 if x ∈ V (x∗) and β(x) = 1 if x ∈ X \ U(x∗) and 0 ≤ β(x) ≤ 1.
For each n ∈ N , let �n = (1/n, . . . ,1/n). Define f n ∈ Cm(X) by

f n(x) = f (x) − β(x)�n, ∀x ∈ X.

Then, f n → f . Take an arbitrary x ∈ V (x∗). If x ∈ S(f ), then there exists yx ∈
X \ U(x∗) such that f (yx) = f (x). It follows that

f n
i (yx) = fi(yx) − 1

n
< fi(yx) = fi(x) = f n

i (x), ∀i = 1, . . . ,m.

This shows that x /∈ S(f n). If x /∈ S(f ), then there is y ∈ X such that:

fi(y) ≤ fi(x), for all i = 1, . . . ,m.

fi0(y) < fi0(x), for some i0.

Therefore, we have

f n
i (y) = fi(y) − 1

n
β(y)

≤ fi(x) − 1

n
β(y) ≤ fi(x) = f n

i (x), for all i = 1, . . . ,m,

f n
i0
(y) = fi0(y) − 1

n
β(y)

< fi0(x) − 1

n
β(y) ≤ fi0(x) = f n

i0
(x), for some i0.
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Consequently, x /∈ S(f n). Hence, V (x∗) ∩ S(fn) = ∅, which contradicts the fact that
x∗ is an essential solution. The proof is complete. �

Below we provide a necessary and sufficient condition under which the efficient
solution mapping S is l.s.c.

Theorem 3.3 Let f ∈ Cm(X). S is l.s.c. at f if and only if, for each x∗ ∈ S(f ) and
each open neighborhood U(x∗) of x∗, there exists x̄ ∈ U(x∗) such that x̄ ∈ S(f ) and
f −1(f (x̄)) ∩ [X \ U(x∗)] = ∅.

Proof This is immediate from Definition 2.4, Lemma 2.1 and Theorem 3.2. �

The following corollaries are immediate consequences of Theorem 3.3.

Corollary 3.1 Let f ∈ Cm(X) and x∗ ∈ S(f ). Then, x∗ is essential if there exists a
sequence {x̄n} ⊂ S(f ) such that x̄n → x∗ and f −1(f (x̄n)) = {x̄n} (i.e., each x̄n is the
unique solution corresponding to the Pareto optimal value f (x̄n)).

Corollary 3.2 Let f ∈ Cm(X) and x∗ ∈ S(f ). If f −1(f (x∗)) = {x∗}, i.e., the Pareto
optimal value f (x∗) corresponds to the unique efficient solution x∗, then x∗ is essen-
tial.

Remark 3.1 The following example shows that the assumption f −1(f (x∗)) = {x∗}
is not necessary for x∗ being essential.

Example 3.3 Let X = [0,2]. Define f : X �→ R2 by

f (x) =
{

(x − 1,1 − x), x ∈ [0,1],
(0,0), x ∈ [1,2].

Then
Min(f ) = {(−y, y): y ∈ [0,1]}.
S(f ) = [0,2].

In this case, f (x) ≡ (0,0) and x ∈ [1,2]. But it is clear that for this function f , x = 1
is essential according to Corollary 3.1 (see Fig. 1).

Corollary 3.3 Let f ∈ Cm(X). If f is strongly quasiconvex on X, then for the func-
tion f , all its efficient solutions are essential, i.e., the efficient solution mapping S is
l.s.c. at f .

Fig. 1 f −1(f (x∗)) = {x∗} not
necessary for essential solutions
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Proof It is immediate from Corollary 3.2. In fact, each optimal valued corresponds
to the unique efficient solution. If not, let x∗

1 �= x∗
2 and f (x∗

1 ) = f (x∗
2 ) is a Pareto

optimal value. Observe that f is strongly quasiconvex. Then, fi satisfies

fi(tx1 + (1 − t)x2) < max{fi(x1), fi(x2)} < fi(x1) = fi(x2),

∀i = 1, . . . ,m, t ∈ (0,1).

This is a contradiction with that f (x∗
1 ) = f (x∗

2 ) is a Pareto optimal value. �

Corollary 3.4 Let f ∈ Cm(X). Then, the efficient solution mapping S is l.s.c. at f if
f is injective, i.e., f (x) �= f (x′) whenever x �= x′.

Combining Theorem 2.2 and Theorem 3.2, we obtain the following results.

Theorem 3.4 There exists a dense Gδ subset Q of Cm(X) with the properties: for
each f ∈ Q, there is at least one efficient solution x∗ ∈ T (w,f ) ⊂ S(f ) such that,
for any open neighborhood U(x∗) of x∗, there exists x̄ ∈ S(f ) satisfying x̄ ∈ U(x∗)
and f −1(f (x̄)) ∩ [X \ U(x∗)] = ∅.

Proof By Theorem 2.2, there exists a dense Gδ subset Q of Cm(X) such that, for
each f ∈ Q, there is at least one essential solution x∗ ∈ T (w,f ) ⊂ S(f ). Hence x∗
has the desired properties mentioned in this theorem and the proof is complete. �

As a special case, we deduce the following results for scalar optimization problems
(see [7]).

Corollary 3.5 For each fixed w ∈ Rm+ , there exists a dense Gδ subset Q of Cm(X)

such that x∗ ∈ T(f,w) is the unique additive weight solution subject to w for each
f ∈ Q.

Proof For each fixed w = (w1, . . . ,wm) ∈ Rm+ , by Lemma 2.4, there exists a dense
Gδ subset Q of Cm(X) such that T(·,w) is l.s.c. at each f ∈ Q. Then, for each f ∈ Q,
every solution in T(f,w) is an essential additive weight solution. Now, we prove that
T(f,w) is an one point set. If not, let x∗

1 , x∗
2 ∈ T(f,w) and x∗

1 �= x∗
2 . Then,

Ff,w(x∗
1 ) = Ff,w(x∗

2 ) = min
x∈X

Ff,w(x).

Since X is compact, choose open neighborhoods U(x∗
1 ) and V (x∗

1 ) of x∗
1 such that

x∗
2 /∈ U(x∗

1 ) and V (x∗
1 ) ⊂ U(x∗

1 ).
By the Urysohn lemma, we can construct continuous function β such that β(x) =

0 if x ∈ V (x∗) and β(x) = 1 if x ∈ X \ U(x∗) and 0 ≤ β(x) ≤ 1. For each n ∈ N , let
�n = (1/n, . . . ,1/n). Define f n ∈ Cm(X) by

f n(x) = f (x) − β(x)�n, ∀x ∈ X.
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Then, f n → f . Note that

F(f n,w)(x
∗
2 ) =

m∑

i=1

wif
n
i (x∗

2 ) =
m∑

i=1

wifi(x
∗
2 ) − 1

n
= F(f,w)(x

∗
2 ) − 1

n
.

Take an arbitrary x ∈ V (x∗
1 ). It follows that

Ff n,w(x) =
m∑

i=1

wif
n
i (x) =

m∑

i=1

wifi(x) = Ff,w(x).

Thus,

Ff n,w(x) = Ff,w(x) ≥ Ff,w(x∗
2 ) > Ff,w(x∗

2 ) − 1

n
= Ff n,w(x∗

2 ), ∀x ∈ V (x∗
1 ).

Consequently, x /∈ T(f n,w), ∀x ∈ V (x∗
1 ). Hence, V (x∗

1 )∩T(f n,w) = ∅, which con-
tradicts the fact that x∗

1 is an essential additive weight solution. The proof is com-
plete. �

Corollary 3.5 shows that, in the sense of Baire categories, most problems in the
form of (VP) have a unique additive weight solution.

Corollary 3.6 There exists a dense Gδ subset Q of C1(X) such that, for each f ∈ Q,
the scalar optimization problem f has a unique optimal solution in X.

Proof By Theorem 3.4, there exists some dense Gδ subset Q of C1(X) such that each
f ∈ Q has at least one essential efficient solution (optimal solution). Hence there is
some x∗ ∈ S(f ) such that for any open neighborhood U(x∗) there exists x̄ ∈ S(f )

satisfying x̄ ∈ U(x∗) and f −1(f (x̄)) ∩ [X \ U(x∗)] = ∅. We can observe that in
the special case of real-valued function f −1(f (x̄)) ∩ [X \ U(x∗)] = ∅ for any open
neighborhood U(x∗) if and only if x∗ is the unique optimal solution of f . The proof
is complete. �

Corollary 3.6 shows that in the sense of Baire categories, most scalar optimization
problems have a unique optimal solution.

4 Conclusions

In this paper, we have proved some stability results for efficient solutions of the prob-
lem

(VP) minf (x), s.t. x ∈ X,

where f : X �→ Rm is a continuous function over the compact subset of a metric space
X. Here, stability is intended as semicontinuity property of the set-valued mapping
S(f ), which associates to f . The problem is nontrivial as, in general, S(f ) is neither
upper semicontinuous nor lower semicontinuous (see Example 2.2).
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In Sect. 2, we prove the partly upper semicontinuity of S(f ), i.e., the existence
of an u.s.c. set-valued mapping, whose values are subsets of S(f ) for each f . Using
this result, along with the linear scalarization (whose solutions are named “additive
weight solutions”), we prove that most problems in the form of (VP) (in the Baire
category) have at least one essential solution.

In Sect. 3, we formulate some necessary and sufficient conditions for efficient
solutions to be essential and also characterize essential solution x∗ by f −1(x∗) =
{x∗}. Especially, we delineate the generic uniqueness of the additive weight solution
of (VP) and the solution of scalar optimization.
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