
J Optim Theory Appl (2007) 134: 47–59
DOI 10.1007/s10957-007-9204-2

Pattern Search Method for Discrete L1–Approximation

C. Bogani · M.G. Gasparo · A. Papini

Published online: 17 May 2007
© Springer Science+Business Media, LLC 2007

Abstract We propose a pattern search method to solve a classical nonsmooth op-
timization problem. In a deep analogy with pattern search methods for linear con-
strained optimization, the set of search directions at each iteration is defined in such a
way that it conforms to the local geometry of the set of points of nondifferentiability
near the current iterate. This is crucial to ensure convergence. The approach pre-
sented here can be extended to wider classes of nonsmooth optimization problems.
Numerical experiments seem to be encouraging.

Keywords Pattern search methods · Nonsmooth optimization · Linear
L1–estimation · Convex optimization

1 Introduction

Pattern search methods are a particular class of direct search methods first analyzed
by Torczon for unconstrained optimization [1, 2]; they were successfully extended to
bound-constrained and linearly-constrained optimization in [3, 4]. The research about

Communicated by G. Di Pillo.

This work was supported by M.U.R.S.T., Rome, Italy.

C. Bogani (�)
Dipartimento di Matematica “Ulisse Dini”, Università di Firenze, Firenze, Italy
e-mail: bogani@math.unifi.it

M.G. Gasparo · A. Papini
Dipartimento di Energetica “Sergio Stecco”, Università di Firenze, Firenze, Italy

M.G. Gasparo
e-mail: mariagrazia.gasparo@unifi.it

A. Papini
e-mail: alessandra.papini@unifi.it

48 J Optim Theory Appl (2007) 134: 47–59

pattern search methods is still flourishing: several generalizations and extensions have
been proposed recently (see e.g. [5–8] and the survey [9]).

Given an initial guess x0 and a steplength �0 > 0, a pattern search method gener-
ates a sequence of iterates {xk} by conducting a series of exploratory moves around
the current iterate xk , along a finite set of search directions {dk

1 , dk
2 , . . . , dk

rk
}. At the

kth iteration the objective function f is evaluated at the trial points xk + �kd
k
1 , xk +

�kd
k
2 , . . . , xk + �kd

k
rk

: if f (xk + �kd
k
j) < f (xk) for some j , the next iterate xk+1

is selected among the trial points in such a way that f (xk+1) < f (xk) and the step-
length is increased or left unaltered. Otherwise, we set xk+1 := xk and the steplength
is reduced.

A key issue to design convergent pattern search methods is that the set of search
directions must contain a descent direction for f at xk (of course, if xk is not a
minimizer). In unconstrained strictly differentiable1 optimization this can be easily
ensured by using positive spanning sets of R

n [7–10]. For constrained problems this
simple rule is no more valid when xk lies on the boundary of the feasible region:
in this case, the set of search directions must conform to the local geometry of the
constraints [3, 4].

Convergence properties of pattern searches when applied to nonsmooth problems
are studied in several recent papers. In [7], it is shown that, under mild assumptions,
pattern search methods produce a (Clarke) stationary limit point if f is strictly differ-
entiable at that point. But, if f is only Lipschitz near the limit point, all that we can
say is that the (Clarke) generalized directional derivatives along the search directions
are nonnegative. This result is tight because of the restriction to finitely many search
directions [6]. On the other hand, in practice a pattern search algorithm may converge
to a point where f is not strictly differentiable, whether or not it is a stationary point
(see the examples in [6, 9]). In particular, quoting from [9], pattern searches “may
not converge to a stationary point when applied to nonsmooth problems—especially
when the loci of nonsmoothness are highly structured”.

A way to cope with these potential pitfalls of pattern searches is described in [8],
where it is shown that a (Clarke) stationary point can be found among the accumu-
lation points, if the set of search directions is asymptotically dense in R

n. Another
possible approach consists in exploiting the structure of the set S where f is not
strictly differentiable (when this structure is known), in order to choose adaptively
suitable search directions. This is similar in principle to the idea developed in [4] for
linearly constrained optimization.

In this paper we show the effectiveness of this approach, by considering the clas-
sical discrete L1–approximation problem

min
x∈Rn

f (x) := ‖AT x − b‖1, (1)

where A ∈ R
n×m and b ∈ R

m are given with m > n. Problem (1) has been studied
since the 50s and solved by linear programming techniques [11, 12]. Indeed, it can

1f is strictly differentiable at x if there exists a Dsf (x) ∈ R
n such that, for all w ∈ R

n,

limy→x,t→0+ f (y+tw)−f (y)
t = Dsf (x)T w.

J Optim Theory Appl (2007) 134: 47–59 49

be restated as

min
p,q,x

m∑

j=1

(pj + qj),

s.t. AT x − p + q = b,

p ≥ 0,

q ≥ 0

which is a classical linear program. More recently it has been solved by iterative
methods based on affine scaling [13]. We remark that the objective function f is not
differentiable on the union of m hyperplanes and (1) admits solutions which lie on
some of these hyperplanes [11].

It is worthwhile to stress that our aim here is not simply to propose a new method
for the L1–approximation problem: some of the algorithms known in the literature
are so specialized that pretending to outperform them is at best a waste of time. In-
stead we believe that the main contribution of this paper consists in proving that a
suitable implementation of pattern searches can be successfully employed to solve
(1), without making use of linear programming. This approach has the advantage of
being readily extendible to more general classes of nonsmooth problems.

The paper is organized as follows. In Sect. 2 we recall some preliminary results
on the objective function f and some elements of convex analysis which are basic to
characterize the minimizers of convex nonsmooth functions. In Sect. 3 we consider
the geometry of the set S and prove this nice property: if x ∈ S is not a minimizer,
then a descent direction can be found among the generators of the polyhedral cones
delimited by the hyperplanes of nondifferentiability passing through x. Section 4 is
devoted to the definition of the pattern search algorithm suggested by the previous
property and to the convergence analysis. In Sect. 5 we report the results of some
numerical experiments. Some conclusions and perspectives are drawn in Sect. 6.

Throughout the paper, we adopt the following notations: aj is the j th column
of A; �j := {x ∈ R

n : ρj (x) := aT
j x − bj = 0} is the j th hyperplane of non-

differentiability; R, Q, Z and N denote the sets of real, rational, integer and nat-
ural numbers respectively; ‖ · ‖ is the Euclidean norm; K := 〈u1, u2, . . . , ur 〉+ =
{λ1u1 + λ2u2 . . . + λrur : λ1, λ2, . . . , λr ≥ 0} is the polyhedral cone generated by
u1, u2, . . . , ur ; K0 := {v ∈ R

n : uT v ≤ 0 for u ∈ K} is the polar cone associated
with K.

2 Background

We consider problem (1) under the following assumptions:

Assumption 2.1 rank(A) = n.

Assumption 2.2 A ∈ Q
n×m.

50 J Optim Theory Appl (2007) 134: 47–59

Assumption 2.1 ensures that the level sets of f are bounded (cf. Proposition 2.1
below). It is not required by simplex based methods, which attain convergence in
a finite number of steps. On the other hand, it is required by methods converging
to the solution only in the limit (see e.g. [13]). Assumption 2.2 is standard in the
context of linearly constrained pattern search methods [4, 7, 9]. In our opinion this
theoretical requirement is not a restriction in practice, since only rational numbers
exist in floating point arithmetic.

Proposition 2.1 The objective function f in (1) is convex. Moreover if Assump-
tion 2.1 holds, then

(i) Given ζ ∈ R
n, the set L(ζ) := {x ∈ R

n : f (x) ≤ f (ζ)} is compact and convex.
(ii) There exists x∗ ∈ R

n s.t. f (x∗) = minx∈Rn f (x).
(iii) X∗ := {x ∈ R

n : f (x) = minx∈Rn f (x)} is compact and convex.

Proof The closure of L(ζ) follows from the continuity of f . To prove that L(ζ) is
bounded, it is sufficient to show that there exist β, γ̂ > 0 s.t. f (x) ≥ γ̂ ‖x‖ − β for
x ∈ R

n. We recall from [2] the uniform linear independence lemma: given a basis
{d1, d2, . . . , dn} of R

n, there exists γ > 0 s.t.

max
j=1,2,...,n

|dT
j y| ≥ γ ‖y‖ for y ∈ R

n. (2)

Because of Assumption 2.1, the set {a1, a2, . . . , am} contains r ≥ 1 bases of R
n. Let

γ1, γ2, . . . , γr be the corresponding constants in (2) and let γ̂ := minj γj . Let β :=
‖b‖∞ and, given x ∈ R

n, let k s.t. |aT
k x| = maxj |aT

j x|. Then |aT
k x| ≥ γ̂ ‖x‖ and

hence

γ̂ ‖x‖ − β ≤ |aT
k x| − |bk| ≤ |aT

k x − bk| ≤ f (x).

The convexity of L(ζ) comes from the convexity of f . Items (ii) and (iii) follow
trivially from item (i). �

Below, we recall some definitions and results of convex analysis useful to detect
the local behavior of f and to define descent directions at points of nondifferentia-
bility. Given ϕ : R

n → R convex and x, v ∈ R
n, we denote by Dϕ(x, v) (respectively

ϕ0(x, v)) the right directional derivative (respectively Clarke’s generalized deriva-
tive) of ϕ at x along v.

Proposition 2.2 Let ϕ : R
n → R be convex. Then:

(i) Given x ∈ R
n, ϕ is regular at x, that is ϕ0(x, v) = Dϕ(x, v) for all v ∈ R

n.
(ii) Given x ∈ R

n, Dϕ(x, ·) : R
n → R is positively homogenous, sublinear and Lip-

schitz continuous.

Proof See [14]. �

The following proposition emphasizes the role played by right directional deriva-
tives in convex analysis.

J Optim Theory Appl (2007) 134: 47–59 51

Proposition 2.3 Let ϕ : R
n → R be convex. Then x ∈ R

n is a minimizer if and only
if Dϕ(x, v) ≥ 0 for v ∈ R

n.

Proof Since ϕ is convex, given t1, t2, t3 ∈ R s.t. t1 < t2 < t3, the following inequality
holds:

ϕ(x + t2v) − ϕ(x + t1v)

t2 − t1
≤ ϕ(x + t3v) − ϕ(x + t1v)

t3 − t1
.

From this, we deduce the inequality

ϕ(x + tv) ≥ ϕ(x) + tDϕ(x, v), for v ∈ R
n and t ≥ 0,

which concludes the proof in one sense. The reverse implication is obvious. �

The definition of descent direction is now straightforward.

Definition 2.1 Let ϕ : R
n → R be convex and x ∈ R

n. Then v ∈ R
n is said to be a

descent direction at x if Dϕ(x, v) < 0.

Proposition 2.4 Let ϕ : R
n → R be convex. Given x ∈ R

n, the set D(x) := {v ∈ R
n :

Dϕ(x, v) < 0} is an open and convex cone, possibly empty.

Proof It follows from Proposition 2.2(ii). �

3 Descent Directions

If x �∈ S , every positive spanning set of R
n is suitable to detect descent directions. If

x ∈ S , this is no more true. Indeed if x ∈ S is not a minimizer, then by Proposition 2.4
D(x) can be smaller than a halfspace. For example, let f (x1, x2) := |x1| + 5|x2| +
2|x1 + x2 − 1|. Clearly, f is not differentiable at the lines �1 : x1 = 0, �2 : x2 = 0
and �3 : x1 + x2 = 1. Let x := (0,0)T ∈ �1 ∩ �2; it is easy to see that x is not a
minimizer since

D(x) =
{
(v1, v2)

T ∈ R
2 : −1

7
<

v2

v1
<

1

3
, v1 > 0

}
.

Consider the positive spanning set P := {(1,1)T , (−1,1)T , (−1,−1)T , (1,−1)T };
then, P ∩ D(x) = ∅, i.e., Df (x, d) ≥ 0, for d ∈ P . If we consider in alternative
P ′ := {(1,0)T , (0,1)T , (−1,0)T , (0,−1)T }, then P ′ ∩D(x) = {(1,0)T }. Therefore,
P ′ is well designed to detect descent directions at x. Let us remark that P ′ contains
the generators of the cones delimited by the lines of nondifferentiability �1 and �2
passing through x.

We introduce some basic notations. For x ∈ S , we define

I(x) = {j : ρj (x) = 0} := {j1, j2, . . . , jl(x)},
A(x) := [aj1 aj2 . . . ajl(x)

],

52 J Optim Theory Appl (2007) 134: 47–59

J (x) := {σ ∈ Z
l(x) : |σj | = 1, j = 1,2, . . . , l(x)},

Kσ (x) := 〈σ1aj1, σ2aj2, . . . , σl(x)ajl(x)
〉+, σ ∈ J (x).

From now on, we will assume for simplicity that I(x) = {1,2, . . . , l(x)}.
The following lemma emphasizes the role played by the polar cones K0

σ (x), when
analyzing the directional derivatives of f at x ∈ S .

Lemma 3.1 Given x ∈ S and σ ∈ J (x), there exists gσ = gσ (x) ∈ R
n s.t.

Df (x,u) = gT
σ u for u ∈ K0

σ (x).

Proof An easy calculation yields

Df (x, v) =
l(x)∑

j=1

|aT
j v| +

m∑

j=l(x)+1

sign(ρj (x))aT
j v, (3)

for all v ∈ R
n. Take u ∈ K0

σ (x); then, we have σja
T
j u ≤ 0, j = 1,2, . . . , l(x), and

from (3) it follows that Df (x,u) = gT
σ u, where

gσ := −
l(x)∑

j=1

σjaj +
m∑

j=l(x)+1

sign(ρj (x))aj .
�

Now, we are able to prove a key property of the descent directions at points of
nondifferentiability.

Theorem 3.1 Let x ∈ S be given. If x is not a minimizer, then Df (x, d) < 0 for some
d ∈ �(x) := ∪σ∈J (x) Gσ (x), where Gσ (x) is a set of generators for K0

σ (x).

Proof Since x is not a minimizer, by Proposition 2.3 it follows that a direction u ∈ R
n

exists s.t. Df (x,u) < 0. For j = 1,2, . . . , l(x), let us define σj = 1, if aT
j u ≤ 0, and

σj = −1, otherwise. Then, we have σja
T
j u ≤ 0 for all j , so that u ∈ K0

σ (x). Let

Gσ (x) = {z1, . . . , zp} be a set of generators for K0
σ (x); then u = ∑p

i=1 αizi , with
nonnegative coefficients α1, . . . , αp . By applying Lemma 3.1, we get

Df (x,u) = gT
σ

p∑

i=1

αizi =
p∑

i=1

αig
T
σ zi =

p∑

i=1

αiDf (x, zi).

Since Df (x,u) < 0, it must be Df (x, zi) < 0 for some i. �

Theorem 3.1 states that either �(x) contains a descent direction for f at x or x is
a minimizer. This emphasizes the advantages of knowing a set of generators for the
polar cones K0

σ (x), with σ ∈ J (x). If rank(A(x)) < l(x), the construction of Gσ (x)

is nontrivial; we refer to [15] for a thorough discussion about this issue. Instead, a
simple representation of Gσ (x) is available when rank(A(x)) = l(x): this recalls the
nondegeneracy condition in [4] and implies l(x) ≤ n.

J Optim Theory Appl (2007) 134: 47–59 53

Proposition 3.1 Let x ∈ S be given and assume that rank(A(x)) = l(x). Let V+(x)

be a positive basis for N(AT (x)), the null space of AT (x), and denote by W(x) =
{w1,w2, . . . ,wl(x)} the set of columns of −A(x)(AT (x)A(x))−1. For σ ∈ J (x) de-
fine Wσ (x) := {σ1w1, σ2w2, . . . , σl(x)wl(x)}. Then Wσ (x) ∪ V+(x) is a set of gener-
ators for K0

σ (x).

Proof Let Aσ (x) := [σ1a1 . . . σl(x)al(x)]. Of course, N(AT
σ (x)) = N(AT (x)) and

−Aσ (x)(AT
σ (x)Aσ (x))−1 = −A(x)(AT (x)A(x))−1 = [σ1w1 . . . σl(x)wl(x)],

where := diag(σ1, . . . , σl(x)). Then the desired result follows from [4, Proposi-
tion 8.2]. �

Remark 3.1 Under the hypotheses of Proposition 3.1, we can choose �(x) = W(x)∪
−W(x) ∪ V+(x), so that �(x) consists of at most 2n directions.

4 Algorithm and Convergence Results

Here we present and discuss our pattern search algorithm for solving (1). First of all
we have to generalize some definitions and results of the previous section. So, given
x ∈ R

n and η > 0, we denote by I(x, η) the set of the indices of the hyperplanes �j

whose distance from x is less than or equal to η, i.e., I(x, η) := {j : |ρj (x)|/‖aj‖ ≤
η}. Coherently, we define l(x, η), J (x, η), A(x,η), W(x, η), V+(x, η) and Kσ (x, η)

with σ ∈ J (x, η), instead of l(x), J (x), A(x), W(x), V+(x) and Kσ (x) with σ ∈
J (x).

The following result is an extension of Theorem 3.1.

Theorem 4.1 Let x ∈ S and η > 0 be given. If x is not a minimizer, then Df (x, d) <

0 for some d ∈ �(x,η), where

�(x,η) :=
⋃

σ∈J (x,η)

Gσ (x, η) (4)

and Gσ (x, η) is a set of generators for K0
σ (x, η).

Proof Without loss of generality, we assume

I(x, η) = {1,2, . . . , l + r} ⊇ I(x) = {1,2, . . . , l}. (5)

Given a descent direction u ∈ R
n for f at x, let σ ∈ J (x, η) be such that σj = 1,

if aT
j u ≤ 0, and σj = −1, otherwise, for j = 1,2, . . . , l + r . Then, u belongs to

K0
σ (x, η) and can be written as u = ∑q

i=1 αizi , where {z1, . . . , zq} = Gσ (x, η) and
the coefficients α1, . . . , αq, are nonnegative. Since K0

σ (x, η) ⊆ K0
σ ′(x), with σ ′ :=

(σ1, . . . , σl)
T , we can still apply Lemma 3.1 as in Theorem 3.1 to conclude that

54 J Optim Theory Appl (2007) 134: 47–59

Df (x,u) = gT
σ ′

q∑

i=1

αizi =
q∑

i=1

αig
T
σ ′zi =

q∑

i=1

αiDf (x, zi) < 0.

Hence, Df (x, zi) < 0 for some i. �

Remark 4.1 Let us consider more in general a set of indices Ī(x) s.t. I(x) ⊆ Ī(x) ⊆
I(x, η). Assuming (5), we can suppose Ī(x) = {1, . . . , l + s} with s ≤ r . Further, let
�̄(x) be a set of directions containing a set of generators for the polar cones K̄0

σ (x)

associated with K̄σ (x) = 〈σ1a1, σ2a2, . . . , σl+sal+s〉+, for all σ ∈ Z
l+s , |σj | = 1, j =

1, . . . , l + s. Then, it is seen easily that Theorem 4.1 still holds with �̄(x) in place of
�(x,η). In other words, if Df (x, d) ≥ 0 for all d ∈ �̄(x) then x is a minimizer.

Proposition 3.1 and Remark 3.1 can be extended easily as well. Indeed, under the
assumption rank(A(x)) = l(x), it can be proved by continuity arguments that there
exists a sufficiently small η̄ > 0 such that rank(A(x,η)) = l(x, η) for 0 ≤ η ≤ η̄. In
this case we can choose

�(x,η) = W(x, η) ∪ −W(x, η) ∪ V+(x, η). (6)

Now we are in position to state the algorithm. Consider an iterate xk which is not a
minimizer. If I(xk, η) = ∅, then xk is sufficiently far from S and every positive basis
H of R

n is suitable to detect descent directions. Otherwise we define the set of search
directions �k = �(xk, η) according to (4). Further, we add to �k a set of optional
search directions �k which is useful to explore more distant regions so as to improve
the efficiency of the algorithm, but does not play any role in the convergence analysis.
All pattern search methods are endowed with a similar tool: see e.g. the set Lk in
[2] or the SEARCH step in [7, 8]. In order to fit our method into the pattern search
framework the search directions must lie in a finite set and have the form Gz, where G

is a nonsingular real generating matrix independent from k and z is an integer vector.
This is ensured if all directions lie in a finite set of rational vectors. For this reason,
we assume H ⊂ Q

n and �k ⊂ � ⊂ Q
n, with � finite. Assumption 2.2 guarantees the

existence of rational generators for the polar cones, so that �(xk, η) ⊂ Q
n either by

(4) or by (6) in the nondegenerate case [4]. Moreover, we use the following simple
rule to ensure that the collection {�k, k ∈ N} is finite: if I(xk, η) = I(xk−p, η) for
some p > 0, then we set �k = �k−p .

Algorithm 4.1 Data: x0 ∈ R
n; �0, η > 0; τ ∈ Q and αL,αU ∈ Z s.t. τ > 1 and

αL < 0 ≤ αU ; a positive rational basis H for R
n; a finite set � ⊂ Q

n.

Step 1 For k = 0,1, . . . , until convergence, execute the steps below:
Step 1.1 Determine I(xk, η)

Step 1.2 If I(xk, η) = ∅, then set �k := H ; else compute a rational set of
generators Gσ (xk, η) for K0

σ (xk, η), σ ∈ J (xk, η), and set �k :=
∪σ∈J (xk,η) Gσ (xk, η)

Step 1.3 Define an optional finite set of search directions �k ⊂ �, possibly
empty, and set Xk := {xk + �kd : d ∈ �k ∪ �k}

J Optim Theory Appl (2007) 134: 47–59 55

Step 1.4 If f (xk + �kd) < f (xk) for some d ∈ �k , then choose xk+1 ∈ Xk s.t.
f (xk+1) < f (xk) and set �k+1 := ταk�k , with αk ∈ Z and 0 ≤ αk ≤
αU ; else set xk+1 := xk and �k+1 := ταk�k , with αk ∈ Z and αL ≤
αk ≤ −1.

In the convergence theorem below, we will invoke some results of Audet and Den-
nis [7], related to the so called refining subsequences {xk}k∈K , that is, subsequences
of mesh local optimizers such that limk→+∞,k∈K �k = 0. An iterate xk is a mesh
local optimizer when f (xk) ≥ f (xk + �kd) for all d ∈ �k .

Theorem 4.2 Under Assumptions 2.1 and 2.2, the sequence {xk} produced by the
algorithm admits some limit points and each of them is a minimizer.

Proof Since the iterates lie in the level set L(x0), which is compact (cf. Proposi-
tion 2.1(i)), by [7, Theorem 3.6] there exists at least one convergent refining subse-
quence {xk}k∈K ; let x̂ denote its limit. We will show in a while that x̂ is a minimizer;
then, using the convexity of f and the monotonicity of {f (xk)}, we can conclude,
as in [1, Proposition 5.6], that each limit point of the iteration sequence {xk} is a
minimizer.

Depending on the local smoothness of f , x̂ satisfies different optimality con-
ditions. Here we have to distinguish between two situations: either f is continu-
ously differentiable, and hence strictly differentiable, near x̂, or I(x̂) �= ∅ (f regu-
lar, but not strictly differentiable, at x̂). In the first case it is known that ∇f (x̂) = 0
(cf. [7, Theorem 3.9]): therefore, from Proposition 2.3 it follows that x̂ is a minimizer.

In the second case, we need to show that there exist a subsequence {xk}k∈K̄ with
K̄ ⊆ K , a set of indices Ī ⊆ I(xk, η) and a set of directions �̄ such that I(xk, η) = Ī
and �(xk, η) = �̄ for all k ∈ K̄ . Indeed, if I(x̂) �= ∅, there exists an ε > 0 s.t.
I(x̂) ⊆ I(x, η) ⊆ I(x̂, η) for ‖x̂ − x‖ ≤ ε, and then I(x̂) ⊆ I(xk, η) ⊆ I(x̂, η) for
all but finitely many k ∈ K . Since each �(xk, η) is selected from a finite family of di-
rections, there is an infinite subset of indices K̄ ⊆ K such that I(xk, η) and �(xk, η)

are constant for k ∈ K̄ .
Then, we have that Df (x̂, d) ≥ 0 for all d ∈ �̄ (cf. [7], Theorem 3.7 and bullet (v)

at p. 900), and by Remark 4.1 x̂ is a minimizer. �

5 Numerical Results

For simplicity we implemented the algorithm under the nondegeneracy assumption
rank(A(xk, η)) = l(xk, η) whenever I(xk, η) �= ∅. Of course, the choice of η is cru-
cial. For a given value of η, it may happen that I(xk, η) �= ∅ and the matrix A(xk, η)

is column rank deficient for some k. In this case we adopt the strategy suggested
in [4]: η is reduced by a factor γ until the cardinality of I(xk, η) decreases and the
columns of A(xk, η) are linearly independent. A safeguard minimal value ηmin > 0
is also given: if in the previous backtracking η becomes less than ηmin, failure is de-
clared. Below we report some numerical results obtained with an initial value for η

equal to 0.25, γ = 0.5 and ηmin = 10−12.

56 J Optim Theory Appl (2007) 134: 47–59

If I(xk, η) = ∅, we take �k = H := {±e1,±e2, . . . ,±en}. Otherwise, we use
the SVD decomposition of A(xk, η) to compute W(xk, η) and a basis V for
N(A(xk, η)T). We define V+(xk, η) := V ∪ −V , so that �k consists of 2n direc-
tions. In general, such a procedure does not satisfy the theoretical requirement for
rational sets of generators. However it works very well in practice, since in floating
point arithmetic all numbers are rational. Moreover, the SVD decomposition is the
best numerical tool to detect the rank of a matrix.

The set of optional search directions �k is defined as follows. We set �k := ∅ if
xk is a mesh local optimizer. Otherwise let dk ∈ �k be a direction such that f (xk +
�kd

k) = min{f (xk + �kd), d ∈ �k}. Since further improvement could possibly be
made along dk , we define �k := {2dk,3dk, . . . ,Mdk} for some M and we try to find
the minimum of f over the trial points xk + j�kd

k , with j = 1,2, . . . ,M .
In order to save computational effort, actually we approximate only such mini-

mum value: we determine first the values of the real parameter λ ∈ [1,M] for which
xk + λ�kd

k belongs to a hyperplane of nondifferentiability and denote these values
by λq , with q = 1,2, . . . , t ; we define λ0 = 1, λt+1 = M and assume λ0 < λ1 < · · · <
λt < λt+1. Then, we search for an index q̄ ∈ {1,2, . . . , t +1} s.t. f (xk +�λq̄��kd

k) >

f (xk + �λq̄−1��kd
k). If such a q̄ exists, we set xk+1 := xk + �λq̄−1��kd

k ; other-
wise xk+1 := xk + M�kd

k . This procedure has the flavor of the linesearch strategies
described in [12, 13]. In the experiments, we used M = 210.

As regards the steplength update, we used τ = 2, αL = −10 and αU = 1. More
precisely, the steplength is divided by 1024 when xk+1 = xk and is doubled when
xk+1 �= xk . Moreover, the steplength is kept unaltered on successful iterations in two
cases: when the previous iteration was unsuccessful and when the set of search direc-
tions is the same over three consecutive iterations.

We implemented our algorithm in MATLAB 7.0.1 on a processor Pentium 4
(2.80 GHz) and compared its behavior with the algorithms by Barrodale and
Roberts [11] and Coleman and Li [13], ad hoc tailored to problem (1). The first one
is a modified version of the standard simplex method, the second is a quadratically
convergent algorithm, based on the interior point approach. As another term of com-
parison, we used also the classical simplex method and the interior point implemented
in the general purpose linear programming solver LINPROG of the MATLAB OPTI-
MIZATION TOOLBOX. We compared the methods taking into account the number
of iterations required to solve a problem within a given accuracy; moreover, since the
five methods may spend considerably different amount of time in each iteration, we
considered also the CPU time.

We solved several L1–approximation problems where a real function g(t), evalu-
ated over a uniform mesh of m points in an interval I , is approximated by a polyno-
mial of degree n−1. The results that we report in Tables 1 and 2, which are referred to
g(t) = exp(−t) and g(t) = sin(t), well represent the behavior of the five methods. In
the tables we show the number of performed iterations and the CPU time in centisec-
onds; the methods are denoted by: PS (our algorithm), BR (Barrodale and Roberts’
algorithm), CL (Coleman and Li’s algorithm), SX (LINPROG: simplex method), IP
(LINPROG: interior-point method). These results were obtained with x0 equal to the
least squares solution of the overdetermined linear system AT x = b as suggested by
Coleman and Li; LINPROG uses built–in starting points, as well as the Barrodale

J Optim Theory Appl (2007) 134: 47–59 57

Table 1 Iterations/CPU times (cs) for g(t) = exp(−t), t ∈ [−1,1]

n PS BR CL SX IP

m = 500

2 14/2.3 6/1.7 3/3.0 498/217.0 10/350.2

3 21/4.1 6/2.1 8/7.6 749/292.2 12/418.3

4 22/5.1 10/3.2 8/7.9 1000/377.2 12/423.1

5 27/7.1 13/3.5 13/13.1 1250/459.1 14/486.9

m = 1000

2 12/4.3 6/5.0 7/22.9 998/812.7 12/66.9

3 15/6.4 6/6.2 11/38.1 1499/1096.5 13/76.3

4 19/8.9 11/9.3 10/36.6 2000/1382.8 14/86.1

5 21/11.6 12/9.7 13/49.5 2500/1765.6 14/95.5

Table 2 Iterations/CPU times (cs) for g(t) = sin(t), t ∈ [0,1]

m PS BR CL SX IP

n = 4

100 21/1.5 11/0.4 7/0.6 233/38.3 10/14.1

200 17/1.9 10/0.7 8/1.7 467/96.9 12/43.3

300 21/3.3 11/1.1 9/3.6 706/199.2 12/107.0

400 19/3.7 12/1.9 7/4.5 941/332.3 13/241.4

500 18/4.0 13/2.6 10/9.9 1175/511.1 12/413.6

1000 20/10.2 12/6.7 11/39.8 2355/1758.2 13/77.2

n = 5

100 26/2.2 12/0.5 8/0.7 313/41.4 26/27.5

200 19/2.3 9/1.0 11/2.5 636/124.8 16/55.9

300 22/3.8 9/1.7 10/4.1 959/260.6 fail

400 25/5.2 15/2.3 12/7.6 1282/439.5 fail

500 29/7.7 16/3.4 10/10.3 1599/662.7 fail

1000 27/14.3 17/9.0 12/45.5 3200/2298.8 26/149.4

and Roberts’ algorithm. The initial steplength is �0 = 10−6‖x0‖∞. The stopping
criterion is �k < Tol(1 + ‖xk‖∞), with Tol = 10−12.

As it was to be expected, the ad hoc taylored methods BR and CL require the lowest
number of iterations, while the general purpose methods reveal some difficulties:
a very large number of iterations in the case of SX and some lack of robustness
for IP. This is revealed by the fail entries of Table 2: in these cases, IP reaches the
maximum number of iterations (85) without meeting the default stopping criteria. The
behavior of PS can be placed in the middle: it is as much robust as best algorithms are,
while requiring a reasonably greater—by a factor about 2 or 3—number of iterations.

However, looking at the CPU time, we see that in almost all the experiments our
pattern search implementation compares favorably with all the other algorithms, but
BR. We remark in particular that the CPU time for CL increases rapidly with m, due

58 J Optim Theory Appl (2007) 134: 47–59

to the fact that each iteration requires the solution of a linear least squares problem
of dimension m × n. Finally, it is worth to note that the apparent incongruity in the
results of IP depends on the way the linear algebra is handled in the code (see [16,
pp. 2–75]).

6 Concluding Remarks

We have proposed a pattern search algorithm for the classical nonsmooth optimiza-
tion problem (1). The results of the numerical experiments seem encouraging in two
respects. First, they validate our idea that by exploiting the knowledge of the set
of nondifferentiability it is possible to devise convergent pattern search methods for
problem (1) with, all things considered, good practical behavior. Second, we look at
problem (1) as at a particular instance of the piecewise differentiable problem and
solve it without using linear programming. This approach has the advantage of being
applicable to more general nonsmooth problems.

For example, it is straightforward to see that our method can be applied to the
problem

min
x∈Rn

f (x) := gT x + ‖AT x − b‖1, (7)

where g ∈ R
n is given, as long as the level sets of f are bounded. Several problems,

such as the linear feasibility problem (i.e., finding feasible points of linearly con-
strained programs) can be recast as (7). It will be interesting to study the possibility
of extending the method to the corresponding box-constrained problem

min
x

f (x) := gT x + ‖AT x − b‖1 s.t. ‖x‖∞ ≤ δ

which arises e.g. when solving constrained nonlinear programs via sequential linear
programming [17] or systems of nonlinear equations via linear programming [18].
General linear constraints can be considered also, as well as the presence of nonlinear
terms in the objective function. We anticipate more work along these directions.

Acknowledgements We thank the referees for careful reading of an earlier version of the paper and for
many insightful comments and criticisms. Their questions and suggestions helped us to greatly improve
the presentation.

References

1. Torczon, V.: On the convergence of the multidirectional search algorithm. SIAM J. Optim. 1, 123–145
(1991)

2. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1–25 (1997)
3. Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM J.

Optim. 9, 1082–1099 (1999)
4. Lewis, R.M., Torczon, V.: Pattern search methods for linearly constrained minimization. SIAM J.

Optim. 10, 917–941 (2000)
5. Abramson, M.A., Audet, C., Dennis, J.E. Jr.: Generalized pattern searches with derivative information.

Math. Program. 100B, 3–25 (2004)
6. Audet, C.: Convergence results for generalized pattern search algorithms are tight. Optim. Eng. 5,

101–122 (2004)

J Optim Theory Appl (2007) 134: 47–59 59

7. Audet, C., Dennis, J.E. Jr.: Analysis of generalized pattern searches. SIAM J. Optim. 13, 889–903
(2003)

8. Audet, C., Dennis, J.E. Jr.: Mesh adaptive direct search algorithms for constrained optimization. Tech-
nical Report G-2004-04, Les Cahiers du GERAD, Montréal, Quebec, Canada (2004)

9. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some
classical and modern methods. SIAM Rev. 45, 385–482 (2003)

10. Lewis, R.M., Torczon, V.: Rank ordering and positive basis in pattern search algorithms. Technical
Report TR-96-71, ICASE, NASA Langley Research Center (1996)

11. Barrodale, I., Roberts, F.D.K.: An improved algorithm for discrete L1–approximation. SIAM J. Nu-
mer. Anal. 10, 839–848 (1973)

12. Bartels, R.H., Conn, A.R., Sinclair, J.W.: Minimization techniques for piecewise differentiable func-
tions: The L1 solution to an overdetermined linear system. SIAM J. Numer. Anal. 15, 224–241 (1978)

13. Coleman, T.F., Li, Y.: A globally and quadratically convergent affine scaling method for linear
L1 problems. Math. Program. 56, 189–222 (1992)

14. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
15. Abramson, M.A., Brezhneva, O.A., Dennis, J.E. Jr.: Pattern search methods in the presence of de-

generacy. Technical Report TR03-09, Rice University, Department of Computational and Applied
Mathematics (2005)

16. Optimization Toolbox User’s guide, Version 3. The Mathworks, Natick (2004)
17. Byrd, R.H., Gould, N.I.M., Nocedal, J., Waltz, R.A.: An algorithm for nonlinear optimization using

linear programming and equality constrained subproblems. Math. Program. 100B, 27–48 (2004)
18. Duff, I.S., Nocedal, J., Reid, J.K.: The use of linear programming for the solution of sparse sets of

nonlinear equations. SIAM J. Sci. Stat. Comput. 8, 99–108 (1987)

	Pattern Search Method for Discrete L1-Approximation
	Abstract
	Introduction
	Background
	Descent Directions
	Algorithm and Convergence Results
	Numerical Results
	Concluding Remarks
	Acknowledgements

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

