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Abstract This paper deals with the set-valued vector quasiequilibrium problem of
finding a point (z0, x0) of a set E ×K such that (z0, x0) ∈ B(z0, x0)×A(z0, x0), and,
for all η ∈ A(z0, x0),

(F (z0, x0, η),C(z0, x0, η)) ∈ α,

where α is a subset of 2Y × 2Y and A : E × K → 2K,B : E × K → 2E,F :
E ×K ×K → 2Y , C : E ×K ×K → 2Y are set-valued maps, with Y is a topological
vector space. Two existence theorems are proven under different assumptions. Cor-
rect results of [Hou, S.H., Yu, H., Chen, G.Y.: J. Optim. Theory Appl. 119, 485–498
(2003)] are obtained from a special case of one of these theorems.

Keywords Vector quasiequilibrium problems · Set-valued maps · Existence
theorems · Diagonal quasiconvexity

1 Introduction

The quasi-equilibrium problem is that of finding a point (z0, x0) ∈ E × K such that
(z0, x0) ∈ ̂B(x0) × ̂A(x0) and

ϕ(z0, x0, η) ≥ 0, ∀η ∈ ̂A(x0), (1)
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where E (resp. K) is a subset of a topological vector space Z (resp. X), ̂A : K → 2K

and ̂B : K → 2E are set-valued maps, and ϕ : E × K × K → R (the real line) is
a function. Existence results for this problem and its generalizations are obtained
in Refs. [2–8] under various assumptions. Recently, new versions of the above quasi-
equilibrium problem, where ϕ is replaced by a set-valued map F with values in a
topological vector space Y , are introduced. More precisely, in Ref. [9] condition (1)
is replaced by

F(z0, x0, η) ⊂ F(z0, x0, x0) + C′, ∀η ∈ ̂A(x0),

or

F(z0, x0, x0) ⊂ F(z0, x0, η) + C′, ∀η ∈ ̂A(x0),

where F : E × K × K → 2Y is a set-valued map and C′ ⊂ Y is a convex cone. In
Ref. [1] the following problems (̂Pi ), i = 1,2,3,4, are considered:

Problem (̂Pi ): Find (z0, x0) ∈ E × K such that (z0, x0) ∈ ̂B(x0) × ̂A(x0) and

αi(F (z0, x0, η), ̂C(x0)), ∀η ∈ ̂A(x0),

where F : E × K × K → 2Y and ̂C : K → 2Y are set-valued maps, αi is a relation
on 2Y (i.e. αi is a subset of 2Y × 2Y ) defined by

α1 = {(a, b) ∈ 2Y × 2Y : a �⊂ b},
α2 = {(a, b) ∈ 2Y × 2Y : a ⊂ b},
α3 = {(a, b) ∈ 2Y × 2Y : a ∩ b �= ∅},
α4 = {(a, b) ∈ 2Y × 2Y : a ∩ b = ∅},

and the symbol αi(a, b) is used to denote that (a, b) ∈ αi .

Several results for the existence of solutions of each of Problems (̂Pi ) are estab-
lished in Theorems 3.1–3.5 of Ref. [1]. Unfortunately, as we will see in Sect. 4, all
these results are not true. So, it is clear that to obtain correct results for the above
problems we must use assumptions different from or stronger than those of Ref. [1].

In this paper, we study the following general problem:

Problem (Pα): Find a point (z0, x0) ∈ E × K such that (z0, x0) ∈ B(z0, x0) ×
A(z0, x0) and

α(F (z0, x0, η),C(z0, x0, η)), ∀η ∈ A(z0, x0),

where A : E×K → 2K,B : E×K → 2E,F : E×K×K → 2Y , C : E × K × K → 2Y

are set-valued maps and α is an arbitrary relation on 2Y , i.e., a subset of 2Y × 2Y .

Obviously, Problem (Pα) includes as special cases all the above Problems (̂Pi ).
We will give two general existence theorems (see Theorems 3.1 and 4.1 below) for
Problem (Pα) with different assumptions. In Theorem 3.1 we deal with the case
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when A is continuous, while in Theorem 4.1 we assume that A has open lower sec-
tions (see Sect. 2). To conclude this section, let us observe that, when specializing
Theorem 4.1 to the problems considered in Ref. [1], we get correct results.

2 Preliminaries

Let X be a topological space. Each subset of X is a topological space with a
topology induced by the given topology of X. In this paper neighborhoods of
points of X are assumed to be open. Neighborhoods of x ∈ X are denoted by
U(x),U1(x),U2(x), . . . . The symbols clA and intA are used to denote the closure
and interior of a subset A of X. If A is a subset of a vector space then coA denotes
the convex hull of A. The empty set is denoted by ∅.

Let f : X → 2Y and g : X → 2Y be set-valued maps between the topological
spaces X and Y . Then, f ∩ g is the set-valued map

x ∈ X �→ (f ∩ g)(x) = f (x) ∩ g(x).

We write f ⊂ g if f (x) ⊂ g(x) for all x ∈ X. If ψ : X → 2Z is a set-valued map
between the topological spaces X and Z, then the map V = f × ψ : X → 2Y×Z is
defined by V (x) = f (x) × ψ(x) for all x ∈ X.

We use the continuity properties of set-valued maps in the usual sense of Ref. [10].
Namely, f is upper semicontinuous (usc) if, for any x ∈ X and any open set
N ⊃ f (x), we have that N ⊃ f (x′) for all x′ from some neighborhood U(x) of x.
The map f is lower semicontinuous (lsc) if, for any x ∈ X and any open set N with
f (x)∩N �= ∅, we have f (x′)∩N �= ∅ for all x′ from some neighborhood U(x) of x.
The map f is continuous if it is both usc and lsc. If the graph of f , defined by grf ,
is a closed (resp. open) set of X × Y , then we say that f has a closed (resp. open)
graph. Recall that grf is the set of all points (x, y) ∈ X × Y such that y ∈ f (x).
We say that f has open lower sections if the inverse map f −1 : Y → 2X , defined by
f −1(y) = {x ∈ X : y ∈ f (x)}, is open-valued, i.e., for all y ∈ Yf −1(y) is open in X.
It is known in Ref. [11] that a map having open lower sections must be lsc. It is easy
to give examples proving that a continuous map may not have open lower sections.
The map f is compact if f (X) is contained in a compact set of Y . The map f is
acyclic if it is usc and if, for all x ∈ X,f (x) is nonempty, compact and acyclic. Here
a topological space is called acyclic if all of its reduced Čech homology groups over
rationals vanish. Observe from Ref. [12] that the Cartesian product of two acyclic
sets is acyclic. We say that the map f is closed-valued (resp. open-valued, acyclic-
valued, . . .) if, for all x ∈ X, f (x) is a closed (resp. open, acyclic, . . .) set. A similar
definition of a convex-valued map can be introduced if it takes values in a vector
space.

We need the following fixed-point theorem (see Ref. [13]).

Theorem 2.1 Let K be a nonempty convex subset of a locally convex Hausdorff
topological vector space X. If f : K → 2K is a compact acyclic map, then f has
a fixed point, i.e., there exists x0 ∈ K such that x0 ∈ f (x0).
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Let β be a relation on 2Y , i.e., β be a subset of the Cartesian product 2Y × 2Y . For
two sets a ∈ 2Y and b ∈ 2Y , we write β(a, b) if and only if (a, b) ∈ β . Denote by β̄

the relation on 2Y defined by β̄ = 2Y × 2Y \ β . Then, the symbol β̄(a, b) means that
(a, b) /∈ β .

Let β be a relation on 2Y . Let a be a nonempty convex subset of a topological
vector space X, let g : a × a → 2Y and d : a × a → 2Y be set-valued maps such that,
for all (x, η) ∈ a × a,g(x, η) and d(x, η) are nonempty.

We say that the pair (g, d) is β-diagonally quasiconvex in η if, for each finite sub-
set {xi, i = 1,2, . . . , n} ⊂ a and each point x ∈ co{xi, i = 1,2, . . . , n}, there exists
a point xi such that β(g(x, xi), d(x, xi)). Observe that this diagonal quasiconvexity
property generalizes all notions of diagonal quasiconvexity introduced in Ref. [1]. It
is easy to verify that the pair (g, d) is β-diagonally quasiconvex in η if and only if
the map

η ∈ a �→ sβ(η) := {x ∈ a : β(g(x, η), d(x, η))}
is a KKM-map in the sense that

co{ηi, i = 1,2, . . . , n} ⊂
n

⋃

i=1

sβ(ηi),

for each finite set {ηi, i = 1,2, . . . , n} ⊂ a. Therefore, applying the KKM lemma
(Ref. [14]) to the map sβ , we can derive the following result.

Proposition 2.1 Let a be a nonempty compact convex subset of a topological
vector space X and let the pair (g, d) be β-diagonally quasiconvex in η. If for
all η ∈ a the above set sβ(η) is closed in a, then there exists x ∈ a such that
β(g(x, η), d(x, η)), ∀η ∈ a.

Proposition 2.2 The pair (g, d) is β-diagonally quasiconvex in η if and only if x /∈
co tβ̄ (x) for all x ∈ a, where

tβ̄ (x) := {η ∈ a : β̄(g(x, η), d(x, η))}.

Proof Obviously, the pair (g, d) is not β-diagonally quasiconvex in η if and only
if there exist {xi, i = 1,2, . . . , n} ⊂ a and x ∈ co{xi, i = 1,2, . . . , n} such that
β̄(g(x, xi), d(x, xi)) (i.e., xi ∈ tβ̄ (x)) for all i = 1,2, . . . , n. In other words, the pair
(g, d) is not β-diagonally quasiconvex in η if and only if there exists x ∈ a such that
x ∈ co tβ̄ (x). �

Corollary 2.1 Let tβ̄ (x) be convex and let β(g(x, x), d(x, x)) for all x ∈ a. Then,
the pair (g, d) is β-diagonally quasiconvex in η.

Proof If there exists x ∈ a such that x ∈ co tβ̄ (x) = tβ̄ (x), then we have β̄(g(x, x),
d(x, x)), a contradiction to the condition β(g(x, x), d(x, x)) of Corollary 2.1. So,
x /∈ co tβ̄ (x), for all x ∈ a. It remains to apply Proposition 2.2. �
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3 First Existence Result

Throughout this paper, we assume that X,Y and Z are locally convex Hausdorff
topological vector spaces and that E ⊂ Z and K ⊂ X are nonempty subsets. We
also assume that A : E × K → 2K,B : E × K → 2E , F : W → 2Y ,C : W → 2Y ,

G : W → 2Y and D : W → 2Y are set-valued maps with nonempty values, where
W := E × K × K is the Cartesian product of the topological spaces E,K and K .

Lemma 3.1 Let E ⊂ Z and K ⊂ X be nonempty sets. Let A : E × K → 2K be a
lsc map and let N : E × K → 2K be a closed map. Then, the following map ϕ :
E × K → 2K is closed:

(z, ξ) ∈ E × K �→ ϕ(z, ξ) =
⋂

η∈A(z,ξ)

N(z, η).

Proof It suffices to show that the complement of the graph of ϕ in the topological
space E × K × K is open. In other words, assuming that

w̃ := (z̃, ξ̃ , x̃) /∈ grϕ := {(z, ξ, x) ∈ E × K × K : x ∈ ϕ(z, ξ)},

we can find neighborhoods U(z̃),U(ξ̃ ) and U(x̃) such that w /∈ grϕ for all w :=
(z, ξ, x) ∈ U(z̃) × U(ξ̃) × U(x̃). Indeed, since w̃ /∈ grϕ, there exists η̃ ∈ A(z̃, ξ̃ )

with x̃ /∈ N(z̃, η̃), i.e., (z̃, η̃, x̃) /∈ grN . By the closeness of the graph of N there
exist neighborhoods U1(z̃),U(η̃) and U(x̃) such that (z, η, x) /∈ grN , i.e., x /∈
N(z,η), for all (z, η, x) ∈ U1(z̃) × U(η̃) × U(x̃). Since η̃ ∈ A(z̃, ξ̃ ) ∩ U(η̃), i.e.,
A(z̃, ξ̃ ) ∩ U(η̃) �= ∅, by the lower semicontinuity of A there exist neighborhoods
U2(z̃) and U(ξ̃) such that A(z, ξ) ∩ U(η̃) �= ∅ for all z ∈ U2(z̃) and ξ ∈ U(ξ̃).
Setting U(z̃) = U1(z̃) ∩ U2(z̃), we will prove that w /∈ grϕ for all w = (z, ξ, x) ∈
U(z̃) × U(ξ̃) × U(x̃). Indeed, since (z, ξ) ∈ U2(z̃) × U(ξ̃) there exists a point
η ∈ A(z, ξ) ∩ U(η̃). Since (z, η, x) ∈ U1(z̃) × U(η̃) × U(x̃) we get x /∈ N(z,η).
Thus, given w = (z, ξ, x) ∈ U(z̃) × U(ξ̃) × U(x̃) we can find η ∈ A(z, ξ) such that
x /∈ N(z,η). This proves that w /∈ grϕ, as desired. �

Lemma 3.2 Let E and K be convex. Let A : E × K → 2K be a compact upper
semicontinuous map with closed values, let B : E × K → 2E be a compact acyclic
map and ϕ : E×K → 2K be a closed map such that the map S = ϕ∩A has nonempty
acyclic values. Then, for any map T : E × K → 2K such that S ⊂ T , the map B × T

has a fixed point.

Proof Observe that f := B×S satisfies all the conditions of Theorem 2.1 with E×K

instead of K . Indeed, by [Ref. [10], Propositions 2 and 7, pp. 71–73] it is usc. Also,
it has acyclic values (see the Introduction) and is a compact map (since f ⊂ B × A

and since both B and A are compact maps). By Theorem 2.1, f has a fixed point. To
conclude our proof, it remains to observe that f ⊂ B × T . �
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We will need the following conditions:

Condition (PS): For all (z, ξ) ∈ E × K and x ∈ A(z, ξ),

[∀η ∈ A(z, ξ),β(G(z, x, η),D(z, x, η))]
⇒ [∀η ∈ A(z, ξ),α(F (z, x, η),C(z, x, η))].

Condition (ps): For all (z, ξ) ∈ E × K,x ∈ A(z, ξ) and η ∈ A(z, ξ),

β(G(z, x, η),D(z, x, η)) ⇒ α(F (z, x, η),C(z, x, η)).

Clearly, condition (ps) ⇒ condition (PS). Condition (ps) is satisfied if, for all
w ∈ W := E × K × K ,

β(G(w),D(w)) ⇒ α(F (w),C(w)). (2)

A special case of (2) with β = α = α1 is used in [Ref. [15], Theorem 3.1, condi-
tion (iv)] and [Ref. [16], Theorem 3.2, condition (iii)]. For a special case of con-
dition (PS) with β = α = α1 and A(z, ξ) ≡ K , see e.g. [Ref. [16], Theorem 3.4,
condition (iv), and Remark 3.3].

Before formulating the main result of this section, let us introduce the set-valued
maps Nβ : E×K → 2K,Lα : E×K → 2K,Sβ : E×K → 2K and Tα : E×K → 2K

defined by

Nβ(z, η) = {x ∈ K : β(G(z, x, η),D(z, x, η))},
Lα(z, η) = {x ∈ K : α(F (z, x, η),C(z, x, η))},
Sβ(z, ξ) = {x ∈ A(z, ξ) : β(G(z, x, η),D(z, x, η)),∀η ∈ A(z, ξ)},
Tα(z, ξ) = {x ∈ A(z, ξ) : α(F (z, x, η),C(z, x, η)),∀η ∈ A(z, ξ)}.

Theorem 3.1 Let E ⊂ Z and K ⊂ X be nonempty convex sets. Let A : E ×K → 2K

be a compact continuous map with closed values, let B : E × K → 2E be a compact
acyclic map. Let α and β be arbitrary relations on 2Y . Let (G,D) be a pair of maps
satisfying condition (PS). Assume additionally that the map Nβ is closed and the map
Sβ has nonempty acyclic values. Then, there exists a solution of Problem (Pα).

Proof By Lemma 3.1, the map

(z, ξ) ∈ E × K �→ ϕβ(z, ξ) =
⋂

η∈A(z,ξ)

Nβ(z, η)

is closed. On the other hand, Sβ(z, ξ) = ϕβ(z, ξ) ∩ A(z, ξ) and, by condition (PS),
Sβ(z, ξ) ⊂ Tα(z, ξ) for all (z, ξ) ∈ E × K . Applying Lemma 3.2 proves that B × Tα

has a fixed point which is exactly a solution of Problem (Pα). �

The following corollary is derived from Theorem 3.1 with β = α and (G,D) =
(F,C).
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Corollary 3.1 Let E,K,A and B be as in Theorem 3.1. Assume additionally that
the map Lα is closed and the map Tα has nonempty acyclic values. Then, there exists
a solution of Problem (Pα).

Theorem 3.2 Let E ⊂ Z and K ⊂ X be nonempty convex sets. Let A : E ×K → 2K

be a compact continuous map with closed convex values and let B : E × K → 2E

be a compact acyclic map. Let α and β be arbitrary relations on 2Y . Let (G,D) be
a pair of maps satisfying condition (PS). Assume additionally that the map Nβ is
closed and has convex values and that, for each z ∈ E, the pair (G(z, ·, ·),D(z, ·, ·))
is β-diagonally quasiconvex in the variable η. Then, there exists a solution of Prob-
lem (Pα).

Proof By Theorem 3.1, it suffices to verify that the map Sβ has nonempty acyclic
values. From the closeness of the map Nβ , it follows that, for all (z, η) ∈ E × K , the
set Nβ(z, η) is closed in K . On the other hand, A(z, ξ) ⊂ K . So, for all (z, ξ, η) ∈
E × K × K the set Nβ(z, η) ∩ A(z, ξ) is closed in A(z, ξ). Now, for fixed (z, ξ) ∈
E × K , let us set a = A(z, ξ), g = G(z, ·, ·) and d = D(z, ·, ·). Then, the set sβ(η)

mentioned in Proposition 2.1 is closed in a since in our case sβ(η) = Nβ(z, η) ∩
A(z, ξ). Therefore, because of the validity of all the requirements of Proposition 2.1,
we claim that, for all (z, ξ) ∈ E × K,Sβ(z, ξ) is nonempty. To prove that Sβ(z, ξ) is
acyclic it suffices to show that it is convex. Indeed, let us rewrite Sβ(z, ξ) as

Sβ(z, ξ) =
⋂

η∈A(z,ξ)

[Nβ(z, η) ∩ A(z, ξ)].

Since Nβ(z, η) ∩ A(z, ξ) is convex and since the intersection of a family of convex
sets is convex we conclude that Sβ(z, ξ) is convex, as required. �

Corollary 3.2 Let E,K,A and B be as in Theorem 3.2. Assume additionally that
the map Lα is closed and has convex values and that, for each z ∈ E, the pair
(F (z, ·, ·),C(z, ·, ·)) is α-diagonally quasiconvex in the variable η. Then, there exists
a solution of Problem (Pα).

Remark 3.1 If E and K are compact sets then the upper semicontinuity of the maps A

and B used in Theorems 3.1 and 3.2 implies that the set

M = {(z, x) ∈ E × K : (z, x) ∈ B(z, x) × A(z, x)} (3)

is closed in E × K . This property will be assumed to be satisfied in Sect. 4, but in-
stead of the continuity of A we will require that A has open lower sections. When
B(z, x) ≡ E and A(z, x) ≡ A(x) then the closeness of M is equivalent to the close-
ness of the set {x ∈ K : x ∈ A(x)}. This requirement is introduced in Ref. [15].

4 Second Existence Result

This section is devoted to existence theorems where the map A satisfies assumptions
different from those of Sect. 3. Namely, the continuity of set-valued map A will
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be replaced by the requirement that A has open lower sections and it is such that
the set M of fixed points of the set-valued map B × A is closed in E × K . Also,
condition (PS) will be replaced by the stronger condition (ps).

Before formulating the main result of this section (Theorem 4.1), let us consider
some lemmas.

Lemma 4.1 Let m′ be a subset of a topological vector space X, and let ϕ : m′ → 2M ′

and ψ : m′ → 2M ′
be set-valued maps with open lower sections such that [coϕ(x)] ∩

ψ(x) �= ∅ for all x ∈ m, where M ′ is a convex set and m ⊂ m′ is a subset closed
in m′. Then, the map σ : m′ → 2M ′

, defined by

σ(x) =
{ [coϕ(x)] ∩ ψ(x), if x ∈ m,

ψ(x), if x ∈ m′ \ m,

has open lower sections.

Proof Let ṽ ∈ M ′ be an arbitrary point. Since φ = coϕ has open lower sections (see
Ref. [11]) and since m′ \ m is open in m′, both the sets U1 := φ−1(ṽ) ∩ ψ−1(ṽ)

and U2 := (m′ \ m) ∩ ψ−1(ṽ) are open in m′. On the other hand, it is obvious that
Ui ⊂ σ−1(ṽ), i = 1,2.

To prove that σ−1(ṽ) is open in m′, it suffices to show that, for any point
x̃ ∈ σ−1(ṽ), there exists a set U such that U is open in m′ and x̃ ∈ U ⊂ σ−1(ṽ).
Obviously, U = U1 (resp. U = U2) has this property if x̃ ∈ m (resp. x̃ ∈ m′ \ m). The
proof of Lemma 4.1 is thus complete. �

Remark 4.1 Lemma 4.1 can be established by using the following formulas (see
Ref. [17]), valid for all ṽ ∈ M ′:

σ−1(ṽ) = [ψ−1(ṽ) ∩ φ−1(ṽ)] ∪ [(m′ \ m) ∩ ψ−1(ṽ)].

Lemma 4.2 Let α and β be relations on 2Y . Let E ⊂ Z and K ⊂ X be compact
convex sets. Let A : E × K → 2K be a map with convex values and open lower
sections, and let B : E × K → 2E be a compact acyclic map such that the set M

(see (3)) is closed in E × K . Let L : E × K → 2K and N : E × K → 2K be such
that, for all (z, x) ∈ M ,

A(z, x) ∩ L(z, x) ⊂ A(z, x) ∩ N(z, x). (4)

Assume additionally that N has open lower sections and that, for all (z, x) ∈ M ,

x /∈ coN(z, x). (5)

Then, there exists a point (z0, x0) ∈ M such that A(z0, x0) ∩ L(z0, x0) = ∅.

Proof Assume to the contrary that, for all (z, x) ∈ M ,

A(z, x) ∩ L(z, x) �= ∅,



J Optim Theory Appl (2007) 133: 229–240 237

which by (4) implies that

A(z, x) ∩ N(z, x) �= ∅.

Setting Q := coN , we derive from Lemma 4.1 that the map H : E × K → 2K , de-
fined by

H(z, x) =
{

Q(z,x) ∩ A(z, x), if (z, x) ∈ M ,
A(z, x), if (z, x) ∈ E × K \ M ,

has open lower sections. Observing that E × K is a compact Hausdorff topolog-
ical space and H has nonempty convex values, we claim from Theorem 8.1.3 of
[Ref. [18], p. 97] that H has a continuous selection, i.e., there exists a continuous
single-valued map h : E ×K → K such that h(z, x) ∈ H(z, x) for all (z, x) ∈ E ×K .
Now, let us construct a set-valued map ψ : E × K → 2E×K by setting ψ(z, x) =
B(z, x) × {h(z, x)}. Observe from Theorem 2.1 that ψ has a fixed point, i.e., there
exists a point (z0, x0) ∈ E ×K such that (z0, x0) ∈ ψ(z0, x0). Since ψ ⊂ B ×A it fol-
lows that (z0, x0) is also a fixed point of B ×A, i.e., (z0, x0) ∈ M . Since (z0, x0) ∈ M

and (z0, x0) is a fixed point of ψ , we have

(z0, x0) ∈ B(z0, x0) × H(z0, x0),

which implies that

x0 ∈ [coN(z0, x0)] ∩ A(z0, x0) ⊂ coN(z0, x0),

a contradiction to (5). �

Remark 4.2 If in the proof of Lemma 4.2 we set H ≡ A, then the continuous se-
lection h must be such that h(z, x) ∈ A(z, x). This implies that a fixed point of
ψ = B ×h is also a fixed point of B ×A, i.e., M �= ∅. This result is obtained under the
assumption that A : E × K → 2K is a map with convex values and open lower sec-
tions, and that B : E ×K → 2E is a compact acyclic map. Thus, the set M appearing
in Lemma 4.2 must be nonempty.

Consider now the set-valued maps N ′̄
β

: E × K → 2K and L′̄
α : E × K → 2K

defined by

N ′̄
β
(z, x) = {η ∈ K : β̄(G(z, x, η),D(z, x, η))},

L′̄
α(z, x) = {η ∈ K : ᾱ(F (z, x, η),C(z, x, η))}.

Theorem 4.1 Let E ⊂ Z and K ⊂ X be nonempty compact convex sets. Let A :
E × K → 2K be a map with convex values and open lower sections, and let B :
E × K → 2E be a compact acyclic map such that the set M (see (3)) is closed in
E × K . Let α and β be arbitrary relations on 2Y . Let (G,D) be a pair of maps
satisfying condition (ps). Assume additionally that N ′̄

β
has open lower sections and

that, for all (z, x) ∈ M ,

x /∈ coN ′̄
β
(z, x). (6)

Then, there exists a solution of Problem (Pα).
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Proof Condition (ps) yields (4) with L = L′̄
α and N = N ′̄

β
. Applying Lemma 4.2

proves that there exists a point (z0, x0) ∈ M such that the intersection of A(z0, x0)

and L′̄
α(z0, x0) is empty. This proves that (z0, x0) is a solution of (Pα). �

Remark 4.3 Condition (6) holds if for all z ∈ E the pair (G(z, ·, ·),D(z, ·, ·)) is β-
diagonally quasiconvex in the variable η (see Proposition 2.2).

Corollary 4.1 Let all the assumptions of Theorem 4.1 be satisfied, except for condi-
tion (6). Assume additionally that:

(i) For all (z, x) ∈ E × K,N ′̄
β
(z, x) is convex.

(ii) For all (z, x) ∈ E × K,β(G(z, x, x),D(z, x, x)).

Then, there exists a solution of Problem (Pα).

Proof By Corollary 2.1, for all z ∈ E, the pair (G(z, ·, ·),D(z, ·, ·)) is β-diagonally
quasiconvex in η. Corollary 4.1 is thus a consequence of Theorem 4.1 and Re-
mark 4.3. �

The following result is derived from Theorem 4.1 with β = α and (G,D) =
(F,C).

Corollary 4.2 Let E,K,A and B be as in Theorem 4.1. Assume additionally that
L′̄

α has open lower sections and that, for all (z, x) ∈ M,x /∈ coL′̄
α(z, x). Then, there

exists a solution of Problem (Pα).

From Corollary 4.2 and Remark 4.3 we obtain the following result.

Corollary 4.3 Let E,K,A and B be as in Theorem 4.1. If L′̄
α has open lower sec-

tions and if, for all z ∈ E, the pair (F (z, ·, ·),C(z, ·, ·)) is α-diagonally quasiconvex
in the variable η, then there exists a solution of Problem (Pα).

Remark 4.4 Corollary 4.3 fails to hold if the closeness assumption of M is not satis-
fied. As an example illustrating this remark, let us take the following example from
Ref. [19].

Example 4.1 Consider Problem (Pα1), where X = Y = Z = R,E = K = [0,1] ⊂
R,B(z, x) ≡ {1},C(z, x, η) ≡ − int R+ (the negative half-line), F(z, x, η) = {z(x −
η)} ⊂ R for all z, x, η ∈ [0,1] and

A(z, x) =
{ [0,1], if x ∈ [0,1),

{0}, if x = 1.

In this example there does not exist a solution of Problem (Pα1), though all the as-
sumptions of Corollary 4.3, except the closeness of the set M , are satisfied.

Remark 4.5 Theorems 3.1 and 3.3 of Ref. [1] give sufficient conditions for the ex-
istence of solutions of Problems (̂P1) and (̂P4) (see the Introduction). Unfortunately,
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although all conditions of each of these theorems are satisfied in Example 4.1, it is
easy to see that in this example both Problems (̂P1) and (̂P4) have no solution. Hence,
both Theorems 3.1 and 3.3 of Ref. [1] are incorrect. From Corollary 4.2, we see that
the absence of the closeness of the set M is a reason for this incorrectness.

Remark 4.6 If in Example 4.1 we replace condition C(z, x, η) ≡ − int R+ by the con-
dition C(z, x, η) ≡ R+, then we obtain a counterexample proving that Theorems 3.4
and 3.5 of Ref. [1], which give conditions for the existence of solutions of Prob-
lems (̂P3) and (̂P2), are incorrect. This incorrectness disappears if we add the as-
sumption of the closeness of M to each of these theorems.

The following result gives the existence of solutions of Problem (Pα) without the
compactness and convexity assumptions for E and K .

Theorem 4.2 Let all the assumptions of Theorem 4.1 be satisfied, except for the
compactness and convexity of the sets E and K . Assume additionally that there exist
nonempty compact convex sets E1 ⊂ E,K1 ⊂ K and a nonempty set K2 ⊂ K1 such
that:

(i) A(E1 × K2) ⊂ K1.
(ii) For all (z, x) ∈ E1 × K1, the set A(z, x) ∩ K1 is nonempty and the set B(z, x) ∩

E1 is nonempty and acyclic.
(iii) For all (z, x) ∈ E1 × (K1 \ K2) with z ∈ B(z, x), there exists η ∈ A(z, x) ∩ K1

such that ᾱ(F (z, x, η),C(z, x, η)).

Then, there exists a solution (z0, x0) of Problem (Pα) with (z0, x0) ∈ E1 × K2.

Proof Let us consider the maps

(z, x) ∈ E1 × K1 �→ A1(z, x) := A(z, x) ∩ K1,

(z, x) ∈ E1 × K1 �→ B1(z, x) := B(z, x) ∩ E1,

(z, x) ∈ E1 × K1 �→ L′
1ᾱ(z, x) := L′̄

α(z, x) ∩ K1,

(z, x) ∈ E1 × K1 �→ N ′
1β̄

(z, x) := N ′̄
β
(z, x) ∩ K1.

Since all the assumptions of Theorem 4.1 with E1,K1,A1,B1,L
′
1ᾱ and N ′

1β̄
instead

of E,K,A,B,L′̄
α and N ′̄

β
are satisfied, we can find

(z0, x0) ∈ M1 := {(z, x) ∈ E1 × K1 : (z, x) ∈ B1(z, x) × A1(z, x)}
such that

α(F (z0, x0, η),C(z0, x0, η)), ∀η ∈ A1(z0, x0). (7)

Since z0 ∈ B1(z0, x0), we derive from (iii) that condition (7) cannot be satisfied
if x0 ∈ K1 \ K2. Therefore, x0 ∈ K2, which together with (i) yields A1(z0, x0) =
A(z0, x0)∩K1 = A(z0, x0). From this and (7), we conclude that (z0, x0) is a solution
of Problem (Pα). �
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