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Abstract. In this paper, we study a class of general monotone equilibrium
problems in a real Hilbert space which involves a monotone differentiable bi-
function. For such a bifunction, a skew-symmetric type property with respect
to the partial gradients is established. We suggest to solve this class of equi-
librium problems with the modified combined relaxation method involving
an auxiliary procedure. We prove the existence and uniqueness of the solution
to the auxiliary variational inequality in the auxiliary procedure. Further, we
prove also the weak convergence of the modified combined relaxation method
by virtue of the monotonicity and the skew-symmetric type property.
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1. Introduction

Let H be a real Hilbert space whose inner product and norm are denote by
〈·, ·〉 and ‖ · ‖ respectively. Let � be a nonempty closed convex subset in H and
let f : � × � → R be a real-valued bifunction such that

f (x, x) = 0, ∀x ∈ �.

Then, we can define the equilibrium problem (EP): to find an element x∗ ∈ � such
that

f (x∗, y) ≥ 0, ∀y ∈ �. (1)
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We denote by �∗ the solution set of this problem. EP represents a rather com-
mon and suitable format for many problems arising in economics, mathematical
physics, and operations research. Besides, it is closely related with other general
problems in nonlinear analysis. For instance, it involves saddle-point problems
and variational inequalities in the case when H is finite-dimensional; see e.g.,
Refs. 1–3 and references therein. A number of methods were designed for solving
the EP (1). Most of them are extensions of the corresponding ones for saddle-point
problems with convex-concave cost bifunctions; see e.g., Refs. 4–5. On the other
hand, several implementable algorithms for concave-convex EP (1) were proposed
in Refs. 6–9. In particular, in the case where f is continuously differentiable, the
auxiliary procedures were based on an iteration of the gradient projection method,
Frank-Wolfe method, and Newton method. In all cases, the corresponding algo-
rithms involve derivative-free line search procedures (see Ref. 9). This approach
is called combined relaxation (CR). Recently, Konnov (Ref. 10) considered the
EP(1) in the case when H = Rn is a real n-dimensional Euclidean space. He
presented a new CR method involving a derivative-free line search procedure for
solving the EP (1) in the case where f (·, y) need not be concave. For the reader
convenience, we include the Konnov method, where the function g will be defined
in Section 2 and π�(·) denotes the projection mapping of H onto �.

Konnov’s Method (CRM).

Step 0. Initialization. Choose a point y0 ∈ � and a sequence of n × n symmetric
matrices {Ak} such that

τ ′‖p‖2 ≤ 〈Akp, p〉 ≤ τ ′′‖p‖2, ∀p ∈ Rn, 0 < τ ′ ≤ τ ′′ < ∞.

Choose numbers α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 2), and θ ∈ (0, 1]. Set
k := 0.

Step 1. Auxiliary Procedure. Execute Steps 1a to 1c below.
Step 1a. Determine zk as the unique solution of the following optimization

problem:

min
x∈�

{〈g(yk), x − yk〉 + 0.5〈Ak(x − yk), x − yk〉}.
Step 1b. If zk = yk , stop. Otherwise, determine m as the smallest nonnegative

integer such that

f (yk + βmθ̃ (zk − yk), yk) ≥ αβmθ̃〈g(yk), yk − zk〉.
Step 1c. Set θk := βmθ̃, xk := yk + θk(zk − yk).
Step 2. Main Iteration. Set gk := f ′

y(xk, yk). If gk = 0, stop. Otherwise, set

yk+1 := π�[γk − γ (f (xk, yk)/‖gk‖2)gk];
set k := k + 1 and go to Step 1.
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Note that there are a number of rules of choosing the matrix sequence {Ak}
satisfying the inequality in Step 0. In particular, the simplest choice Ak ≡ I

corresponds to zk being the projection of yk − g(yk) onto �. In the case where the
feasible set � is defined by affine constraints, the optimization problem in Step
1a is a convex quadratic programming problem which can be solved by standard
finite algorithms; see Refs. 11–14.

Furthermore, by virtue of the monotonicity of f and the skew-symmetric
type property of f with respect to its partial gradients, Konnov (Ref. 10) proved
that the sequence {yk} generated by the above method converges to a solution of
the EP (1).

In this paper, the general monotone equilibrium problem involving a mono-
tone differentiable bifunction in a real Hilbert space is considered. For such a
bifunction, a skew-symmetric type property with respect to the partial gradients
is established. Motivated and inspired by the Konnov method (CRM), we suggest
and propose the modified combined relaxation method involving an auxiliary pro-
cedure for solving the equilibrium problem. Moreover, we prove the existence and
uniqueness of the solution to the auxiliary variational inequality in the auxiliary
procedure. Further, we prove also the weak convergence of the modified com-
bined relaxation method by virtue of the monotonicity and the skew-symmetric
type property.

2. Preliminary Considerations

First, we give definitions and some basic properties for bifunctions.

Definition 2.1. A bifunction f : � × � → R is said to be:

(i) an equilibrium bifunction if f (x, x) = 0,∀x ∈ �;
(ii) monotone if f (x, y) + f (y, x) ≤ 0,∀x, y ∈ �.

The blanket assumptions of this paper are the following:

(A1) � is a nonempty convex and closed subset of H,� ⊂ �, where � is
an open convex subset of H ;

(A2) f : � × �R is a differentiable monotone equilibrium bifunction such
that f (x, ·) is convex for each x ∈ �;

(A3) the EP (1) is solvable.

In the rest of this paper, we define g, g̃ : � → H as follows:

g(x) = f ′
y (x, y)|y=x, ∀x ∈ �, (2)

ĝ(y) = f ′
x (x, y)|x=y, ∀y ∈ �. (3)
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Motivated and inspired by the Konnov CR method, we intend to give a modi-
fied CR method for solving the EP(1) in a real Hilbert space H under Assumptions
(A1)–(A3). To this end, we need first to make use of the following property of
monotone equilibrium bifunctions.

Proposition 2.1. See Ref. 10, p. 331 in the case where H is finite-
dimensional. Let assumptions (A1)–(A2) be fulfilled. Then, for all z ∈ �, we
have

f ′
x(x, z)|x=z = −f ′

y(z, y)|y=z. (4)

Proof. Fix z ∈ �. By the convexity of f (z, ·), we have

f (z,w) − f (z, z) ≥ 〈f ′
y(z, y)|y=z, w − z〉, ∀w ∈ �.

Since f is monotone, it follows that

−f (w, z) + f (z, z) ≥ 〈f ′
y(z, y)|y=z, w − z〉, ∀w ∈ �.

For brevity, set

µ(m) = −f (w, z).

Note that � is open. Thus, whenever t > 0 is small enough, we deduce that, for
each u ∈ H ,

(µ(z + tu) − µ(z))/t ≥ 〈g(z), tu〉/t = 〈g(z), u〉,
where g is defined by (2). From the differentiability of µ, it follows that, for each
u ∈ H ,

〈µ′(z), u〉 = lim
t→0+

[µ(z + tu) − µ(z)]/t ≥ 〈g(z), u〉.

Setting u = g(z) − µ′(z) in this inequality gives

‖g(z) − µ′(z)‖2 ≤ 0.

This implies that µ′(z) = g(z); i.e., (4) is valid as desired. �

Next, we need also to make use of an extension of the well-known Minty
lemma.

Proposition 2.2. See the Minty Lemma in Ref. 1, Section 10.1. Suppose
that assumptions (A1)–(A2) are fulfilled. If we denote by �d the solution set to
the problem of finding an element y∗ ∈ � such that

f (x, y∗) ≤ 0,∀x ∈ �, (5)

then �∗ = �d .
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Proof. At first, suppose that the EP(1) has a solution x∗ ∈ �. Then, we
have

f (x∗, y) ≥ 0, ∀y ∈ �.

Since f is monotone, it follows that

−f (y, x∗) ≥ 0, ∀y ∈ �;

i.e.,

f (y, x∗) ≤ 0, ∀y ∈ �.

This implies that x∗ ∈ � is a solution of problem (5).
Conversely, suppose that problem (5) has a solution x∗ ∈ �. Then, we have

f (y, x∗) ≤ 0, ∀y ∈ �.

Hence, for each y ∈ � and t ∈ (0, 1), we get

[f (x∗ + t(y − x∗), x∗) − f (x∗, x∗)]/t ≤ 0.

Thus, taking the limit as t → 0+, we obtain

〈g̃(x∗), y − x∗〉 ≤ 0, ∀y ∈ �,

where g̃ is defined by (3). By using (4), we have

〈−g(x∗), y − x∗〉 ≤ 0, ∀y ∈ �;

i.e.,

〈f ′
y(x∗, y)|y=x∗ , y − x∗〉 ≥ 0, ∀y ∈ �.

According to (A2), f (x, ·) is convex for each x ∈ �. Hence, for each y ∈ �, we
derive

f (x∗, y) = f (x∗, y) − f (x∗, x∗)

≥ 〈f ′
y(x∗, y)|y=x∗ , y − x∗〉 ≥ 0.

This shows that x∗ ∈ � is a solution of the EP (1). �

Remark 2.1.

(i) Property (4) can be treated as the skew-symmetricity of monotone equi-
librium bifunctions with respect to their partial gradients.

(ii) If f is a concave-convex equilibrium bifunction, the property (4) was
established in the case when H is finite-dimensional; see Ref. 5.

(iii) From the proof of Proposition 2.2, it follows that the subdifferential of
−f (·, y) is nonempty at y, but f (·, y) need not be concave in general.
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We recall now the well-known optimality condition for the EP(1), which
is intended to be used for establishing convergence results of the modified CR
method in the next section.

Proposition 2.3. See Ref. 5, p. 238 in the case where H is finite-
dimensional. Suppose that (A1)–(A2) are fulfilled. Then, the EP (1) is equivalent
to the following VI: find x∗ ∈ � such that

〈g(x∗), y − x∗〉 ≥ 0, ∀y ∈ �, (6)

where g is defined by (2).

Proof. Let x∗ ∈ � be a solution of the EP(1). Then, we have

f (x∗, y) ≥ 0, ∀y ∈ �.

Hence, for each y ∈ � and t ∈ (0, 1), we obtain

[f (x∗, x∗ + t(y − x∗)) − f (x∗, x∗)]/t ≥ 0.

Taking the limit as t → 0+, we obtain (6). Conversely, let x∗ ∈ � satisfy (6). Since
f (x, ·) is convex for each x ∈ �, we have that, for each y ∈ �,

f (x∗, y) = f (x∗, y) − f (x∗, x∗) ≥ 〈g(x∗), y − x∗〉 ≥ 0.

This implies that the EP (1) has a solution x∗ ∈ �. �

Remark 2.2. If the cost mapping g in (6) enjoys certain (generalized)
monotonicity properties, one can suggest various algorithms to solve the VI (6) in
Rn; see e.g., Ref. 15 and the references therein.

The proof of the following lemma is quite straightforward; hence, it is
omitted.

Lemma 2.1. Let A : � → H be sequentially continuous from the weak
topology to the strong topology. Then, the function g : � → R, defined as g(x) =
〈Ax, y − x〉 for each fixed y ∈ �, is weakly continuous.

For each D ⊆ H , we denote by co(D) the convex hull of D. A point-to-
set mapping G : H → 2H is called a KKM mapping if, for every finite subset
{u1, u2, . . . , un} of H ,

co({u1, u2, · · · , un}) ⊆
n⋃

i=1

G(ui).
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Lemma 2.2. See Ref. 16. Let K be an arbitrary nonempty subset in a
Hausdorff topological vector space E and let G : K → 2E be a KKM mapping.
If G(x) is closed for all x ∈ K and is compact for at least one x ∈ K , then⋂

x∈K G(x) �= ∅.

Lemma 2.3. See Ref. 17. Let {ak} and {bk} be two sequences of nonnegative
real numbers satisfying the inequality

ak+1 ≤ ak + bk, ∀k ≥ 0.

If
∑∞

k=0 bk < ∞, then limk→∞ ak exists.

In the sequel, we use the following notation. For a given sequence {xk}, ωw(xk)
denotes the weak ω-limit set of {xk}; that is,

ωw(xk) := {x ∈H : w− lim
i→∞

xki
= x for some subsequence {xki

} of {xk}, ki ↑ ∞},

where w-limi→∞ xki
= x means the weak convergence of {xki

} to x; i.e., xki
→ x

weakly.

3. Modified Combined Relaxation Method and Its Convergence

The modified combined relaxation method (Modified CRM, for short) for
solving the EP(1) under Assumptions (A1)–(A3) can be described as follows.

Algorithm 3.1. Modified CRM.

Step 0. Initialization. Choose a point y0 ∈ � and a sequence of mappings Ak :
� → H, k = 0, 1, . . . such that, for all x, y ∈ �,

〈Akx − Aky, x − y〉 ≥ τ ′‖x − y‖2, (7a)

‖Akx − Aky‖ ≤ τ ′′‖x − y‖, (7b)

with 0 < τ ′ ≤ τ ′′ < ∞. Choose numbers α ∈ (0, 1), β ∈ (0, 1), γ ∈
(0, 2), and θ̃ ∈ (0, 1]. Set k := 0.

Step 1. Auxiliary Procedure. See Steps 1a to 1c below.
Step 1a. Determine zk ∈ � as the unique solution of the following VI:

〈g(yk) + 0.5(AkZk − Akyk), x − zk〉 ≥ 0, ∀x ∈ �. (8)
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Step 1b. If zk = yk , stop. Otherwise, determine m as the smallest nonnegative
integer such that

f (yk + βmθ̃ (zk − yk), yk) ≥ αβmθ̃〈g(yk), yk − zk〉. (9)

Step 1c. Set θk := βmθ̃, xk := yk + θk(zk − yk).
Step 2. Main Iteration. Set gk := f ′

y(xk, yk). If gk = 0, stop. Otherwise, choose
two relaxation parameters αk, βk ∈ [0, 1], with αk + βk ≤ 1, and com-
pute the (n + 1)th iterate

yk+1 := (1 − αk − βk)yk

+αkπ�[yk − γ (f (xk, yk)/‖gk‖2)gk] + βkek, (10)

where {ek} is an error sequence in � introduced to take into account
possible inexact computation.

Remark 3.1. If H = Rn, if Ak is an n × n symmetric matrix and if the
feasible set � is defined by affine constraints, then clearly (8) is a convex quadratic
programming problem which can be solved by standard finite algorithms; see
Refs. 11–14. We note also that condition (17) in Ref. 10 implies condition (7).
This observation follows from the fact that, if we let Ak = (ak

ij ), then condition
(17) in Ref. 10 inplies that |ak

ij | ≤ τ ′′,∀i , j = 1, . . . , n and ∀k = 1, 2, . . ..

In order to ensure the existence of solutions to the subproblem (8), we need
the following assumption:

(A4) For each k ≥ 0, Ak : � → H is sequentially continuous form the weak
topology to the strong topology.

First, we give some properties of the subproblem (8) and investigate the
termination criteria.

Lemma 3.1. Let Assumptions (A1), (A2), (A4) hold. Then:

(i) Problem (8) has a unique solution.
(ii) For each k ≥ 0, the solution zk of problem (8) is a solution of the

following optimization problem:

min
x∈�

{〈g(yk), x − yk〉 + 0.5〈Akx − Akyk, x − yk〉}. (11)

(iii) If zk = yk , then yk ∈ �∗.
(iv) f (xk, yk) ≥ 0.
(v) If gk = 0, then xk ∈ �∗.
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Proof.
(i) Existence of Solutions of Problem (8). For the sake of simplicity, we write

(8) as follows: find x̄ ∈ � such that

〈g(yk) + 0.5(Akx̄ − Akyk), y − x̄〉 ≥ 0, ∀y ∈ �.

For each fixed k ≥ 0 and each y ∈ �, we define

G(y) = {x ∈ � : 〈g(yk) + 0.5(Akx − Akyk), y − x〉 ≥ 0}.
Note that, since y ∈ G(y),G(y) is nonempty for each y ∈ �. Now, we claim
that G is a KKM mapping. Indeed, suppose that there exists a finite subset
{u1, u2, · · · , un} of � and that αi ≥ 0,∀i = 1, 2, · · · , n, with

∑n
i=1 αi = 1 such

that x̂ = ∑n
i=1 αiui �∈ G(ui),∀i = 1, 2, · · · , n. Then, we have

0 = 〈g(yk) + 0.5(Akx̂ − Akyk), x̂ − x̂〉

=
n∑

i=1

αi〈g(yk) + 0.5(Akx̂ − Akyk), ui − x̂〉 < 0,

which is a contradiction. Hence, G is a KKM mapping.
In view of Assumption (A4) and Lemma 2.1, we can see readily that G(y) is

a weakly closed subset of � for each y ∈ �. Moreover, from (7), we know that
G(y) is bounded and hence weakly compact for every point y ∈ �. Hence, by
Lemma 2.2, we have

⋂
y∈� G(y) �= ∅, which clearly implies that there exists at

least one solution to problem (8).
Uniqueness of Solutions of Problem (8). Let x1 and x2 be two solutions of

problem (8). Then,

〈g(yk) + 0.5(Akx1 − Akyk), y − x1〉 ≥ 0, (12)

〈g(yk) + 0.5(Akx2 − Akyk), y − x2〉 ≥ 0, (13)

for all y ∈ �. Taking y = x2 in (12), y = x1 in (13) and adding these inequalities,
we get

〈g(yk) + 0.5(Akx1 − Akyk), x2 − x1〉 + 〈g(yk)

+ 0.5(Akx2 − Akyk), x1 − x2〉 ≥ 0,

implying that

〈Akx1 − Akx2, x1 − x2〉 ≤ 0.

According to (7) in Algorithm 3.1, we get

τ ′‖x1 − x2‖2 ≤ 〈Akx1 − Akx2, x1 − x2〉 ≤ 0;

therefore, x1 = x2 since τ ′ > 0. Hence, the solution of problem (8) is unique.
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(ii) The conclusion follows from the fact that VI (8) is a necessary
and sufficient condition for the convex optimization problem (11); see e.g.
Ref. 11.

(iii) Suppose that zk = yk . Then, it follows from (8) that

〈g(yk), x − yk〉 ≥ 0, ∀x ∈ �.

By using Proposition 2.3, we derive yk ∈ �∗.
(iv) Taking x = yk in (8), we obtain

〈g(yk) + 0.5(Akzk − Akyk), yk − zk〉 ≥ 0;

hence, using (7), we have

〈g(yk), zk − yk〉 ≤ −0.5〈Akzk − Akyk, zk − yk〉
≤ −0.5τ ′‖zk − yk‖2 ≤ 0. (14)

Utilizing (9) now yields f (xk, yk) ≥ 0.
(v) Suppose that

gk = f ′
y(xk, yk) = 0.

By the convexity of f (xk, ·), we have that

f (xk, x) − f (xk, yk) ≥ 〈gk, x − yk〉 = 0, ∀x ∈ �. (15)

Setting x = xk in this inequality yields f (xk, yk) ≤ 0. On account of (iv), we
obtain

f (xk, yk) = 0,

which together with (15) implies that xk solves the EP (1). The proof is complete.
�

Therefore, the modified CRM can terminate only with a solution. For this
reason, in what follows, we suppose that it generates an infinite sequence {yk}. To
obtain convergence, we need the following additional assumptions.

(A5) For each y ∈ �, the gradient of the function f (·, y) is locally Lipschitz
continuous.

(A6) g : � → H is sequentially continuous from the weak topology to the
strong topology where g is defined by (2).

Lemma 3.2. Let Assumptions (A1), (A2), (A4), (A5) hold. Then:

(i) It holds that

〈g(yk), zk − yk〉 ≤ −0.5τ ′‖zk − yk‖2. (16)
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(ii) It holds that θk > 0 and that, if {yk} is bounded, θk ≥ θ ′ > 0, for k =
0, 1, . . ..

(iii) It holds that

〈gk, yk − y∗〉 ≥ f (xy, yk) (17)

and that

‖yk+1 − y∗‖2 ≤ ‖yk − y∗‖2 − αkγ (2 − γ )[f (xk, yk)/‖gk‖]2

+βk‖ek − y∗‖2, (18)

for all y∗ ∈ �∗.

Proof.

(i) It is easy to see that inequality (16) follows from (14).
(ii) For brevity, set

ĝ(x) = f ′
x(x, yk).

Taking any θ ∈ (0, θ̃ ), we have that, for some ξ ∈ [0, 1],

f (yk + θ (zk − yk), yk) = f (yk, yk) + θ〈ĝ(yk+ξθ (zk − yk)), zk − yk〉
= θ〈ĝ(yk), zk − yk〉 + θ〈ĝ(yk + ξθ (zk − yk))

− ĝ(yk), zk − yk〉
≥ θ〈g̃(yk), zk − yk〉 − Lk(θ‖zk − yk‖)2,

where Lk is the Lipschitz constant for ĝ on the segment [zk, yk]. Taking
into account (16) and (4), we obtain

f (yk + θ (zk − yk), yk) ≥ −θ〈g(yk), zk − yk〉 − Lk(θ‖zk − yk‖)2

≥ θ (1 − 2θLk/τ
′)〈g(yk), yk − zk〉

≥ αθ〈g(yk), yk − zk〉,
when

1 − 2θLk/τ
′ ≥ α,

or equivalently,

θ ≤ (1 − α)τ ′/2Lk.

On account of (9), we conclude that

θk ≥ min{β(1 − α)τ ′/2Lk, θ̃} > 0.

Moreover, if {yk} is bounded, so is {zk} due to (16). Hence, we must
have Lk ≤ L′ < ∞ and θk ≥ θ ′ > 0, for k = 0, 1, · · ·; i.e., assertion (ii)
is true.
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(iii) Take any y∗ ∈ �∗. Then, Proposition 2.2 implies that

f (x, y∗) ≤ 0, ∀x ∈ �.

By the convexity of f (xk, ·), we have

〈gk, y
∗ − yk〉 ≤ f (xk, y

∗) − f (xk, yk) ≤ −f (xk, yk);

i.e., (17) holds.

It is well known that

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖Y‖2 − λ(1 − λ)‖x − y‖2,

for all x, y ∈ H and λ ∈ [0, 1]. Hence, using (17), we have

‖yk+1 − y∗‖2 = ‖(1 − αk − βk)(yk − y∗)

+αk(π�[yk − γ (f (xk, yk)/‖gk‖2)gk] − y∗) + βk(ek − y∗)‖2

≤ (1 − αk − βk)‖yk − y∗‖2 + αk‖yk

− γ (f (xk, yk)/‖gk‖2)gk − y∗‖2 + βk‖ek − y∗‖2

≤ (1 − αk − βk)‖yk − y∗‖2 + αk‖yk − y∗‖2

− 2αkγ (f (xk, yk)/‖gk‖2)〈gk, yk − y∗〉
+αk(γf (xk, yk)/‖gk‖)2 + βk‖ek − y∗‖2

≤ ‖yk − y∗‖2−αkγ (2 − γ )(f (xk, yk)/‖gk‖)2+βk‖ek−y∗‖2.

Thus, (18) is also fulfilled. �

We are ready now to obtain the convergence for the modified CRM.

Theorem 3.1. Suppose that Assumptions (A1)–(A6) hold and that an in-
finite sequence {yk} is generated by Algorithm 3.1. Assume additionally that the
sequences {αk}, {βk}, {ek} satisfy the following conditions:

(i) δ ≤ αk ≤ 1,∀k ≥ 0, for some δ ∈ (0, 1];
(ii)

∑∞
k=0 βk < ∞;

(iii) {ek} is bounded.

Then, {yk} converges weakly to a solution of the EP (1).

Proof. From (9) and (16), it follows that

f (xk, yk) ≥ αθkτ
′‖zk − yk‖2/2.

By using (18), we obtain

‖yk+1 − y∗‖2 ≤ ‖yk − y∗‖2 + βk‖ek − y∗‖2.
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Since
∑∞

k=0 βk < ∞ and {ek} is bounded, we get

∞∑

k=0

βk‖ek − y∗‖2 < ∞.

From Lemma 2.3, we know that limk→∞ ‖yk − y∗‖ exists. Hence, {yk} is bounded.
On account of Lemma 3.2 (ii), it now follows that

θk ≥ θ ′ > 0, for k = 0, 1, · · · ·
Note that δ ≤ αk ≤ 1,∀k ≥ 0. Combining the above inequality with (18) now
gives

n∑

k=0

[δγ (2 − γ )α2θ ′2τ ′2/4].(‖zk − yk‖2/‖gk‖)2

≤
n∑

k=0

αkγ (2 − γ ) · [f (xk, yk)/‖gk‖]2

≤
n∑

k=0

(‖yk − y∗‖2 − ‖yk+1 − y∗‖2) +
n∑

k=0

βk‖ek − y∗‖2

≤ ‖y0 − y∗‖2 +
n∑

k=0

βk‖ek − y∗‖2,

which implies that

lim
k→∞

‖zk − yk‖ = 0.

Since {yk} is bounded, so is {zk}. Therefore, both {yk} and {zk} have weak limit
points; i.e., ωw(yk) �= ∅ and ωw(zk) �= ∅.

On the one hand, we claim that ωw(yk) ⊆ �∗; i.e., each weak limit point
of {yk} is a solution of the EP (1). Indeed, let z0 ∈ ωw(yk) a weak limit point of
{yk} and let {yki} be a subsequence of {yk} such that w − limi→∞ yki

= z0. Since
limi→∞ ‖zki

− yki
‖ = 0, we deduce that

w − lim
i→∞

zki
= z0.

Now, take any x ∈ �. Then, from (8), it follows that

〈g(yki
) + Aki

zki
− Aki

yki
, x − zki

〉 ≥ 0.

Utilizing (7), we obtain

〈g(yki
), x − zki

〉 ≥ 〈Aki
yki

− Aki
zki

, x − zki
〉

≥ −τ ′′‖ykki
− zki

‖ · ‖x − zki
‖. (19)
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Observe that

|〈g(yki
), x − zki

〉 − 〈g(z0), x − z0〉|
|〈g(yki

), yki
− zki

〉 + 〈g(yki
), x − yki

〉 − 〈g(z0), x − z0〉|
≤ |〈g(yki

), yki
− zki

〉| + |〈g(yki
), x − yki

〉 − 〈g(z0), x − z0〉|
≤ ‖g(yki

)‖ · ‖yki
− zki

‖ + ‖〈g(yki
), x − yki

〉 − 〈g(z0), x − z0〉|. (20)

According to Assumption (A6) and Lemma 2.1, we know that {g(yki
)} is bounded

and that

lim
i→∞

|〈g(yki
), x − yki

〉 − 〈g(z0), x − z0〉| = 0.

Hence, it follows from (20) that

lim
i→∞

〈g(yki
), x − zki

〉 = 〈g(z0), x − z0〉.

Therefore, taking the limit on two sides of (19) as i → ∞, we can see that

〈g(z0), x − z0〉 ≥ 0, ∀x ∈ �.

In view of Proposition 2.3, we get z0 ∈ �∗.
On the other hand, we claim that the sequence {yk} converges weakly to a

solution of the EP (1); that is, ωw(yk) is a singleton. Indeed, let z0, z1 ∈ ωw(yk)
and let {yki

}, {ylj } be two subsequences of {yk} such that

w − lim
i→∞

yki
= z0, w − lim

j→∞
ylj = z1.

For each y∗ ∈ �∗, since limk→∞ ‖yk − y∗‖ exists, we have

lim
k→∞

‖yk − z1‖2 = lim
i→∞

‖yki
− z1‖2

= lim
i→∞

‖yki
− z0 + z0 − z1‖2

= lim
i→∞

[‖yki
− z0‖2 + 2〈yki

− z0, z0 − z1〉 + ‖z0 − z1‖2]

= lim
i→∞

‖yki
− z0‖2 + ‖z0 − z1‖2

= lim
k→∞

‖yk − z0‖2 + ‖z0 − z1‖2. (21)

Interchanging the role of z0 and z1 yields

lim
k→∞

‖yk − z0‖2 = lim
k→∞

‖yk − z1‖2 + ‖z1 − z0‖2. (22)

Adding (21) and (22), we obtain z0 = z1. This shows that ωw(yk) consists of one
point. Therefore, {yk} converges weakly to a solution of the EP (1). �
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