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Abstract. An approximation of a general V -ergodic semi-Markov game
with Borel state space by discrete-state space strongly-ergodic games is stud-
ied. The standard expected ratio-average criterion as well as the expected
time-average criterion are considered. New theorems on the existence of ε-
equilibria are given.
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1. Introduction

This paper deals with nonzero-sum semi-Markov games with Borel state
space satisfying a natural V -ergodicity assumption. Our model is a generalization
of the discrete-time Markov game, studied by Altman and Nowak (Ref. 1), to
continuous time, when the time between successive jumps from state to state of
the underlying stochastic process is a random variable. Zero-sum games of this
type were recently studied by Jaśkiewicz (Ref. 2) and Vega-Amaya (Ref. 3).

The existence of Nash equilibria in stochastic games with uncountable state
space is not easy to prove, even in the discrete-time case. Some partial results are
given mainly for discounted Markov games as well as Markov games with additive
reward and transition structure (see Ref. 4). The most general case with transition
probabilities satisfying some additivity condition was obtained by Nowak in Ref. 5.
Much more complete theory was developed for correlated equilibria involving
i.i.d. public signals. The first result in this area was given by Nowak and Raghavan
(Ref. 6) for discounted Markov games. A considerable extension to semi-Markov
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models of games with the expected average criteria was reported in Ref. 7. For
a broad survey of the literature on nonzero-sum stochastic games, the reader is
referred to Refs. 1,7,8 and the references therein. We point out that the V -ergodicity
condition and related ones were used frequently in the theory of Markov control
processes and discrete-time games (Refs. 9–12).

Nonzero-sum stochastic games with countable state spaces satisfying some
stochastic stability or ergodicity conditions are much easier to study. Therefore,
the theory of such games is more complete. The most general result in this area
for Markov games was established by Altman, Hordijk, and Spieksma in Ref. 12.
Nonzero-sum uniformly ergodic semi-Markov games were first studied in Ref. 13.
The reader can find further information on research done in this direction in Ref. 8.
The idea of approximating sequential (stochastic) games with Borel state space
goes back to Whitt (Ref. 14), who considered uniformly continuous discounted
models without any ergodicity assumptions. A related result on the existence of an
ε-equilibrium point was given by Nowak (Ref. 15) under much weaker conditions.
Recently, Altman and Nowak (Ref. 1) constructed an approximation of nonzero-
sumV -ergodic and discounted Markov games with unbounded payoff functions.
Applying the approximation method and the main result from Ref. 12, they were
able to obtain ε-equilibria in a quite general framework.

In this paper, we generalize the main result from Ref. 1 to the class of semi-
Markov games with Borel state space satisfying the V -ergodicity assumption.
Our result on ε-equilibria applies to the two basic expected payoff criteria: the
ratio-average and the time-average payoffs. On the other hand, our approximation
technique is different from that of Ref. 1. The idea is to use an approximation of
a general V -ergodic game with possibly unbounded payoffs by strongly ergodic
games with bounded payoff functions that resemble stochastic games with count-
able state space. At the same time, we show that the distance between the original
game and the approximating strongly-ergodic bounded games can be calculated
using some primitive data and main results from Refs. 16–17. Such a result is not
included in Ref. 1.

2. Model

Let Y be a Borel (subset of a complete separable metric) space. We denote
by B(Y ) the Borel σ -algebra on Y .

We consider an m-person nonzero-sum stochastic game model
M := {S,X,Q, r} under the following scenario:

(i) S is a Borel state space.
(ii) Xi is a compact metric space of actions for player i. We put X =

X1 × X2 × · · · × Xm.
(iii) Q(·|s, x) is a regular transition measure from S × X into R+ × S, where

R+ = [0,∞). It is assumed that Q(B|s, x) is a Borel function on S × X
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for any Borel subset B ⊂ R+ × S and that Q(·|s, x) is a probability
measure on R+ × S for any s ∈ S and x ∈ X.

Let

Q(t, S̃|s, x) := Q([0, t] × S̃|s, x),

for any S̃ ∈ B(S). Next, define

q(·|s, x) := Q(R+, ·|s, x), s ∈ S, x ∈ X.

If an x ∈ X is selected in state s, then Q(t, S̃|s, x) is the joint probability that
the sojourn time is not greater than t ∈ R+ and the next state s ′ belongs to S̃. Let
τ (s, x) be the mean holding time in state s, i.e.,

τ (s, x) =
∫ +∞

0
tH (dt |s, x),

where H (t |s, x) = Q(t, S|s, x) is the distribution function of the sojourn time of
the process in state s when x ∈ X is selected by the players.

(iv) ri(s, x) is a Borel measurable payoff function for player i. We assume
that

ri(s, x) = r1
i (s, x) + r2

i (s, x)τ (s, x), (1)

where r1
i (s, x) is the immediate reward at the transition time and r2

i (s, x)
is the reward rate in the time interval interval between succesive transi-
tions.

Strategies for the players are defined in the usual way. A strategy for a
player is a Borel measurable mapping which associates with each given history a
probability distribution on the set of actions available to him. A stationary strategy
for player i is a mapping which associates with each state s ∈ S a probability
distribution on the available set of actions, independently of the history that led to
the state s. Thus, a stationary strategy for player i can be identified with a Borel
measurable transition probability fi from S to Xi . For a detailed discussion of
transition probability functions consult Ref. 18. Let Fi be the set of all stationary
strategies of player i. Put

F = F1 × F2 × · · · × Fm.

Put T0 = 0 and let {Tn} denote a sequence of random decision epochs in
the game, which proceeds as follows. If the initial state is s0 and a vector of
actions x(0) = (x0

1 , . . . , x
0
m) is selected by the players, then the immediate payoff

r1
i (s0, x(0)) is incurred for player i and the game remains in state s0 until the

time T = T1 − T0 = T1. The payoff r2
i (s0, x(0)) to player i is incurred until the

next transition occurs. Afterward, the system jumps to the next state s1 according
to the probability measure (transition law) q(·|s0, x(0)) = Q(R+, ·|s0, x(0)). The
players choose some x(1) ∈ X and the game remains in state s1 for a random
time T2 − T1. The player i receives the payoff ri(s1, x(1)) and the new state s2
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is generated according to the distribution q(·|s1, x(1)). The situation repeats itself
yielding a trajectory (s0, x(0), t1, s1, x(1), t2, . . .) of some stochastic process, where
sn ∈ S, x(n) ∈ X, and tn+1 describe the state, the actions chosen by the players,
and the decision epoch, respectively, on the nth stage of the game. Clearly, tn+1 is
a realization of the random variable Tn+1. The distribution function of the random
holding time Tn+1 − Tn is H (·|sn, x(n)). Let H∞ := (S × X × R+)∞ be the space
of all infinite histories of the game, endowed with the product σ -algebra. Then,
for any profile of strategies π = (π1, . . . , πm) of the players and every initial state
s0 = s ∈ S, a probability measure P π

s is defined uniquely on H∞ according to the
Ionescu-Tulcea theorem (see Chapter 7 in Ref. 18 or Proposition V.1.1 in Ref. 19).

Let N (t) be the number of jumps that have occured prior to time t , i.e.,

N (t) := max{n : Tn ≤ t}.
Under our assumptions, for each intitial state s ∈ S, any strategy profile π , and
t ≥ 0, we have P π

s (N (t) < ∞) = 1 (see Ref. 20).
For each profile of strategies π = (π1, . . . , πm) and every initial state s ∈ S,

there are two basic ways for defining the expected average payoffs:

(i) the time-average payoff to player i,

ji(s, π ) = lim inf
t→∞ Eπ

s

(
N(t)∑
n=0

ri

(
sn, x(n)

))
/t ; or

(ii) the ratio-average payoff to player i:

Ji(s, π ) = lim inf
n→∞ Eπ

s

(
n−1∑
k=0

ri

(
sk, x(k)

))/
Eπ

s

(
n−1∑
k=0

τ
(
sk, x(k)

))
.

Here, Eπ
s means the expectation operator with respect to the probability measure

P π
s .

Remark 2.1. Some authors studying semi-Markov decision or game mod-
els (Refs. 7, 21) assume that the payoff functions are of the form

r̄i

(
sn, x(n), t

)
, (2)

where sn ∈ S, x(n) ∈ X, and t is a realization of the random holding time Tn+1 − Tn

in the state sn. From the construction of the probability measure P π
s and the

properties of the conditional expectation, it follows that such a game model is
equivalent (in terms of the expected average payoffs) to the semi-Markov game,
where the payoff of any player i (corresponding to any (sn, x(n))) is

r̂i

(
sn, x(n)

) =
∫ ∞

0
r̄i

(
sn, x(n), t

)
H
(
dt |sn, x(n)

)
. (3)
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Observe that (3) is of the form (1) with r1
i = r̄i and r2

i ≡ 0. Therefore, the case
(2) is seemingly more general.

Let π∗ = (π∗
1 , . . . , π∗

m) be a fixed profile of strategies of the players. For any
strategy πi of player i, we write (π∗

−i , πi) to denote the strategy profile obtained
from π∗ by replacing π∗

i with πi .

Definition 2.1. Let ε ≥ 0. A strategy profile π∗ = (π∗
1 , . . . , π∗

m) is called
ε-equilibrium for the time-average (ratio-average) payoff semi-Markov game iff,
for every player i and any policy πi ,

ji(s, π
∗) ≥ ji(s, (π∗

−i , πi)) − ε,

[Ji(s, π
∗) ≥ Ji(s, (π∗

−i , πi)) − ε],

for each s ∈ S. A 0-equilibrium is called a Nash equilibrium.

3. Assumptions

We make the following assumptions:

(A1) V -Geometric Ergodicity.
(A1) (i) There exist a Borel measurable function V : S �→ [1,+∞) and a

Borel set C ⊂ S such that, for some λ ∈ (0, 1) and η > 0, we have∫
S

V (s ′)q(ds ′|s, x) ≤ λV (s) + η1C(s),

for each s ∈ S and x ∈ X.
(A1) (ii) The function V is bounded on C.
(A1) (iii) There exist ξ ∈ (0, 1) and a probability measure ν concentrated on

the Borel set C with the property that

q(D|s, x) ≥ ξν(D),

for each Borel set D ⊂ C, s ∈ C, and x ∈ X.

For any Borel measurable function u : S �→ R, we define the weighted norm
as

‖u‖V := sup
s∈S

|u(s)|/V (s).

We denote by L∞
V the Banach space of all Borel measurable functions u for which

‖u‖V is finite.
Let fi ∈ Fi. For any s ∈ S, the probability measure fi(s) is denoted also

by fi(·|s). For any Borel measurable function w : S × X �→ R and any f =
(f1, . . . , fm),
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w(s, f ) := w(s, f (s)) =
∫

X

· · ·
∫

X

w(s, x1, . . . , xm)f1(dx1|s) . . . fm(dxm|s).

Assumption (A1) is basic for this paper. It was used to study Markov control
processes and discrete-time Markov games in many papers (see Refs. 1,9,22 and
their references). Investigations of semi-Markov control processes and games
based on this assumptions are contained in Refs. 2, 7, 16, 20. Inequality (A1) (i) is
called the drift inequality and the set C satisfying (A1) (iii) is called the small set
(see Refs. 17, 23). They imply that the state process {sn} governed by any f ∈ F is
a positive recurrent aperiodic Markov chain with the unique invariant probability
measure, denoted by πf ; see Theorem 11.3.4 and page 116 in Ref. 23. Moreover,
{sn} is V -uniformly ergodic [Theorem 2.3 in (Ref. 17)], i.e., there exist θ > 0 and
κ ∈ (0, 1) such that∣∣∣∣

∫
S

u(s ′)qn(ds ′|s, f ) −
∫

S

u(s ′)πf (ds ′)
∣∣∣∣ ≤ V (s)‖u‖V θκn, (4)

for every u ∈ L∞
V and s ∈ S, n ≥ 1. Here, qn(·|s, f ) denotes the n-stage transition

probability induced by q and f .

(A2) Basic Continuity Assumptions.
(A2) (i) For each s ∈ S and i =

1, . . . , m, ri(s, ·) is continuous on X; more-
over, there exists a constant L > 0 such that ‖ri‖V ≤ L.

(A2) (ii) For each s ∈ S, τ (s, ·) is continuous on X and there exist positive
constants b and B such that

b ≤ τ (s, x) ≤ B, s ∈ S, x ∈ X.

(A2) (iii) There exist a probability measure µ on S and a density function ρ

such that

q(D|s, x) =
∫

D

ρ(s ′, s, x)µ(ds ′)

for each Borel set D ⊂ S, x ∈ X, and s ∈ S; moreover, for any
sequence of joint action tuples {xn} converging to some x0, it holds
that

lim
n→∞

∫
S

|ρ(s ′, s, xn) − ρ(s ′, s, x0)|V (s ′)µ(ds ′) = 0.

In order to study the time-average payoff criterion, we shall need
two additional assumptions.

(A3) Regularity Condition. There exist ε∗ > 0 and β∗ < 1 such that

H (ε∗|s, x) ≤ β∗,
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for all s ∈ C and x ∈ X.
(A4) Uniform Integrability Condition.

lim
t→∞ sup

s∈C

sup
x∈X

[1 − H (t |s, x)] = 0.

It follows from (4) that, under (A1), for any f ∈ F , we have

Ji(s, f ) =: Ji(f ) =
∫

S

ri(s
′, f )πf (ds ′)

/∫
S

τ (s ′, f )πf (ds ′). (5)

We point out that, under Assumptions (A1)–(A4), for any f ∈ F , it holds that

ji(s, f ) = Ji(s, f ). (6)

For the details, consult Ref. 20. By (5) and (6), we have also

ji(s, f ) =: ji(f ) =
∫

S

ri(s
′, f )πf (ds ′)

/∫
S

τ (s ′, f )πf (ds ′), f ∈ F.

Definition 3.1. Any semi-Markov game satisfying Assumption (A1) is
called V -crgodic. If (A1) (iii) holds with C = S, then the game is called strongly
ergodic. A semi-Markov game is called bounded if all the payoff functions are
bounded.

It should be noted that, if (A1) (iii) holds with C = S, then the remaining
conditions in (A1) hold trivially with V (s) = 1 for all s ∈ S and η sufficiently
large. In such a very special case, the n-step transition probabilities qn(·|s, f )
induced by any f ∈ F and q converge (geometrically fast) to πf in the total
variation norm; see Lemma 3.3 in Ref. 24. Assumption (A1), with C essentially
smaller than the whole state space S, has much more applications, especially
when the function V is unbounded on S; see Refs. 9, 16, 17, 23 and references
therein. Bounded strongly ergodic semi-Markov games seem to be easier to solve.
In Section 4, our aim is to show that they can be used to approximate a general
V -ergodic game.

Remark 3.1. (a) One may think that the upper bound for the average time
in Assumption (A2) (ii) is a limitation. The upper bound of τ (s, x) plays an
essential role in Theorem 1 in Ref. 16. However, in that case, we may allow
for an unbounded average sojourn time; that is, we may replace B by BV (x)
and Theorem 1 in Ref. 16 will be valid with appropriately modified constants.
The next place where we shall use the upper bound is the proof of Lemma 5.1.
Note, however, that we wish to approximate the unbounded game by games with
bounded costs. Since Assumption (A2) (ii) holds, we do not have to approximate
unbounded τ (s, x) by bounded ones. We believe that Assumption (A2) (ii) may
be weakened in the sense given above, but the proofs will require additional
calculations. On the other hand, we emphasize that, in many papers (e.g. Refs. 2,
3, 20), an upper bound on τ (s, x) is imposed.
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(b) Our results crucially depend on the continuity assumption of the transi-
tion probability [i.e., (A2) (iii)]. Obviously, the norm topology is stronger than the
topology of weak convergence of probability measures. However, this assumption
allows a fairly wide class of transition probabilities. For example, it includes the
important case in which the transition probability is induced by the normal distri-
bution with different parameters. A version of this is the case in which the transition
probability determines tomorrow’s state as a function of the current state and ac-
tions almost deterministically, except for some white noise. In fact, one can work
with a transition probability that induces distributions having density functions
and where the convergence of the transition probability become synonymous with
the uniform convergence of their density functions. On the other hand, we realize
that our case does not handle a transition probability that induces, for instance,
the degenerate distributions on the space of probability measures. The question of
how to approximate stochastic games without assuming (A2) (iii) remains open.

(c) Assumption (A2) (iii) may be regarded as a restrictive one. To the best
of our knowledge, all related results on Markov games (Refs. 1, 15) make use
of the fact that the transition probability has a density function. In addition, we
point out that the existence of stationary correlated equilibria in Markov games is
not known without assuming that q is dominated by some measure; for a broader
discussion, see Ref. 8.

4. Approximation by Bounded Strongly Erogodic Semi-Markov Games

Let us fix s∗ ∈ S. We assume without loss of generality that µ({s∗}) = 0. Let

ε∗ := (1 − λ)/{2[V (s∗) − λ]}. (7)

For any ε ∈ (0, ε∗), s ∈ S, and x ∈ X, we put

qε(·|s, x) := (1 − ε)q(·|s, x) + εδs∗ (·), (8)

where δs∗ is the probability measure concentrated at the fixed state s∗ ∈ S. We
define new payoff functions in the following way:

rε
i (s, x) :=

⎧⎪⎨
⎪⎩

ri(s, x), if |ri(s, x)| ≤ 1/ε,

1/ε, if ri(s, x) > 1/ε,

−1/ε, if ri(s, x) < −1/ε.

We denote by Mε := {S,X, qε,H, rε} a new semi-Markov game model with the
transition law qε, new payoff functions rε

i , and the same state space S, action space
X, and time distribution H .

Note that, if the model M satisfies (A1), then Mε also satisfies such a
condition, but with ξ replaced by (1 − ε)ξ and (λ + 1)/2 < 1 instead of λ. The
set C and η > 0 remain unchanged. Again, from Refs. 17, 23, it follows that the
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state process {sn} governed by any f ∈ F is a positive recurrent aperiodic Markov
chain with the unique invariant probability measure denoted by πε

f . Moreover,
there exist constants θ1 > 0 and κ1 ∈ (0, 1) independent of ε such that∣∣∣∣

∫
S

y(s ′)qn
ε (ds ′|s, f ) −

∫
S

u(s ′)πε
f (ds ′)

∣∣∣∣ ≤ V (s)‖u‖V θ1κ
n
1 , (9)

for every u ∈ L∞
V and s ∈ S, n ≥ 1. Obviously, qn

ε (·|s, f ) denotes the n-stage
transition probability induced by qε and f ∈ F . Consequently, for any initial state
s and any strategy profile π = (π1, . . . , πm), the expected ratio-average payoff
J ε

i (s, π ) to player i in the game model Mε is also well defined. Moreover, from
(9), it follows that, for any profile of stationary strategies f = (f1, . . . , fm), the
expected ratio-average payoff J ε

i (s, f ) is independent of the initial state s ∈ S.
From our discussion above, we can conclude also that

J ε
i (s, f ) =

∫
S

rε
i (s, f )πε

f (ds)

/∫
S

τ (s, f )πε
f (ds).

Definition 4.1. The game with the transition probability of the type (8) is
called strongly ergodic.

Note that, for a strongly ergodic game, we have qε({s∗}|s, x) ≥ ε, when s ∈ S

and x ∈ X.
The following result is a strengthened version of Theorem 1 in Ref. 16, where

approximations by strongly ergodic but unbounded semi-Markov control models
are given.

Theorem 4.1. Let (A1)–(A2) hold. Then, for each player i, we have

lim
ε→0

sup∫ ∈F

|J ε
i (s, f ) − Ji(s, f )| = 0.

Proof. Note that, by the triangle inequality, we have

∣∣J ε
i (s, f ) − Ji(s, f )

∣∣≤
∣∣∣∣
∫

S

rε
i (s, f )πε

f (ds)
/∫

S

τ (s, f )πε
f (ds)

−
∫

S

ri(s, f )πε
f (ds)

/∫
S

τ (s, f )πε
f (ds)

∣∣∣∣
+
∣∣∣∣
∫

S

ri(s, f )πε
f (ds)

/∫
S

τ (s, f )πε
f (ds)

−
∫

S

ri(s, f )πf (ds)
/∫

S

τ (s, f )πf (ds)

∣∣∣∣ . (10)
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By Theorem 1 in Ref. 16, the second term tends to zero uniformly in f when
ε → 0. The first term can be treated in the following way. Define two sets:

A1 ={(s, x) : ri(s, x) > 1/ε},
A2 ={(s, x) : ri(s, x) < −1/ε}.

Making use of (A2) (ii), we get

cε : =
∣∣∣∣
∫

S

rε
i (s, f )πε

f (ds)
/∫

S

τ (s, f )πε
f (ds)

−
∫

S

ri(s, f )πε
f (ds)

/∫
S

τ (s, f )πε
f (ds)

∣∣∣∣
≤ (1/b)

∫
S

|rε
i (s, f ) − ri(s, f )|πε

f (ds)

≤ (1/b)

⎡
⎢⎢⎢⎣
∫ ∫
︸ ︷︷ ︸

A1

|1/ε − ri(s, x)|f (dx|s)πε
f (ds)

+
∫ ∫
︸ ︷︷ ︸

A2

| − 1/ε − ri(s, x)|f (dx|s)πε
f (ds)

⎤
⎥⎥⎥⎦ . (11)

Furthermore, note that

|1/ε − ri(s, x)| ≤ LV (s), ∀(s, x) ∈ A1,

|1/ε + ri(s, x)| ≤ LV (s), ∀(s, x) ∈ A2,

and

A1 ∪ A2 ⊂ {s : LV (s) ≥ 1/ε} × X. (12)

We recall that the constant L is taken from (A2)(i). By (11) and (12), for any
f ∈ F , we get

cε ≤
∫

S

∫
X

LV (s)f (dx|s)πε
f (ds) =

∫
S

Rε(s)πε
f (ds),

where

Rε(s) :=
{

LV (s), if LV (s) ≥ 1/ε,

0, if LV (s) < 1/ε,
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for each i = 1, . . . , m. Therefore, to show that the first term in (10) tends to 0, as
ε → 0, it is enough to prove that

lim sup
ε→0

sup
f ∈F

∫
S

Rε(s)πε
f (ds) = 0. (13)

Clearly, Rε ∈ L∞
V . Consider an auxiliary Markov decision process with the reward

function Rε, transition law qε, state space S, and X as the set of all actions
available to the single decision maker in any state s ∈ S. Under our assumptions,
it follows from Theorem 10.3.6 in Ref. 9 that there exist a constant gε (which is
the optimal expected average payoff) and a function zε ∈ L∞

V (unique up to an
additive constant) that satisfy the following optimality equation:

zε(s) + gε = Rε(s) + max
x∈X

∫
S

zε(s ′)qε(ds ′|s, x). (14)

From a standard measurable selection theorem (Refs. 9, 18), it follows that there
exists a Borel measurable function f 0 = (f 0

1 , . . . , f 0
m), f 0

i ∈ Fi that attains the
maximum on the right-hand side of (14). Moreover, by the methods of dynamic
programming (Ref. 9), we infer that

gε = sup
f ∈F

∫
S

Rε(s ′)πε
f (ds ′) =

∫
S

Rε(s ′)πε
f 0 (ds ′). (15)

If we put

zε(s) : Ef 0

s

[ ∞∑
k=0

(Rε(sk) − gε)

]
, (16)

then using (15) and (16) one can obtain the following Poisson equation:

zε(s) + gε = Rε(s) +
∫

S

zε(s ′)qε(ds ′|s, f 0).

See Proposition 10.2.3 in Ref. 9. Note that, by (9) and (16), it holds that

‖zε‖V ≤ Lθ1/(1 − κ1). (17)

Proceeding analogously as in Theorem 2 in Ref. 16 and subtracting z̄ε(s) from
zε(s), we get

zε(s) − zε(s) =
∫

S

(zε(s ′) − zε(s ′)) q(ds ′|s, f 0).

Iterating this equation n times and letting n → ∞, we infer that

zε(s) − zε(s) =
∫

S

(zε(s ′) − zε(s ′)) πε
f 0 (ds ′).
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Denote the right-side of this equality by ω. By putting

zε(s) = z̄ε(s) + ω, for all s ∈ S,

in (14) and subtracting ω from both sides of this equation, we get

zε(s) + qε = Rε(s) + max
x∈X

∫
S

zε(s ′)qε(ds ′|s, x). (18)

Let {εn} be a sequence converging to zero. Define

zn := zεn , Rn := Rεn, gn := gεn, qn := qεn
.

By (17), {z̄n} is a uniformaly bounded sequence in L∞
V . Now, (18) can be written

as

zn(s) + gn = Rn(s) + max
x∈X

∫
S

z̄n(s ′)qn(ds ′|s, x). (19)

Since Rn(s) → 0 for s ∈ S, we conclude that gn → g for n → ∞. Let W be the
space of all µ-equivalence classes of Borel measurable functions

z : S �→ R such that ‖z‖V ≤ Lθ1/(1 − κ1), µ − a.e.

It is well-known that W is a compact and metrizable subset of L∞ = L∞(S, u)
equipped with the relative weak star-topology σ (L∞, L1); see the Alaglu theorem
in Ref. 25. Set

un(s) := zn(s)/V (s).

There is no loss of generality in assuming that {un} converages in the weak-star
topology to some u ∈ W . By Lemma 7.2.7 in Ref. 18, we may say that u is
represented by a Borel measurable function, denoted for convenience by the same
symbol. Define z(s) = V (s)u(s). Proceeding as in the proof of the theorem in
Ref. 22, we get

lim
u→∞ max

x∈X

[
−gn + Rn(s) +

∫
S

z̄n(s ′)qn(ds ′|s, x)

]
(20)

= max
x∈X

[
−g +

∫
S

z(s ′)q(ds ′|s, x)

]
,

for every s ∈ S. From (19) and (20), we conclude that

z′(s) := lim
n→∞ z̄n(s)

exists for every s ∈ S. Since both z and z′ are Borel measurable, the set

S0 := {s ∈ S : z(s) �= z′(s)}
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is Borel. Moreover, we have µ(S0) = 0. Finally, we obtain some f ′ ∈ F such that

z(s) + g = max
x∈X

[∫
S

z(s ′)q(ds ′|s, x)

]
=
∫

S

z(s ′)q(ds ′|s, f ′), ∀s /∈ S0.

By integrating both sides with respect to πf ′ and noting that πf ′(S0) = 0, we
obtain g = 0, which implies (13). �

Remark 4.1. The game Mε is obviously bounded. Since qε(B|s, x) ≥
εδs∗ (B) for every B ∈ B(S), s ∈ S, x ∈ X, it is also strongly ergodic.

5. ε-Equlibrium Points for V -Ergodic Semi-Markov Games

The main objective in this paper is to prove the following results.

Theorem 5.1. Let (A1)–(A2) hold. Then, for any ε > 0, the V -ergodic
semi-Markov game M with the ratio-average criterion has a stationary ε-
equlibrium.

Theorem 5.2. Let (A1)–(A4) hold. Then, for any ε > 0, the V -ergodic
semi-Markov game M with the time-average crierion has a stationary ε-
equlibrium.

Before we give the proof, we describe preliminary material and an approxi-
mation technique for strongly ergodic games with Borel state space by games can
be solved by the methods use in studying models with denumerable state space.

Let P1 and P2 be probability measures on (S,B(S)). Then, the total uariation
norm of P1 − P2 is defined as

‖P1 − P2‖ := 2 sup
B∈Bs

|P1(B) − P2(B)|.

If P1 and P2 have densities p1 and p2 with respect to some σ -finite measure ν on
S, then by the Scheffé theorem,

‖P1 − P2‖ :=
∫

S

|p1(s) − p2(s)|ν(ds).

Let � be the set of all density functions in L1(S,µ) and let D be the space of all
continuous mappings from X into � with the metric d defined as

d(φ1, φ2) := max
x∈X

∫
S

|φ1(x)(s) − φ2(x)(s)|µ(ds).

Obviously, � is a nonempty and closed subset of L1(S,µ). Therefore, by
Theorem I.5.1 in Ref. 26, D is a complete separable metric space. Let N be
the set of positive integers. We denote by C(X) the Banach space of all continuous
functions on X, endowed with the supremum norm ‖ · ‖sup.
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Let ε ∈ (0, ε∗), with ε∗ defined by (7). Consider the game Mε. To simplify
our notation, we put

p(·|s, x) := qε(·|s, x) and Ri(s, x) : rε
i (s, x),

for every player i, s ∈ S and x ∈ X.
For each s ∈ S, the transition probability density ρ of the original game

induces an element φ(s, ·) of D defined as

φ(s, x) = ρ(s, ·, x).

From the product measurability of ρ on S × S × X, it follows that s �→ φ(s, ·) is
a measurable mapping from S into D.

Let {φk} be a countable dense set in D and let {Rk}, {τ k} be countable dense
sets in C(X). For any positive integers k1, k2, . . . , km, l1, l2, put

A(k1, . . . , km, l1, l2) : =
{

s ∈ S\{s∗} :
m∑

i=1

‖Ri(s, ·) − Rki ‖sup + d(φ(s, ·), φl1 )

+‖τ (s, ·) − τ l2‖sup < δ

}
.

Let α be a fixed one-to-one correspondence between N and Nm+2. Define

T n := A(α(n)), n ∈ N.

Next, put

Ỹ 1 := T 1 and Ỹ l := T l −
⋃
j<l

Ỹ j ,

for l ≥ 2. Let {Yn} be the enumeration of all nonempty sets {Ỹ l} where n ranges
over some subset Ñ of N . Put

Y 0 = {s∗} and N0 = Ñ ∪ {0}.
Clearly, {Yn}, where n ∈ N0, is a measurable partition of the state space S. Note
that each set Yn, n ∈ Ñ , corresponds to some ρn ∈ D, Rn

i ∈ C(X), and τn ∈ C(X).
Define

Rδ
i (s, x) = Rn

i (x), τ δ(s, x) = τn(x),

pδ(B|s, x) = (1 − ε)
∫

B

ρn(s ′, x)µ(ds ′) + εδs∗ (B),

for all s ∈ Yn, x ∈ X, and n ∈ Ñ . Further, put

Rδ
i (s∗, x) = Ri(s

∗, x), τ δ(s∗, x) = τ (s∗, x), pδ(B|s∗, x) = p(B|s∗, x),
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for each x ∈ X. The game obtained above for any fixed δ will be denoted by Gδ .
Observe that this is also a strongly ergodic game. From our construction, it follows
that, for all s ∈ Yn, n ∈ N0, we have

d(φ(s, ·), ρn) < δ, ‖Ri(s, ·) − Rn
i ‖sup < δ, ‖τ (s, ·) − τn‖sup < δ.

Hence, for s ∈ Yn, n ∈ N0, x ∈ X, we obtain

sup
s∈S

sup
x∈X

|Rδ
i (s, x) − Ri(s, x)| ≤ δ and sup

s∈S

sup
x∈X

|τ δ(s, x) − τ (s, x)| ≤ δ. (21)

Moreover, it holds that

sup
s∈S

sup
x∈X

‖p(·|s, x) − pδ(·|s, x)‖ ≤ (1 − ε)δ. (22)

Now we describe formally the meaning of the strong ergodicity of the games
Mε and Gδ . Since p(·|s, x) ≥ εδs∗ (·) for all s ∈ S and x ∈ X, by Lemma 3.3 in
Ref. 24 we get

sup
s,s ′∈S

sup
x,x ′∈X

‖p(·|s, x) − p(·|s ′, x ′), ‖ ≤ 2β, (23)

where β = (2 − ε)/2. Using Lemma 3.3 in Ref. 24 again, we infer that the Markov
chain induced by the transition probabity p(·|s, f ), where f ∈ Fs ∈ S is uni-
formly ergodic (not only V -ergodic as stated in Section 4); i.e., there exists an
invariant probability measure πε

f such that

sup
s∈S

sup
f ∈F

‖pn(·|s, f ) − πε
f (·)‖ ≤ 2βn.

Note that the same reasoning also applies to pδ(·|s, f ) and its invariant probability
measure πδ

f . By (22), (23), and Corollary 2 in Ref. 27, we obtain the following
important inequality:

‖πδ
f − πε

f ‖ ≤ δ(1 − ε)/(1 − β) = 2δ(1 − ε)/ε. (24)

Let J δ
i (f ) be the ratio-average criterion for the semi-Markov game Gδ .

Lemma 5.1. Let ε ∈ (0, ε∗). For any γ > 0, there exist some δ > 0 and a
game Gδ such that

|J ε
i (f ) − J δ

i (f )| ≤ γ,

for each player i and for all f ∈ F .

Proof. Obviously, we have

|J δ
i (f ) − J ε

i (f )|
≤
∣∣∣∣
∫

S

Rδ
i (s, f )πδ

f (ds)
/∫

S

τ δ(s, f )πδ
f (ds)
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−
∫

S

Ri(s, f )πε
f (ds)

/∫
S

τ (s, f )πε
f (ds)

∣∣∣∣
=
∣∣∣∣
[ ∫

S

Rδ
i (s, f )πδ

f (ds)
∫

S

τ (s, f )πε
f (ds)

−
∫

S

Ri(s, f )πε
f (ds)

∫
S

τ δ(s, f )πδ
f (ds)

]

/[∫
S

τ (s, f )πε
f (ds)

∫
S

τ δ(s, f )πδ
f (ds)

]∣∣∣∣. (25)

Furthermore,∣∣∣∣
∫

S

Rδ
i (s, f )πδ

f (ds)
∫

S

τ (s, f )πε
f (ds) −

∫
S

Ri(s, f )πε
f (ds)

∫
S

τ δ(s, f )πδ
f (ds)

∣∣∣∣
≤
∣∣∣∣
∫

S

Rδ
i (s, f )πδ

f (ds)

[∫
S

τ (s, f )πε
f (ds) −

∫
S

τ δ(s, f )πδ
f (ds)

]∣∣∣∣
+
∣∣∣∣
∫

S

τ δ(s, f )πδ
f (ds)

[∫
S

Rδ
i (s, f )πδ

f (ds) −
∫

S

Ri(s, f )πε
f (ds)

]∣∣∣∣ .
Next, using (21) and (24), we obtain∣∣∣∣

∫
S

τ (s, f )πε
f (ds) −

∫
S

τ δ(s, f )πδ
f (ds)

∣∣∣∣
≤
∣∣∣∣
∫

S

τ (s, f )πε
f (ds) −

∫
S

τ δ(s, f )πε
f (ds)

∣∣∣∣ |

+
∣∣∣∣
∫

S

τ δ(s, f )πε
f (ds) −

∫
S

τ δ(s, f )πδ
f (ds)

∣∣∣∣
≤ δ + (B + δ)‖πε

f − πδ
f ‖ = δ + (B + δ)2δ(1 − ε)/ε.

Similarly, taking into account that |R(s, f )| ≤ 1/ε, we infer that∣∣∣∣
∫

S

R(s, f )πε
f (ds) −

∫
S

Rδ(s, f )πδ
f (ds)

∣∣∣∣ ≤ δ + (1/ε + δ)2δ(1 − ε)/ε.

Therefore, if δ < b, from the above two upper bounds and (25), we obtain the
following inequality:

|J δ
i (f ) − J ε

i (f )|
≤ [δ(1/ε + B + 2δ) + (1/ε + δ)(B + δ)4δ(1 − ε)/ε]/[b(b − δ)],

which implies the assertion. �

Let F 0
i be the class of strategies of player i that are piecewise constant: fi

belongs to F 0
i iff s �→ fi(·|s) is constant on each set Yn of the partition {Yn} of

S, n ∈ N0. Put F 0 := F 0
1 × . . . × F 0

m.
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Tha game Gδ with piecewise constant stationary strategies for the players
resembles a semi-Markov game with countable state space N0. The transition
probabilities Pij (x) (of moving from a state i to a state j , when a vector of actions
x = (x1, . . . , xm) ∈ X is selected) are defined as follows:

Pij (x) := (1 − ε)
∫

Y j

ρi(s ′, x)µ(ds ′) + εδs∗ (Y j ), i ∈ Ñ, j ∈ N◦,

P0j (x) := (1 − ε)
∫

Y j

ρi(s∗, s ′, x)µ(ds ′) + εδs∗ (Y j ), j ∈ N0.

From Theorem 1 in Ref. 13, it follows immediately that the countable state space
game defined above has a stationary Nash equilibrium point. Clearly, this implies
that the game Gδ has a Nash equilibrium f 0 = (f 0

1 , . . . , f 0
m) in the class of F 0

of piecewise constant stationary strategies. The arguments are based on the av-
erage cost optimality equations and are precisely given for Markov games in the
Appendix of the Nowak and Altman paper (Ref. 1). An extension to semi-Markov
games is obvious. One can use the optimality equation derived in Ref. 16.

Lemma 5.2. The game Gδ described above has a stationary Nash equilib-
rium f 0 = (f 0

1 , . . . , f 0
m) ∈ F 0 within the class of all strategies of the players.

We are now ready to prove our main results.

Proof of Theorem 5.1. Fix ε > 0. By Theorem 4.1, there exists some ε ∈
(0, ε∗) such that

sup
f ∈F

|Ji(f ) − J ε
i (f )| < ε/4, (26)

for each player i. By Lemma 5.1, there exists some δ and a game Gδ such that, we
have

sup
f ∈F

|J ε
i (f ) − J ε

i (f )| < ε/4, (27)

for each player i. From Lemma 5.2, we know that Gδ has a stationary Nash
equilibrium f 0 ∈ F 0 ⊂ F . This, (26), and (27) imply that f 0 is an ε-equilibrium
for the game model M. �

Proof of Theorem 5.2. Let (f 0
1 , . . . , f 0

m) ∈ F 0 be a Nash equilibrium in the
game M with the ratio-average criterion. From the main result in in (Ref. 20), we
know that

Ji(f
0) = ji(f

0),
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for each player i. Let �i be the set of all strategies of player i. From Ref. 20, we
know also that

ji(f
0) = sup

πi∈�i

ji(s, (f 0
−i , πi))

= sup
πi∈�i

Ji(s, (f 0
−i , πi))

= Ji(f
0), s ∈ S.

Hence, we conclude Theorem 5.2 from Theorem 5.1. �

6. Concluding Remarks

In this paper, we show how to approximate a general unbounded V -ergodic
game by a sequence of bounded strongly ergodic games which are easier to
solve. The reason is that, from the proofs of Theorem 4.1 (Refs. 16–17) and
Lemma 5.1, one can calculate the distance between the original game and the
approximating one (expressed in terms of the average payoffs corresponding to
stationary strategies). It should be noted that the evaluation of the distance between
the invariant probability distributions given in (24) is of a very simple form. There
is no such result in Ref. 1. Lemma 3.4 in Ref. 1 and its proof are much more
complicated and the evaluation of similar difference of the invariant probabilities
is rather theoretical. We point out that, in Ref. 1, the authors approximate the
original game (which is unbounded) by unbounded games with countably many
states. Next, they apply (in a quite involved manner) the main result from Ref. 12
(see pp. 1830–1831 in Ref. 1). In this paper, we omit such difficulties because our
approximating games have a much simpler structure.
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