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Abstract. In this paper, we give counterexamples showing that the strong
duality results obtained in Refs. 1–5 for several dual problems of multiobjec-
tive mathematical programs are false. We provide also the conditions under
which correct results can be established.
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1. Introduction

Given a nonempty subset S of an Euclidean space Rn and the functions fi :
Rn → R, i ∈ I = {1, 2, . . . , p}, we consider the following vector optimization
problem:

(VP) min f (x) := (f1(x), f2(x), . . . , fp(x)), (1)

s.t. x ∈ S. (2)

Let us give some definitions. A point x0 is called a feasible point if x0 ∈ S. A
feasible point x0 is called an efficient point of (VP) if there exists no other feasible
point x such that fi(x) ≤ fi(x0), i ∈ I , and if at least one of these inequalities is
strict. An efficient point x0 is called (Ref. 6) a properly efficientpoint of (VP) if
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there exists a positive number M such that, for each i ∈ I , we have

[fi(x
0) − fi(x)]/[fj (x) − fj (x0)] ≤ M,

for some j ∈ I such that fj (x) > fj (x0) whenever x ∈ S and fi(x) < fi(x0). We
say that x0 is an efficient point [resp. properly efficient point] of the problem of
maximizing f (x) subject to x ∈ S if it is an efficient point [resp. properly efficient
point] of the problem of minimizing −f (x) subject to the same constraint x ∈ S.

In the duality theory of multiobjective mathematical programs, several prob-
lems, called dual problems of (VP), were proposed in several papers. In Refs.
1–5, it was pointed out that, under suitable assumptions, a solution of the dual
problems, which is constructed from a properly efficient solution of the primal
problem (VP), is a properly efficient solution. In this paper, we give counterexam-
ples showing that this claim is false for all mentioned dual problems. We provide
also conditions under which correct results are obtained.

We observe that our results are different from the corresponding ones of Ref.
7. This is because, in the present paper, we use the same notion of properly efficient
solution in both the primal and dual problems, while in Ref. 7 the solutions of
these problems are understood in a different sense: in the primal problem they are
properly efficient; in the dual problem, they are efficient only.

Strong duality results where in both the primal and dual problems the proper
efficiency property is replaced by the same weaker notion such as efficiency or
weak efficiency were also established in the literature. Recent developments in
this direction can be found e.g. in Refs. 8–11 (see also the references therein).
In Ref. 12, efficiency is used in the primal problem, but duality is understood
in the sense of generalized Lagrange duality. It is shown in Ref. 12 that, in this
case, strong duality results can be obtained via the image space analysis if a
suitable dual problem with set-valued objectives (Ref. 13) is introduced. It is
known that the theory of vector variational inequalities, which was first con-
sidered in Ref. 14, is closely related to vector optimization theory. The reader
who is interested in duality for vector variational inequalities is referred to
Refs. 15–16.

For the reader convenience, let us recall a result of Geoffrion (Ref. 6).

Theorem 1.1. Let x0 ∈ S. If there exists a vector γ = (γ1, γ2, · · · , γp) with
positive components γi, i ∈ I , such that x0 is a minimizer of the function

∑p

i=1 γifi

on S, then x0 is a properly efficient point of (VP). The converse statement is true
if S is a convex set and each fi is a convex function on S.

2. Counterexamples

In this paper, we assume that

S = {x : x ∈ C, gk(x) ≤ 0, k = 1, 2, . . . , m},
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where C is a nonempty convex subset of Rn and gk : Rn → R are given functions.
In Ref. 2, it is assumed that fi and gk are composite functions,

fi(x) = hi(Fi(x)),

gk(x) = lk(Gk(x)),

where hi : Rq → R and lk : Rq → R are convex functions with subdifferen-
tials ∂hi(·) and ∂lk(·), and where Fi : Rn → Rq and Gk : Rn → Rq are locally
Lipschitz and differentiable maps with derivatives F

q

i (·) and G′
k(·). In Ref. 2, the

following vector optimization problem (VD) was defined as the dual problem of
(VP):

(VD) max f (u) := (f1(u), f2(u), . . . , fp(u)), (3)

s.t. 0 ∈
p∑

i=1

τi∂hi(Fi(u))F ′
i (u)+

m∑

k=1

λk∂lk(Gk(u))G′
k(u)−(C − u)+, (4)

λklk(Gk(u)) ≥ 0, k ∈ K, (5)

u ∈ C, τi > 0, i ∈ I, λk ≥ 0, k ∈ K, (6)

where K = {1, 2, . . . , m} and A+ denotes the set of all points x ∈ Rn such that,
for all ξ ∈ A ⊂ Rn, the inner product 〈x, ξ 〉 is nonnegative. We denote by τ [resp.
λ] the vector with components τi [resp. λk]. Thus, a feasible point of (VD) is a
point v = (u, τ, λ) ∈ Rn × Rp × Rm satisfying (4)–(6).

Let K(x0) be the index set corresponding to the active constraints
at x0 ∈ S,

K(x0) = {k ∈ K : lk(Gk(x0)) = 0}.
In Ref. 2, it is said that the generalized Slater condition holds at x0 if

∃y ∈ cone(C − x0) s.t. < v,G′
k(x0)y >< 0,∀v ∈ ∂lk(Gk(x0)),∀k∈K(x0),

where

cone A := {αa : a ∈ A, α > 0}
denotes the cone generated by A. In Ref. 2, it is said that condition (GRC) holds
if, for all x, y ∈ C, there exist positive numbers αi(x, y) and βk(x, y) and a point
µ(x, y) ∈ C − y such that

Fi(x) − Fi(y) = αi(x, y) F ′
i (y) µ (x, y), i ∈ I,

Gk(x) − Gk(y) = βk(x, y) G′
k(y) µ (x, y), k ∈ K.

The following result was proved in Ref. 2, Theorem 8.6.2.

Theorem 2.1. Assume that the generalized Slater condition holds at x0

and that condition (GRC) is verified at each feasible point of (VP) and (VD).
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If x0 is a properly efficient point of (VP), then there exists (τ 0, λ0) such that
v0 := (x0, τ 0, λ0) is a properly efficient point of (VD) and the objective values at
these points are equal.

The following counterexample shows that this result is false.

Counterexample 2.1. Let

n = m = 1, p = 2, f1(x) = x, f2(x) = x2, g1(x) = x, C = (−∞,−1|.
Under these assumptions, this problem can be interpreted as problem (VP) with
q = 1, l1(x) = G1(x) = x, and

(i) h1(x) = h2(x) = x, F1(x) = x, F2(x) = x2.

Another approach to consider this problem as problem (VP) is that, instead of (i),
we set

(ii) h1(x) = x, h2(x) = x2, F1(x) = F2(x) = x.

In both cases (i) and (ii), the corresponding dual problem (VD) is described as
follows:

(VD) max (f1(u), f2(u)) := (u, u2),

s.t. 0 ∈ τ1 + 2τ2u + λ1 − (C − u)+,

λ1u ≥ 0,

u ∈ C, τ1 > 0, τ2 > 0, λ1 ≥ 0.

We can check that x0 = −1 is a global minimizer of (2/3)f1 + (1/3)f2 on
the whole real line. Hence, by Theorem 1.1, x0 = −1 is a properly efficient point
of (VP). Observe that the generalized Slater condition holds at x0 since K(x0)
is an empty set. Condition (GRC) holds in both cases (i) and (ii). Indeed, this is
obvious for case (ii) by the linearity of F1 and F2. Condition (GRC) holds also in
case (i) by taking

α1(x, y)=1, α2(x, y) = (x + y)/2y, β1(x, y) = 1, µ(x, y) = x − y,

for all x, y ∈ C = (−∞,−1].

Observe that α2(x, y) > 0, since x < 0 and y < 0. Thus by Theorem 2.1, for
suitable (τ 0, λ0), the point v0 = (x0, τ 0, λ0) = (−1, τ 0, λ0) is a properly efficient
point of (VD).

Now, for any number a ∈ (2/3, 1), consider the points

u(a) = −a/2(1 − a) ∈ R, τ (a) = (a, 1 − a) ∈ R2.
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Then,

v(a) := (u(a), τ (a), 0)

is a feasible point of (VD). Let us set i = 2, j = 1 in the definition of properly
efficient point v0. Then, it is a simple matter to check that

[f2(u(a)) − f2(v0)]/[f1(v0) − f1(u(a))] = (2 − a)/2(1 − a)→+∞, as a→1,

a contradiction to the proper efficiency of v0. Since this is proved in both cases (i)
and (ii), we see that Theorem 2.1 is false, even though either all hi and lk or all Fi

and Gk are linear functions.
In Ref. 4, it is assumed that C = Rn and that fi and gk are of class C1 with

Fréchet derivatives f ′
u(·) and g′

k(·). Instead of (VD), the following dual problem
(VD)′ is proposed in Ref. 4:

(VD)′ max f̄ (v) := (f̄1(v), f̄2(v), . . . , f̄p(v)), (7)

s.t. 0 =
p∑

i=1

τif
′
i (u) +

m∑

k=1

λkg
′
k(u), (8)

u ∈ C = Rn, τi > 0, i ∈ I, λk ≥ 0, k ∈ K, (9)
p∑

i=1

τi = 1, (10)

where v = (u, τ, λ) ∈ Rn × Rp × Rm and

f̄i(v) = fi(u) +
m∑

k=1

λkgk(u).

A feasible point of (VD)′ is a point v satisfying (8)–(10). The following result
is proved in Theorem 2.5 of Ref. 4.

Theorem 2.2. Let C = Rn. Let fi and gk be convex functions and let x0 be
a properly efficient point of (VP) at which a constraint qualification is satisfied.
Then, there exists (τ 0, λ0) such that (x0, τ 0, λ0) is a properly efficient point of
(VD)′ and the objective values of (VP) and (VD)′ are equal.

Weir (Ref. 4) does not define the constraint qualification notion that he uses
in Theorem 2.2. From the proof of Theorem 2.5 of Ref. 4, it is understood that a
constraint qualification condition is any condition under which there exists (τ 0, λ0)
such that v0 := (x0, τ 0, λ0) is a feasible point of (VD)′,

∑m
k=1 λ0

kgk(x0) = 0, and
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(x0, λ0) is a maximizer of the following scalar optimization problem:

max
p∑

i=1

τ 0
i fi(u) +

m∑

k=1

λkgk(u),

s.t. 0 =
p∑

i=1

τ 0
i f ′

i (u) +
m∑

k=1

λkg
′
k(u),

λk ≥ 0, k ∈ K,

where τ 0
i [resp. λk] are the components of τ 0 [resp. λ]. Observe that, in this

problem, τ 0 is fixed and (u, λ) is a variable.
The following counterexample shows that Theorem 2.2 fails to hold even in

the case when all functions involved are linear.

Counterexample 2.2. Let

n = m = 1, p = 2, f1(x) = x, f2(x) = −x, g1(x) = x − 1.

Then, the corresponding dual problem (VD)′ is described as follows:

(VD)′ max f̄ (v) = (f̄1(v), f̄2(v)),

s.t. τ1 − τ2 + λ1 = 0,

τ1 > 0, τ2 > 0, λ1 ≥ 0,

τ1 + τ2 = 1,

where u ∈ R, τ = (τ1, τ2) ∈ R2, λ1 ∈ R, and for any v = (u, τ, λ1),

f̄1(v) = u + λ1(u − 1), f̄2(v) = −u + λ1(u − 1).

Observe that

(1/2)f1 + (1/2)f2 ≡ 0,

on R. Hence, by Theorem 1.1, x0 = 0 is a properly efficient point of (VP). Ob-
viously, a constraint qualification is satisfied at x0. Thus, by Theorem 2.2, there
exists (τ 0, λ0

1) such that v0 := (0, τ 0, λ0
1) is a properly efficient point of (VD)′.

Here, λ0
1 cannot be equal to 1. Observe that, in our case, no constraint is imposed

on the variable u of problem (VD)′.
Now, for any positive number a < 1, let us set

λ1(a) = a, τ (a) = (τ1(a), τ2(a)),

where

τ1(a) = (1 − a)/2 and τ2(a) = (1 + a)/2.
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Then, for any u ∈ R sufficiently large, v(a) := (u, τ (a), λ1(a)) is a feasible point
of (VD)′ and

f̄1(v(a)) − f̄1(v0) = u(a + 1) − a + λ0
1 > 0,

f̄2(v0) − f̄2(v(a)) = u(1 − a) + a − λ0
1 > 0.

Let us take i = 1 and j = 2 in the definition of the properly efficient point v0.
Then, we have

[f̄1(v(a)) − f1(v0)]/[f̄2(v0) − f̄2(v(a))]

= [a + 1 + (λ0
1 − a)/u]/[1 − a + (a − λ0

1)/u]

→ +∞, as a → 1, u → ∞.

This contradicts the proper efficiency of v0.
In Ref. 1, the following Mond-Weir dual problem is considered:

(VD)′′ max f (u) := (f1(u), f2(u), . . . , fp(u)), (11)

s.t. 0 =
p∑

i=1

τif
′
i (u) +

m∑

k=1

λkg
′
k(u), (12)

m∑

k=1

λkgk(u) ≥ 0, (13)

u ∈ C, τi > 0, i ∈ I, λk ≥ 0, k ∈ K, (14)
p∑

i=1

τi = 1, (15)

A feasible point of (VD)′′ is a point v = (u, τ, λ) ∈ Rn × Rp × Rm satisfying
(12)–(15).

Recall (Ref. 1) that, for an arbitrary map η : S × S → Rn, a differentiable
function h : Rn → R is called η-invex on S at u ∈ S if, for all x ∈ S,

h(x) − h(u) ≥ h′(u)η(x, u). (16)

In the case when the last inequality is replaced by the following implication:

h(x) − h(u) ≤ 0 ⇒ h′(u)η(x, u) ≤ 0, (17)

then h is called η-quasiinvex on S at u ∈ S. Observe that a differentiable convex
function (in particular, a linear function) h is always η-invex (and hence, η-
quasiconvex), with η(x, u) = x − u.

The following strong duality property was proved in Theorem 2.4 of Ref. 1.

Theorem 2.3. Let C be an open set of Rn. Let x0 be a properly efficient
point of (VP) at which a constraint qualification holds at x0. Then, there exists
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(τ 0, λ0) such that (x0, τ 0, λ0) is a feasible point of (VD)′′ and
∑m

k=1 λ0
k,gk(x0) = 0.

Also, if there is a map η : S × S → Rn such that, for each feasible point (u, τ 0, λ)
of (VD)′′,

∑p

i=1 τ 0
i fi is η-invex on S at u ∈ S and

∑m
k=1 λkgk is η-quasiinvex on

on S at u ∈ S, then (x0, τ 0, λ0) is a properly efficient point of (VD)′′.

The following counterexample shows that the claim of Theorem 2.3 is
incorrect.

Counterexample 2.3. Let

n = m = p = 2, C = R2, f1(x) = x1 + x2, f2(x) = x1,

g1(x) = −x1, g2(x) = −x2,

where x = (x1, x2) ∈ R2. Then, the corresponding dual problem (VD)′′ is de-
scribed as follows:

(VD)′′ max f (u) := (f1(u), f2(u)),

s.t. τ1 + τ2 − λ1 = 0,

τ1 − λ2 = 0,

λ1(−u1) + λ2(−u2) ≥ 0,

τ1 + τ2 = 1,

τ1 > 0, τ2 > 0, λ1 ≥ 0, λ2 ≥ 0,

where

u = (u1, u2) ∈ R2, f1(u) = u1 + u2, f2(u) = u1.

Obviously, x0 = (0, 0) ∈ R2 is a minimizer of the function (1/2)f1 + (1/2)f2

on the feasible set of (VP). By Theorem 1.1, x0 = (0, 0) is a properly efficient
point of (VP). Since the constraint functions of (VP) are linear, the Kuhn-Tucker
constraint qualification holds at x0 (see Ref. 17, p. 102). Also, the invexity and
quasiinvexity properties required in Theorem 2.3 are satisfied, since all functions
fi and gk are linear. Thus, by Theorem 2.3, there exists (τ 0, λ0) ∈ R2 × R2 such
that v0 := (x0, τ 0, λ0) = (0, τ 0, λ0) is a properly efficient point of (VD)′′.

Now, for any positive number a > 1, let us set

u(a) = (−a, a2) ∈ R2, τ (a) = (1/a, 1 − 1/a) ∈ R2, λ(a) = (1, 1/a) ∈ R2.

Then, v(a) := (u(a), τ (a), λ(a)) is a feasible point of (VD)′′. By taking i = 1, j =
2 in the definition of the proper efficiency of v0, we have

[f1(u(a)) − f1(u0)]/[f2(u0) − f2(u(a))] = a − 1 → +∞, as a → ∞,

a contradiction to the definition of proper efficiency of v0.
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Remark 2.1. Counterexample 2.2 shows also that the strong duality results
of Theorems 2.2 and 3.1 of Ref. 1 and Theorem 4.5 of Ref. 5 are incorrect. Coun-
terexample 2.3 shows also that the strong duality result obtained in Theorem 3.2
of Ref. 1 is incorrect.

Remark 2.2. Theorems 2.2 and 2.3 were generalized in Theorems 3.3
and 3.5 of Ref. 3 where the convexity, η-invexity, and η-quasiinvexity are re-
placed by the F-convexity, F-pseudoconvexity, and F-quasiconvexity with F :
S × S × Rn → R being any function such that, for fixed (x, u) ∈ S × S, F (x, u, .)
is sublinear. Recall (Ref. 3) that the function h : Rn → R is called F-convex [resp.
F-quasiconvex] on S at u ∈ S if, for all x ∈ S. condition (16) (resp. (17)] holds,
with F (x, u, h′(u)) in place of h′(u)η(x, u). The function h is called (Ref. 3)
F-psendoconvex on S at u if, for all x ∈ S,

F (x, u, h′(u)) ≥ 0 ⇒ h(x) ≥ h(u). (18)

Clearly, a linear function h is F-convex (hence, F-pseudoconvex and F-
quasiconvex), with F (x, u, y) =< y, x − u >. From this and Counterexamples
2.2 and 2.3, it follows that the strong duality results of Theorems 3.3 and 3.5 of
Ref. 3 are false.

Remark 2.3. To illustrate Theorem 2.5 of Ref. 4 (i.e. Theorem 2.2 of this
paper), Weir (Ref. 4) considers the problem (VP) of minimizing

f (x) = (f1(x), f2(x)) = (x, x2),

subject to

g(x) = x ≤ 0, x ∈ C = R.

The corresponding dual problem (VD)′ is the problem of maximizing

f̄ (v) = (f̄1(v), f̄2(v)) = (u + λ1u, u2 + λ1u),

subject to

τ1 + 2τ2u + λ1 = 0, τ1 > 0, τ2 > 0, λ1 ≥ 0, τ1 + τ2 = 1,

where v = (u, τ, λ1) and τ = (T τ1, τ2). It is easily checked that any point x0 < 0
is a properly efficient point of (VP) at which a constraint qualification holds.
Weir (Ref. 4) claims that, for any x0 < 0, the point v0 = (x0, τ 0, λ0

1) is a properly
efficient point of (VD)′, where τ 0 = (2x0/(2x0 − 1),−1/(2x0 − 1)), λ0

1 = 0. This



148 JOTA: VOL. 130, NO. 1, JULY 2006

claim is incorrect. Indeed, for any positive number a < 1, the point v(a) mentioned
in counterexample 2.1 is a feasible point of (VD)′ and we have

[f̄λ(v(a)) − f̄2(v0)]/[f̄1(v0) − f̄1(v(a))] = [a/2(1 − a)] − x0

→ +∞, as a → 1.

This contradicts the proper efficiency of v0.

Remark 2.4. We now give a more geometrical explanation of Counterex-
ample 2.2. To this end, we need the following proposition which originated in
Ref. 18 and can be obtained from Theorems 3.1.2 and 3.1.4 of Ref. 19.

Proposition 2.1. A feasible point v0 = (x0, τ 0, λ0) is a properly efficient
point of problem (VD)′ if and only if there exists a convex cone T ⊂ Rp such that
R

p
+\{0} ⊂ int T and

[f̄ (v0) + T ] ∩ f (Q′) = {f (v0)},
where R

p
+ denotes the nonengative orthant of RP , int T stands for the interior of

T, and Q′ is the set of all feasible points of (VD)′.
Turning to Counterexample 2.2, we have seen that x0 = 0 is a properly

efficient point of (VP) at which a constraint qualification is satisfied. Observe
that, if v = (u, τ, λ1) ∈ Q′, then λ1 ∈ [0, 1). Conversely, if λ1 ∈ [0, 1), then there
exists (u, τ ) such that (u, τ, λ1) ∈ Q′.

For any λ1 ∈ [0, 1), let us set

F (λ1) = {(u + λ1(u − 1),−u + λ1(u − 1)) : u ∈ R}.
Then,

F (λ1) = {(ω, [(λ1 − 1)]/[(1 + λ1)] ω − 2λ1/(1 + λ1)) : ω ∈ R} ,

f (Q′) =
⋃

λ1∈[0,1)

F (λ1).

Let τ 0 = (τ 0
1 , τ 0

2 ) and λ0
1 be such that v0 = (0, τ, λ0

1) ∈ Q′0 Let T ⊂ R2 be any
convex cone such that R2

+\{0} ⊂ int T . Then, there exist λ1 ∈ [0, 1) and (u, λ1) ∈
F (λ1) such that (ū, λ̄1) ∈ f̄ (v0) + T and (ū, λ̄1) �= f̄ (v0). By Proposition 2.1 v0

is not a properly eflicient point of (VD)′. So, Theorem 2.2 does not work for
Counterexample 2.2.

3. Sufficient Conditions for Strong Duality

The counterexamples given in the previous section prove that Theorems 2.1–
2.3 are not valid without additional assumptions. The aim of this section is to
provide conditions under which the conclusions of these theorems are correct.
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The following result is taken from Theorem 3.1.4 of Ref. 19 applied to
maximization problems.

Lemma 3.1. Consider the problem of maximizing a vector-valued function
f subject to x ∈ S. Then, a point x0 ∈ S is a properly eflicient point of this problem
if and only if

R
p
+ ∩ cl cone (f (S) − f (x0) − R

p
+) = {0},

where cl denotes the closure.

Now, let us denote by Q,Q′, Q′′ the sets of feasible points of
(VD), (VD)′, (VD)′′ respectively. For each point v = (u, τ, λ) ∈ Rn × Rp × Rm,
let us write f̃ (v) = f (u). We say that (VD) satisfies the closedness assumption
at x0 if the set cone (f̃ (Q) − f (x0) − R

p
+) is closed, where f is the vector-valued

objective function of (VD).
We say that (VD)′ satisfies the closefiness assumption at x0 if the set cone

(f̄ (Q)′ − f (x0) − R
p
+) is closed, where f̄ is the vector-valued objective function

of (VD)′.
We say that (VD)′′ satisfies the closedness assumption at x0 if the set cone

(f̃ (Q′′) − f (x0) − R
p
+) is closed, where f is the vector-valued objective function

of (VD)′′.

Theorem 3.1. In addition to the conditions of Theorem 2.1 [resp. Theo-
rem 2.2; Theorem 2.3] assume that (VD) [resp. (VD)′; (VD)′′] satisfies the closd-
ness assumption at x0. Then, the conclusions of Theorem 2.1 (resp. Theorem 2.2;
Theorem 2.3) are true.

Proof. Let us prove only the conclusions of Theorem 2.1 under the closed-
ness assumption. The case of Theorems 2.2 and 2.3 can be considered similarly. It
is known from Ref. 2, p. 264 that there exists (τ 0, λ0) such that v0 = (x0, τ 0, λ0)
is a feasible point of (VD). It remains to prove that v0 is a properly efficient point
of (VD). In view of Lemma 3.1 applied to the maximization problem (VD), it
suffices to show that

R
p
+ ∩ cl cone(f̃ (Q) − f̃ (v0) − R

p
+) = {0},

or equivalently,

R
p
+ ∩ cone(f̃ (Q) − f (x0) − R

p
+) = {0}, (19)

by the closedness assumption. Indeed, assume to the contrary that (19) does not
hold. Then, we must find α > 0, v = (u, τ, λ) ∈ Q, and y ∈ R

p
+ such that

α(f̃ (v) − f (x0) − y) ∈ R
p
+\{0},
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which implies that f (x0) − f̃ (v) ∈ −R
p
+\{0}. This contradiets the weak dual-

ity property (see Theorem 8.6.1 of Ref. 2), which says that f (x0) − f̃ (Q)) ∩
(−R

p
+\{0}) = ∅. �

Remark 3.1. From Theorem 3.1 it follows that the closedness assumption
is not satisfied in each of Counterexamples 2.1–2.3.

Remark 3.2. Since the dual problems are those with different objective and
constraint functions, the closedness assumption may be satisfied for some dual
problems, while it is not satisfied for other dual problems. To illustrate this remark,
let us consider the problem (VP) where

n = m = 1, p = 2, C = Rn, f1(x) = x, f2(x) = −x, g1(x) = x.

It is easy to verify that the closedness assumption at x0 = 0 is satisfied for (VD)
and (VD)′′, but is violated for (VD)′.
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