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Abstract. In the context of vector optimization for functions with values in
an ordered topological vector space, we give a result for the existence of global
minima. Moreover, we find a set of conditions ensuring the convergence of
minimal points and minimal values. More general assumptions are excluded
by several counterexamples.
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1. Introduction

The concept of an efficient point for a set in an ordered topological vector
space has been investigated widely by many authors (Refs. 1–4). Usually, the
literature considers the problem from only the point of view of an efficient point
for a general nonempty set A of a locally convex vector space ordered by a cone,
largely ignoring the case where A is the image of some function.

Only few articles (Refs. 5–6) have studied the stability of convergence for sets
of efficient points. However, as far as we know, no paper has addressed the problem
of convergence of minima for sequences of vector-valued functions. Section 3 aims
at giving a contribution to the existence of global minima for functions satisfying
a suitable coerciveness condition; to this end, we adopt a general semicontinuity
notion introduced by Corley (Ref. 2). In Section 4, in order to obtain convergence
for minimum points and minimum values, we assume a more restrictive notion of
semicontinuity and adopt the concept of weak Pareto minimum point or weakly
efficient point; see Ref. 7.

The weak minimum is introduced in connection with new definitions of weak
minorant and weak infimum. This definition is interesting because, as we prove in
Theorem 4.2, a nonempty set with weak minorants has a nonempty weak infimum.
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More general assumptions of regularity or convergence are excluded by a
collection of simple counterexamples.

2. Preliminaries

Throughout this paper, we denote by X a topological space and by Y a
topological vector space endowed with a filter of neighborhoods of 0.

Definition 2.1. A set C ⊂ Y is a pointed cone iff:

(i) λC ⊂ C, ∀λ ≥ 0;
(ii) (cl C) ∩ (−cl C) = {0};

it is a convex pointed cone iff additionally
(iii) C + C ⊂ C;

We set Co = C\{0} and, for y, y ′ ∈ Y , we write

y < y ′, iff y ′ − y ∈ Co,

y ≤ y ′, iff y ′ − y ∈ C.

Moreover, if Y ∗ is the topological dual of Y,

C∗ := {p ∈ Y ∗ : 〈p, y〉 ≥ 0, ∀y ∈ C}
is the (positive) polar or dual of C and

C∗
o := {p ∈ Y ∗ : 〈p, y〉 > 0, ∀y ∈ C\{0}}

is the strict (positive) polar of C.

Definition 2.2. See Ref. 2. A function f : X → Y is said to be C-lower
semicontinuous iff

f −1(y − cl C) is closed in X, ∀y ∈ Y.

When Y = R and C = R+, we have the usual notion of lower semicontinuity.

Definition 2.3. If A ⊂ Y, b ∈ Y is said to be a C-minorant for A iff
(b − Co) ∩ A = ∅. We define

µC(A) = {b ∈ Y : b is a C-minorant for A}.
If µC(A) �= ∅, let

infC A := {b ∈ µC(A) : (b + Co) ∩ µC(A) = ∅}.
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If A �= ∅, an element of the set

minC A := A ∩ infC A

is said to be a minimum for A.

Remark 2.1.

(i) When A ⊂ Y is nonempty, it results clearly from Definition 2.3 that b ∈
minC A if and only if b ∈ A and A ∩ (b − C) = {b}.

(ii) Even if A ⊂ Y and µC(A) are nonempty, the set infC A might be empty.

For instance, consider the case where

Y = R
2, C = [0,∞[×[0,∞[,

A = {(x, y) ∈ R
2 : 0 < x, y < −1/x}.

Clearly, infCA = ∅. However, µC(A) =] − ∞, 0] × R.

3. Existence of Minima

Let us introduce the polar set with respect to Y ∗, λ ∈ R,

E(K, λ) := {x ∈ X : 〈p, f (x)〉 ≤ λ, ∀p ∈ K}.

Theorem 3.1. Let C be a closed, convex, and pointed cone in Y and let
f : X → Y be such that

x ∈ X �→ 〈p, f (x)〉 ∈ R (1)

is lower semicontinuous for every p ∈ K . If there exist λ ∈ R and K ⊂ C∗
o , with

K �= ∅, such that E(K, λ) is nonempty and compact, then minC f (X) �= ∅.

Proof. By the Weierstrass theorem, for every p ∈ K there exists an xp ∈
E(K, λ) such that 〈p, f (xp)〉 is a global minimum for the map (1) on E(K, λ).
We see that

f (xp) ∈ minC f (X).

In fact, we have

f (xp) ∈ minC f (E(K, λ)),

because, if

y ′ < f (xp), y ′ = f (x ′), x ′ ∈ E(K, λ),
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then

〈p, f (x ′)〉 < 〈p, f (xp)〉,
in contradiction with the definition of xp. Now, if x̄ ∈ X\E(K, λ), there exists
p̄ ∈ K such that 〈p̄, f (x̄)〉 > λ. Then, the relation f (x̄) < f (xp) is false, because
it would imply

〈p̄, f (x̄)〉 < 〈p̄, f (xp)〉 ≤ λ. �

Theorem 3.2. Let C be a closed, convex, and pointed cone in Y and let
f : X → Y be C-lower semicontinuous. If there exist λ ∈ R and K ⊂ C∗\{0},
with K �= ∅, such that E(K, λ) is nonempty and compact, then minC f (X) �= ∅.

Proof. From Ref. 2, Corollary 3.1, it follows that there exists b ∈
minC f (E(K, λ)) satisfying b = f (x) for some x ∈ E(K, λ). The proof that
b ∈ minC(f (X)) follows as in the previous theorem. �

Remark 3.1.

(i) In the following example, it is easy to verify the compacteness hypothesis
on the set E(K, λ), made in Theorems 3.1 and 3.2. Let

f : R → R
2, f (t) = (t, t2), C = [0,+∞) × [0,+∞), K = {ϕ},

with

ϕ(x, y) = x + y.

Then, for any λ ∈ R, we have E(K, λ) = {t ∈ R : t + t2 ≤ λ}.
(ii) In the following example, f is not C-lower semicontinuous, but satisfies

the hypotheses of Theorem 3.1. Let

X = {0} ∪ {1/n, n ∈ N, n ≥ 1}
with the topology induced by R. Let

Y = l2 =
{
a = (an)n≥1 :

∞∑
n=1

a2
n < +∞

}
,

endowed with the usual Hilbert structure. Let

C = {a ∈ l2 : an ≥ 0, n ∈ N, n ≥ 1}
and let

α = (αn)n≥1, αn = 1/n, ∀n ≥ 1.
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We define f : X → Y by

f (x) =
{

en/n, if x = 1/n,

β, if x = 0,

where {en,∈ N, n ≥ 1} is the usual basis of l2 and β ∈ l2, whose components are

βn = (−1)n+1/n, if n ≥ 2, β1 = −
∞∑

n=2

(−1)n+1/n2.

We verify that f is not C-lower semicontinuous.
Let

y = (yn)n≥1, with y1 = β1/2 and yn = 1/n, if n ≥ 2.

Hence,

1/n ∈ f −1(y − C) = {x ∈ X : f (x) ≤ y},∀n ≥ 2,

but 0 /∈ f −1(y − C).

Now, if we define ϕ : l2 → R by ϕ(a) = 〈a, α〉, then ϕ◦f : X → R is continuous,
because

ϕ(f (x)) =
{

1/n2, if x = 1/n,

〈β, α〉 = 0, if x = 0.
.

Moreover, if K = {ϕ}, the set

E(K, λ) = {x ∈ X : ϕ◦f (x) ≤ λ}
is compact for any λ ∈ R.

Theorem 3.3. Let C be a closed, convex, and pointed cone in Y and let
f : X → Y be C-lower semicontinous. If there exists K ⊂ C∗\{0}, with K �= ∅
and bounded in Y, such that E(K, λ) is nonempty and compact for every λ ∈ R,
then

infC(X) = minC f (X).

Proof. Let b ∈ infC f (X) and ko ∈ Co. We prove that there exists α ∈ R,
such that

f −1(b + ko/n − C) ⊂ E(K,α), ∀n ∈ Z+.

In fact, if

f (x) = b + ko/n − ε and p ∈ K,
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then

〈p, f (x)〉 = 〈p, b + ko/n〉 − 〈p, ε〉 ≤ 〈p, b〉 + (1/n)〈p, ko〉 ≤ 〈p, b + ko〉;
hence,

f −1(b + ko/n − C) ⊂
⋂
p∈K

{x ∈ X : 〈p, f (x)〉 ≤ 〈p, b + ko〉}. (2)

From the boundedness of K, if

V = {p ∈ Y ∗ : 〈p, b + ko〉 < 1},
then there exists α ∈ R+ such that K ⊂ αV ; so, by (2), it follows that

f −1(b + ko/n − C) ⊂ E(K,α).

Since

b + ko/n /∈ µC(f (X)),

it follows that

(b + ko/n − Co) ∩ f (X) �= ∅;

hence,

f −1(b + ko/n − C) �= ∅.

Moreover, it is clear that

f −1(b + ko/(n + 1) − C) ⊂ f −1(b + ko/n − C), ∀n ∈ Z+.

Then, by compactness, there exists

x̄ ∈
⋂

n∈Z+

f −1(b + ko/n − C).

Hence, it follows that

f (x̄) = b + ko/n − cn, for some cn ∈ C.

But C is closed, so

b − f (x̄) = lim
n→∞ b + ko/n − f (x̄) = lim

n→∞ cn ∈ C.

Therefore, b ≥ f (x̄) but b ∈ infC f (X), and we conclude that b = f (x̄). �

4. Weak Minima and Convergence

Lemma 4.1. Let C ⊂ Y be a pointed cone having int C �= ∅. If ε ∈ int C
and z ∈ Y , then the sets

{y ∈ Y : y > z − ε}, {y ∈ Y : y < z + ε}
are neighborhoods of z.
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Proof. Clearly, we can suppose z = 0. Let Vε be an open set such that
ε ∈ Vε ⊂ Co. Then, Vε − ε is a neighborhood of 0 and

Vε − ε ⊂ Co − ε = {y ∈ Y : y + ε ∈ Co} = {y ∈ Y : y > −ε}. �

Definition 4.1. Let Y be a topological vector space ordered by a closed,
convex, and pointed cone C with int C �= ∅.

(i) We say that f : X → Y is strongly lower [upper] C-semicontinuous at
the point xo ∈ X iff, for any ε ∈ int C, there exists Uxoε, a neighborhood
of xo such that

f (x) > f (xo) − ε [f (x) < f (xo) + ε], ∀x ∈ Uxoε.

(ii) Let fn : X → Y, n ∈ N, and xo ∈ X. We say that the sequence (fn)n∈N is
uniformly strongly lower [upper] C-semicontinuous at the point xo ∈ X

iff, for any ε ∈ int C, there exists Uxoε, a neighborhood of xo, such that

fn(x) > fn(xo) − ε [fn(x) < fn(xo) + ε], ∀x ∈ Uxoε ∀n ∈ N.

Theorem 4.1. If C is a closed, convex, and pointed cone and if f : X → Y

is strongly lower C-semicontinuous at x ∈ X for every x ∈ X, then f is C-lower
semicontinuous.

Proof. We prove that f −1(y − C) is closed for every y ∈ Y . Let x /∈
f −1(y − C), namely, y − f (x) /∈ C. If ε ∈ int C and Uxn is a neighborhood
of x such that

f (x ′) > f (x) − ε/n, ∀x ′ ∈ Uxn,

then there exists n̄ ∈ Z+ for which

Uxn̄ ∩ f −1(y − C) = ∅.

Otherwise, if for every n ∈ Z+, there exists xn ∈ Uxn such that y − f (xn) ∈ C, it
would imply

y ≥ f (xn) > f (x) − ε/n,

that is,

y − f (x) + ε/n ∈ C

and by the closedness of C,

y − f (x) ∈ C. �
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Remark 4.1. In the following example, we show that strong lower C-
semicontinuity is more restrictive than C-lower semicontinuity.

Let

X = [0,∞[, Y = R
2, C = {(x, y) ∈ R

2 : x ≥ 0, 0 ≤ y ≤ x},
and let f : X → Y be defined by

f (t) =
{

(0, 0), if t = 0,

(t, 1/t), if t > 0.

It follows that

f −1((x̄, ȳ) − C) =
⎧⎨
⎩

∅, if (x̄, ȳ) ∈ R
2\[0,∞[2,

{0}, if (x̄, ȳ) ∈ [0,∞[2 and x̄ȳ < 1,

{0} ∪ [a, b], if x̄ȳ ≥ 1, (x̄, ȳ) ∈ [0,∞[2,

with

a = 1/ȳ, b = (1/2)[x̄ − ȳ +
√

(x̄ − ȳ)2 + 4].

Obviously, f is not strongly lower C-semicontinuous at t = 0.

Definition 4.2. Let A ⊂ Y , where Y is a topological vector space ordered
by a closed, convex, and pointed cone C with int C �= ∅.

(i) We call b ∈ Y a weak C-minorant for A if (b − int C) ∩ A = ∅ and we
denote by w − µC(A) the set of all weak C-minorants of A.
Moreover, if w − µC(A) is nonempty, we define the set of weak C-infima
of A as

w − infC A := {b ∈ w − µC(A) : (b + int C) ∩ w − µC(A) = ∅}.
(ii) We say that b ∈ A is a weak C-minimum for A if

(b − A) ∩ int C = ∅.

Remark 4.2.

(i) When A ⊂ Y is nonempty, it clearly follows from Definition 4.2 that
b ∈ A is a weak C-minimum for A if and only if b ∈ w − infC(A) ∩ A.

(ii) Clearly a minimum for a set A ⊂ Y is also a weak C-minimum, but the
converse is not true.

A trivial example is given by C = [0,∞[×[0,∞[⊂ R
2, A = C,

and the point (1, 0).

Theorem 4.2. When A ⊂ Y and w − µC(A) are nonempty, then w −
infC A is nonempty.
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Proof. Let a ∈ A and b ∈ w − µC(A). We set

α := sup{λ ∈ [0, 1] : λa + (1 − λ)b ∈ w − µC(A)}.
We prove that

ā = αa + (1 − α)b ∈ w − infC A.

Indeed,

ā ∈ w − µC(A),

because otherwise, if (ā − int C) ∩ A �= ∅, we can find ε ∈ int C such that ā − ε ∈
A. We may assume α > 0, so we can find α′ ∈ [0, α[ close enough to α so
that

ε − ā + α′a + (1 − α′)b ∈ int C and α′a + (1 − α′)b ∈ w − µC(A).

That is a contradiction, because

A � ā − ε = α′a + (1 − α′)b − (ε − ā + α′a + (1 − α′)b).

Now, we verify that

ā + ε /∈ w − µC(A), when ε ∈ int C.

We may assume α < 1. By contradiction, if ā + ε ∈ w − µC(A), then

(ā + ε − int C) ∩ A = ∅.

On the other hand,

ā ∈ int (ā + ε − int C).

Therefore, there exists β such that

α < β < 1 and βa + (1 − β)b ∈ int (ā + ε − int C).

But

βa + (1 − β)b − int C ⊂ ā + ε − int C,

so that

(βa + (1 − β)b − int C) ∩ A = ∅
in contradiction with the definition of α. �

Theorem 4.3. Let C be a closed convex pointed cone with int C �= ∅ and
let (δn)n∈N be a sequence in Co such that limn→∞ δn = 0. Let f : X → Y and let
(fn)n∈N be a sequence of uniformly strongly lower C-semicontinuous functions,
fn : X → Y such that limn→∞ fn(x) = f (x) for every x ∈ X.
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We assume that, for each n ∈ N infCfn(X) �= ∅, bn ∈ infC fn(X), and xn ∈ X such
that fn(xn) < bn + δn. If there exists a subsequence (xnk

)k∈N → x̄ ∈ X, then f (x̄)
is a weak C-minimum for f (X).

Moreover, if C is a normal cone (see Ref. 8, Definition 1.2) and (fn)n∈N is
also uniformly strongly upper C-semicontinuous, then limk→∞ fnk

(xnk
) = f (x̄).

Proof. We prove that

f (x̄) − f (x) �∈ int C, ∀x ∈ X.

If we suppose, contrary to the assertion, that

ε = f (x̄) − f (xo) ∈ int C, for some xo ∈ X,

then there exists n̄ ∈ N such that

fn(x̄) − fn(xo) ∈ int C, if n ≥ n̄.

Due to the uniform strong lower C-semicontinuity, there exists a neighborhood U
of x̄ such that

fn(x) > fn(x̄) − ε/4, ∀x ∈ U.

So, for k ≥ kε ∈ N, by letting

εn = fn(x̄) − fn(xo),

we get

fnk

(
xnk

)
> fnk

(x̄) − ε/4 = fnk
(xo) + εnk

− ε/4.

Then,

bnk
+ δnk

− εnk
+ ε/4 > fnk

(xo), ∀k ≥ kε.

On the other hand, we may assume that

δnk
− εnk

+ ε/4 < −ε/2, ∀k ≥ kε.

So, for these values of k, it follows that

bnk
− ε/2 > fnk

(xo),

in contradiction with the definition of bnk
.

With the further assumptions on C and (fn)n∈N let now ε ∈ int C. Then, for
every j ∈ Z+, we take nkj

∈ N such that

fnkj
(x̄) + ε/j > fnkj

(
xnkj

)
> fnkj

(x̄) − ε/j.

Then, it follows that

2ε/j > fnkj

(
xnkj

) − fnkj
(x̄) + ε/j > 0.
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By Proposition 1.3, Chapter 2, of Ref. 8, we get

fnkj

(
xnkj

) − fnkj
(x̄) + ε/j → 0,

so that

fnkj

(
xnkj

) → f (x̄).

The same conclusion may be obtained if we consider any subsequence of fnk
(xnk

),
so we have

lim fnk
(xnk

) = f (x̄). �

Remark 4.3.

(i) By assuming C-lower semicontinuity instead of strong lower C-
semicontinuity, Theorem 4.3 fails as the following example shows.

Let f : R → R
2 such that

f (t) =
{

(t, 1/t), if t > 0,

(t,−t2), if t ≤ 0,

C = {(x, y) ∈ R
2 : 0 < y ≤ x} and fn = f, ∀n ∈ N.

It is easy to verify that the sequence (fn)n∈N is (uniformly) C-lower semicontinuous
and that, if

0 < t < t̄(t̄ = (1/4)[−1 +
√

65]),

then t is a global minimum point for fn. However, 0 is not a global minimum for f.

(ii) Without the assumption of upper C-semicontinuity for the sequence
(fn)n∈N, the assertion lim fnk

(xnk
) = f (x̄) in Theorem 4.3 fails.

For instance, if

X =] − ∞, 0], Y = R
2, C = {(x, y) ∈ R

2 : 0 ≤ x ≤ y},
and if (fn)n∈N is the constant sequence

f (t) =
⎧⎨
⎩

(0, 0), if t = 0,

(t,−1/t), if t ≤ −1,

(t, 1), if −1 < t < 0,

then, for any t ∈ X, it follows that f (t) ∈ minC(f (X)). Moreover, f is strongly
lower C-semicontinuous at every point t ∈ X, but is not strongly upper C-
semicontinuous at t = 0 and f (−1/n) −→/ f (0).
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