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Abstract. We present a method for the derivation of feedback Nash equi-
libria in discrete-time finite-horizon nonstationary dynamic games. A partic-
ular motivation for such games stems from environmental economics, where
problems of seasonal competition for water levels occur frequently among
heterogeneous economic agents. These agents are coupled through a state
variable, which is the water level. Actions are strategically chosen to max-
imize the agents individual season-dependent utility functions. We observe
that, although a feedback Nash equilibrium exists, it does not satisfy the
(exogenous) environmental watchdog expectations. We devise an incentive
scheme to help meeting those expectations and calculate a feedback Nash
equilibrium for the new game that uses the scheme. This solution is more
environmentally friendly than the previous one. The water allocation game
solutions help us to draw some conclusions regarding the agents behavior and
also about the existence of feedback Nash equilibria in dynamic games.

Key Words. Environmental management, feedback Nash equilibrium,
diagonally strict concavity.

1. Introduction

In this paper, we solve a stylized problem of intertemporal environmental
management and use its solution to study the existence of solutions to some
dynamic games.

1 The paper draws from Refs. 1–2. Its earlier version was presented at the Victoria International Con-
ference 2004, Victoria University of Wellington, Wellington, New Zealand, February 9–13, 2004.
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Pourtalier, and Vladimir Petkov for helpful discussions on the model and techniques used in this
paper.
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The problem is a dynamic game between two groups of strategic economic
agents competing for a renewable resource. In fact, our game is inspired by the
intertemporal conflict between fishermen and watercress producers in the French
region of Camargue (Ref. 3). We adopt a simple model, in which the utility of
the agents in the first group (fishermen, say) is maximized by a high level of
water, while the other agents (cress producers) prefer a low level of water, but
only at harvest times. All agents can change the water levels in a costly manner
to suit their utilities. Because of the allowance for seasonal competition and other
nonstationary attributes of the year-by-year water apportionment problem, our
model (explained in Section 2) differs from the usual common-property efficient-
allocation models (for the latter, see Ref. 4).

Our intention is to establish equilibrium water levels, i.e., such that no agent
would unilaterally deviate from. However, there is a third player in this game,
which can be a regional government, which will object to some water levels. If
the equilibrium water levels are damaging to the environment, the government
will act to curtail the damage. We propose an incentive scheme that the govern-
ment can use to induce the agents to agree upon environmentally friendly water
levels.

The dynamic game at hand is finite-horizon and nonstationary with agents
coupled through a state equation. We establish the conditions under which the
game can be solved for a feedback Nash (Markovian) equilibrium. This is a
difficult problem which does not possess a general solution. Coupled-dynamics
game models were analyzed in Ref. 5 for the infinite-horizon case. Finite-horizon
games with government subsidies and taxes with open-loop equilibria were studied
in Ref. 6. In Ref. 7, feedback Nash equilibria were analyzed for a noncoupled-
dynamics case. We contribute to that discussion by presenting a method to establish
a feedback Nash equilibrium in finite-horizon coupled-state games. The method
is recursive and consists of solving stage games backward in time; it is based also
on the Rosen existence and uniqueness theorems (Ref. 8). The feedback Nash
equilibrium solution thus obtained is numerical. As our stylized environmental
game model is linear-quadratic, we can verify the recursive solution by comparing
it to the one obtained through the Riccati equations formalism. The solutions
coincide.

The paper is organized as follows. In Section 2, a stylized two-representative-
agent game is presented to model a competition process for water levels. In Section
3, we discuss a plausible solution concept for the problem at hand and also the
availability of a solution method for that concept. A stage-game feedback Nash
equilibrium is suggested and computed in Section 4. See below Sections 5 and
6. This solution happens to be environmentally unfriendly as judged by some
environmental standards. A different solution, more acceptable to the regional
government, is motivated and discussed in Section 7. Some concluding remarks
are provided in Section 8.
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2. Competition for Different Water Levels

Consider a region where two groups of agents (e.g., fishermen and watercress
producers) compete for water levels. Consider an annual cycle comprising K
seasons. The level of water in season k is xk ≥ 0, k = 1, . . . , K + 1. The natural
seasonal water level movements [e.g., caused by evaporation and retention (i.e.,
net recharge)] are modeled through the time-dependent (seasonal) parameter ak,

0 < ak . In the pristine and deterministic environment, the water levels would
change as follows:

xk+1 = akxk, x1 given, k = 1, . . . , K. (1)

Assume there are i = 1, . . . , N productive agents. In the computational part of the
paper, we will consider two representative players (N = 2); they will be fishermen
F and watercress producers P. However, in the more theoretical sections, we will
keep the notation i and −i to refer to the agent at hand and to the other agent(s),
respectively. This will enable us to define some notions needed for the game
solution for any number of agents.

In each season, an agent may (costly) release or let in an amount of water5

u
(i)
k , u

(i)
k ≥ 0 or < 0, to control the level xk+1 in the next season.

So, the coupled-dynamics state equation for the water level in season k + 1
is

xk+1 = akxk +
N∑

i=1

u
(i)
k , x1 given, k = 1, . . . , K.

Suppose that the agents are interested in maximizing their intertemporal
utility functions defined as

Ji

(
x1,K; u(i), u(−i)

) =
K+1∑

k=2

h(i)
(
xk, x̄

(i)
k , u

(i)
k−1

)
, (2)

where h(i)
(
xk, x̄

(i)
k , u

(i)
k−1

)
is a one-period utility function concave in xk and u

(i)
k−1 and

continuous in all three arguments. In (2), symbols indexed K + 1 refer to the next
year’s first season. The variables x̄

(i)
k (with bars) represent the preferred water levels

by agent i and may depend on a season, k = 2, . . . , K + 1. Presumably, a one-
season utility h(i)

(
xk, x̄

(i)
k , u

(i)
k−1

)
would be maximized if xk = x̄

(i)
k and u

(i)
k−1 = 0.

Hence, the expression (2) would be maximized for each player if the desired water
levels were achieved and there would be no need for changing them. However, the
desired levels are different for each player,

x̄
(i)
k �= x̄

(−i)
k . (3)

5 In this model, the letters x and u will denote physical/output quantities; utilities/payoffs will be
represented by f, F, V,�, J.
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This suggests that the agents will be in conflict. We are interested in examining
whether there are water levels, which the agents could accept as nonimprovable
or equilibrium and what strategy would guarantee them.

Notice that we have omitted a discount factor in the utility function. This
means that the agents value equally each season’s utility. This helps producing
solutions that do not depreciate the future effects of the present actions. On the
other hand, including a discount factor in (2) would not change the solution
procedure.

3. Solution Method

We present a few definitions and theorems that help us to establish a solution
to the above game.

3.1. Solution Concept. We are looking for a feedback Nash equilibrium
policy (Markovian) {u(i)(xk, k)}, k = 1, . . . , K and i = 1, . . . , N , defined as

{u(i)(xk, k)}k=1...K = arg equil {Ji(x1,K; (·), (·)), J−i(x1,K; (·), (·))}. (4)

A policy of that kind would be based on the available state observation (xk, k),
hence realistic in that it would allow the players to react to the other players’
decisions and also to the natural environment changes.6 Moreover, the policy
would maximize the agents utility function (2) and be unilaterally nonimprovable.
There are no guarantees that such an equilibrium exists.

3.2. Sufficiency and Uniqueness Conditions. We know that a concave
game, i.e., such that each player’s utility function is continuous in all players’
actions and concave7 with respect to its own strategy while the other players’
strategies remain fixed, must have at least one Nash equilibrium.8

However, for the environmental game described in Section 2, we want to
establish not only an equilibrium existence but also its uniqueness. The need
for the solution uniqueness is typical of environmental management problems.
The regional government needs to know what the equilibrium is. For, if there
were many, some of them less environmentally friendly than some others, the
government would not know which measures, to take, if any.

6 See Ref. 4 for a discussion on open-loop versus feedback equilibria in a context of ground water
management. We believe that the advantages of a feedback Nash equilibrium above the other dynamic
games solution concepts carry over from their model to ours.

7 These assumptions can be weakened; see e.g. Ref. 9.
8 Notice that, for our dynamic game, checking the payoff concavity assumption might be nontrivial as

the utility function is a sum and depends on the coupling equation (2). We will address this problem
by examining stage games in Section 4.2.
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The seminal paper by Rosen (Ref. 8) formulates the conditions for the unique-
ness of a concave game equilibrium

ûi = arg equil
{
f (i)(u), f (−i)(u)

}
, (5)

where f (i)(u) is player i’s utility function, u is the combined policy vector,

u =
⎡

⎣
ui

u−i

⎤

⎦ ∈ X ⊂ Rm,

and ui, i = 1, . . . , N , is the part of u, which contains actions controlled by player
i. The set X is compact and m ≥ N denotes the total number of actions of all
players. Crucial for the equilibrium conditions is the concept of diagonal strict
concavity (DSC) of the joint payoff function. We will define and explain those
notions.

The joint payoff function is defined as9

φ(u) ≡
n∑

i=1

f (i)(u). (6)

In broad terms, a game whose joint payoff is DSC (for short, a game which is
DSC) is one in which each player has more control over his payoff than the other
players have over it. This is a rather common and desired feature of many economic
models. The formal definition of DSC is as follows.

Definition 3.1. The game is called diagonally strictly concave (DSC) for
u ∈ X if, for every u0, u1 ∈ X, we have

(u1 − u0)′g(u0) + (u0 − u1)′g(u1) > 0, (7)

where the prime denotes transposition and g(u) is the pseudogradient of φ(u),

g(u)

⎡

⎢⎢⎢⎣

∂f (1)(u)/∂u1

...

∂f (N)(u)/∂uN

⎤

⎥⎥⎥⎦ . (8)

If the utility functions f (i) are twice differentiable, a criterion for DSC is
simple and consists of checking whether the pseudo-Hessian of φ(u),

H = H + H ′, (9)

9 Rosen’s definition is more general. In particular, it would allow for a regional government appraisal
of the individual agent utilities; however, we treat all agents’ utilities equally.
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where H, the Jacobian of g(u),

H =

⎡

⎢⎢⎢⎢⎢⎣

∂2f (1)(u)/∂u2
1 ∂2f (1)(u)/∂u2∂u1 · · · ∂2f (1)(u)/∂uN∂u1

∂2f (2)(u)/∂u1∂u2 ∂2f (2)(u)/∂u2
2 · · · ∂2f (2)(u)/∂uN∂u2

· · · · · · · · · · · ·
∂2f (N)(u)/∂u1∂uN ∂2f (N)(u)/∂u2∂uN · · · ∂2f (N)(u)/∂u2

N

⎤

⎥⎥⎥⎥⎥⎦
. (10)

is negative definite. This will be true for games in which the utility function
concavity in the agents’s own policy cannot be destroyed by the opponents’ actions.

As the following theorem specifies it, confirming the pseudo-Hessian negative
definiteness is sufficient for the uniqueness of a Nash equilibrium (see Ref. 8 or
Ref. 10).

Theorem 3.1. In a game

equil
{
f (i)(u), f (−i)(u)

}
,

if the joint payoff function φ(u) is DSC, then there exists a unique Nash equilib-
rium.

4. Feedback Nash Equilibrium

4.1. Method. We know from Section 3.2 how to determine whether a game
has a unique equilibrium. However, our game (4) is in Ji and J−i [and subject to
a dynamic coupling equation (2)] and not in f (i) and f (−i) [see (5)], which are
concave functions. To solve our dynamic game (4), we will combine the existence
and uniqueness theorem (Theorem 3.1) with the Bellman optimality principle.
In broad terms, this means that we will examine the uniqueness of stage games
for each stage k = K,K − 1, . . . 1 (backward in time). At each stage, the role of
the utilities f (i) will be played by the utility-to-go functions, defined below as
F (i)(xk, k; ·, ·).

4.2. Stage Games. Define V
(i)
k (xk, k), the stage optimal value function for

player i, as

V
(i)
k (xk, k) = max

u
(i)
k

F (i)(xk, k; u(i)
k , u

(−i)
k (xk, k)

)
, k = K − 1, . . . , 1, (11)

where

F (i)
(
xk, k; u(i)

k , u
(−i)
k (xk, k)

) ≡ h(i)
(
xk+1, x̄

(i)
k+1, u

(i)
k

) + V
(i)
k+1(xk+1, k + 1), (12)

V
(i)
K (xK,K) = max

u
(i)
k

hi
(
xK+1, x̄

(i)
K+1, u

(i)
K

)
. (13)
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The following theorem10 establishes a basis for using dynamic programming
as a computational technique for feedback Nash equilibria (subgame perfect) in
dynamic games.

Theorem 4.1. If there exist value functions V
(i)
k (xk, k) and strategies

û
(i)
k (xk, k) which satisfy equations (11)–(13) for k = K,K − 1, . . . , 1, where x

is a vector of state variables, then the strategy pair

û = (
û(i), û(−i)), û(i) = {

û
(i)
k : k = K,K − 1, . . . , 1

}

constitutes a feedback Nash equilibrium of the dynamic game with the feedback
information pattern11 . Moreover, the value functions V

(i)
k (xk, k) represent the op-

timal utility of player i for the game starting at (xk, k). In particular,

V
(i)

1 (x1, 1) = Ji

(
x1,K; û(i), û(−i)). (14)

If each stage game F (i)(·), F (−i)(·) is concave, then it makes sense to ask
whether the stage games have unique equilibria. We can see that the last stage
utility function h(i)

(
xK+1, x̄

(i)
K+1, u

(i)
K

)
is concave. We will verify the diagonal strict

concavity of all stage games using backward induction.
Technically speaking, we establish the uniqueness of stage equilibria by using

first Theorem 3.1 at each stage k = K, . . . 1 to see if the equilibrium is unique
and then Theorem 4.1 to compute the equilibrium strategy. Indeed, if a unique
equilibrium

{
û(i)(xk, k)

}

= arg equil
{
F (i)(xk, k; u(i)

k , u
(−i)
k (xk, k)

)
, F (−i)(xk, k; u(−i)

k , u
(i)
k (xk, k)

)}
(15)

exists for each k = K, . . . , 1, then by construction, the unique feedback-Nash
equilibrium (4) also exists.

The uniqueness theorem (Theorem 3.1) says that, if the game’s joint payoff
function is diagonally strictly concave (DSC), then the equilibrium is unique. So,
we will construct the function12

�
(
xk, k; u(i)

k , u
(−i)
k

) ≡F (i)
(
xk, k; u(i)

k , u
(−i)
k (xk, k)

)

+F (−i)
(
xk, k; u(i)

k (xk, k), u(−i)
k

)
, (16)

for each k = K, . . . , 1; next, through checking the pseudo-Hessian of �, we will

establish the uniqueness of (15) and then of (4).

10 Standard in dynamic games; see Ref. 11, Theorem 6.6, pp. 284–285.
11 Such an equilibrium is subgame perfect and is often called Markovian.
12 If there are more than two players, the symbol (−i) represents the sum of all other players’ value

functions.
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5. Model

5.1. Utility. We will determine now a particular form of the function
h(i)(xk, x̄

(i)
k , u

(i)
k−1), which was introduced in (2) as concave in xk and u

(i)
k−1 and

continuous in all three arguments.
Assume that the firms draw utility from their income that is composed of

a fixed term and a variable term, where the latter are the penalties for the water
level xk not being optimal

(
i.e., xk �= x̄

(i)
k

)
and for using the controls u

(i)
k−1. We will

consider the variable part of the income only. So, for agent i, the utility function
(2) will now be as follows13 :

Ji

(
x1,K; u(i), u(−i)

) = −
K+1∑

k=2

[(
xk − x̄

(i)
k

)2 + q
(i)
k

(
u

(i)
k−1

)]
. (17)

The above utility function (17) describes agents that are averse to large efforts u
(i)
k

and interested in keeping xk close to x̄
(i)
k . The control cost might correspond to

punishable (illegal) opening of the region sluices.
We notice again [see (3)] that, because the desired levels are generically

different for each player x̄
(i)
k �= x̄

(−i)
k , it is impossible to achieve

Ji

(
x1,K; u(i), u(−i)) = 0,

which is maximum.

5.2. Parameter Values. It turns out that the game at hand cannot be solved
analytically. Instead, numerical solutions will be obtained. We propose some
numerical values for the model parameters.

5.2.1. Preference Level Parameters x̄
(i)
k . As said, watercress producers pre-

fer lower water levels during certain times, because of the growth and harvest
requirements. We index the cress producers P (and use F for the fishermen); we
model the level preference parameters x̄

(i)
k for all players as follows:

x̄F
k = [x̄1, x̄2, x̄3, x̄4, x̄1], (18)

x̄P
k = [x̄1, βx̄2, x̄3, βx̄4, x̄1]. (19)

From now onward, k = 1 corresponds to winter. Consequently, k = 2, 3, 4 denote
spring, summer, and autumn, respectively.

In this study, we have normalized the environmentally ideal level to 1 and
will assume that fishermen like to have 1.2 all the time (x̄F

k = 1.2,∀k). Regarding

13 The thus defined utility is obviously negative. However, it would be positive if we allowed for a
sufficiently large constant income. Adding it to (17) would not change the equilibrium conditions.
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the cress producers, we suppose that the critical seasons for them are spring
and autumn and that they prefer 75% of the water level the fishermen want. So,
β = 0.75 and βx̄2 = βx̄4 = 0.9.

5.2.2. Cost Coefficients. The next assumption concerns the cost coefficients
q

(i)
k . We assume that the cost of changing the water level is constant and identical for

each player, i.e., q(i)
k = q

(−i)
k = q > 0, which might correspond to equal likelihood

of each agent being caught at tinkering with the sluices.

5.2.3. Evaporation and Retention Parameters ak . We consider that, in relative
terms, the spring and autumn are wet, the summer is dry, and the winter is neutral.
We assume the following values for the vector a:

a = [√
5/2, 4/5,

√
5/2, 1.0000

]
. (20)

This means that, if there were no human interventions, there would on average be
12% more water in spring that in winter, 20% less in summer than in spring and
12% more in autumn than in summer; finally, the amount of water carried from
autumn to winter would be the same.

6. Numerical Solution

6.1. Reference Solution. The dynamic game with the utility function (17)
is linear-quadratic and can be solved through the value function substitution in
(12)–(13):

V
(i)
k = A

(i)
k x2 + B

(i)
k x + C

(i)
k , k = K, . . . , 1. (21)

Then, the first-order conditions can be calculated and substituted back in (12)–(13).
Next, the difference equations for Ak (Riccati), Bk,Ck , could be established and
solved. We have solved14 the game in that way. These results were identical with
those obtained through the more general method based on dynamic programming
and described in Section 4. In the remainder of this paper, we will solve the game
numerically through the latter method.

14 For example, the last period control for player 1 and the final state are respectively

u(1)
x =

( − qaKxK + x̄
(1)
1 − x̄

(2)
1

)
(1 + U ) + q

(
Ux1 − x̄

(1)
1

)

q(2U + q + 2)
,

xK+1 = qaKxK + 2Ux1x̄
(1)
1 + x̄

(2)
1

(2U + q + 2)
,

where the parameters U and x1 are the government incentive parameters and will be explained in
Section 7. However, even for a horizon as short as K = 4 and U = 0, x1 = 0 the formulas complicate
substantially and as said already only numerical solutions are available for k < K .



420 JOTA: VOL. 128, NO. 2, FEBRUARY 2006

For a horizon of length K = 4 (four seasons, say), the closed form formulas
for the stage games joint payoffs, pseudo-Hessians, strategies, etc., are obtainable
through MATLAB SYMBOLIC MATHS OR MATHEMATICA. However, they are long
and complicated as well as their Riccati equations counterparts. Hence, we have
solved the game numerically for the parameter values which are specified in
Section 5.2. The results are presented in the following figures, where they are
shown to coincide with the solutions obtained by the more general stage-games
backward-induction method, explained in Section 4 and applied below.

6.2. Existence and Uniqueness. We check first the existence and unique-
ness of the stage games strategies (15). The following Figure 1 shows the def-
initeness of the pseudo-Hessian15 of −�

(
xk, k; u(i)

k , u
(−i)
k

)
. This is a symmetric

2 × 2 matrix for each stage k = 4, . . . , 1. Sufficient for its positive definiteness
are: positive entry 1,1 and the determinant. The left panels show the 1,1 entries
for each stage game; the right panels show the corresponding determinants, all as
functions of the cost coefficient q. The most upper panels are drawn for the last
stage game. The next ones are for the last two-stage game, etc. We observe that
the requested strict positive definiteness is guaranteed; however, it depends on the
cost coefficient q and worsens for smaller q. This is not surprising because, for
the no-cost case (q = 0), the players could use any control and an equilibrium
would unlikely exist. We also notice that definiteness improves slightly for shorter
horizons.

We know that, if the equilibrium (15) is unique, then we can compute it by
solving (11) simultaneously for i = 1, 2.

6.3. Strategies. In the above, we have confirmed the positive definiteness
of the pseudo-Hessian of −�

(
xk, k; u(i)

k , u
(−i)
k

)
and thus established the existence

and uniqueness of feedback Nash equilibrium strategies in a dynamic game of
competition for a renewable resource. We believe that this is an important result
for the regulator. Provided the cost of (or penalty for) moving the sluices is positive,
the regulator should not expect dramatic changes in the agents’ behavior.

In Figure 2, we present the computed equilibrium strategy realizations and the
corresponding state evolution in the upper and bottom panels, respectively, for two
values of the control cost parameter q and for x̄F

k = 1.2,∀k, β = 0.75, x1 = 1, and
the natural level fluctuations governed by (20). The positive bars on the strategy
graph (upper panel) are for fishermen and the negative bars are for cress-producers.
The dashed lines correspond to q = 0.5 and the dash-dotted ones to a cheaper
control characterized by q = 0.1. The natural water level fluctuations are shown
as the thin solid line in the bottom panel. The fishermen’s preference level is 1.2,

15 The negative pseudo-Hessian needs to be positive definite.
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Fig. 1. Pseudo-Hessian definiteness.

∀k, while the cress producers preference level differs for k = 2 and k = 4 and
equals 0.9. For clarity of the figure, these levels are omitted here; they will be
sketched later in Figures 4 and 6.

The water levels shown in the lower panel of Figure 2 are a result of the
joint agents’ actions or actually of the intake-release balance. The upper panel
of Figure 2 shows the equilibrium actions that lead to the levels. Notice that the
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Fig. 2. Equilibrium strategy and state realizations.

actions are quite large, especially in the first three seasons. Also, observe that the
water levels could remain the same if the players cooperated and reduced their
actions proportionally, i.e., so that the balances were kept. In effect, the players
would be penalized less. The situation, which consists of receiving a lower payoff
at equilibrium than under cooperation, is similar to the prisoners’ dilemma and
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common to many Nash equilibria. We do not attempt to resolve this dilemma in
this paper. Instead, we introduce an incentive scheme in Section 7 that will improve
environmental standards and also reduce the amounts of water released and let in;
this will decrease the penalties paid by the agents.

Examination of the figure’s lower panels makes it obvious to conclude that
sustaining the natural water level x1 = x5 = 1 is impossible, especially for cheap
controls or lax penalties for cheating or tinkering with the sluices. Therefore, a need
for a government intervention becomes a necessity to lessen the environmental
impact of the agents’ economic activities. In Section 7, we examine whether an
intervention of the regional government is likely to stabilize the water level around
1 and how much this may cost.

7. Modified Dynamic Game

7.1. One-Year Problem. Certainly, a regional government will be con-
cerned if x5 differs substantially from x1. We will now examine how adding
an incentive or penalty term to a player’s utility function can modify the play-
ers’ behavior. In particular, we want to show that the government can control the
agents to an environmentally friendlier equilibrium through the use of an incentive
scheme.

In Ref. 12, a leader controlled satisfactorily a water level through the use of
certain correction parameters in the context of an optimal control problem. We will
follow that approach and apply it here to improve our dynamic game’s outcome.16

Consider the following scheme: Assuming that, after a year (i.e., K periods),
the levels xK+1 and x1 are close to each other (in the sense of an environmental
watchdog standards), each player will be paid a bonus

(W − (xK+1 − x1)2)U, U,W ≥ 0, (22)

where U is the government incentive parameter and W is an income scaling
constant. If the difference between the levels is large, the bonus will become a
penalty. So, now we will look for an equilibrium where the players maximize the
following utility functions:

Ii

(
x1,K; u(i), u(−i)

)

= [W − (xK+1 − x1)2]U −
K+1∑

k=2

[(
xk − x̄

(i)
k

)2
+ q

(i)
k

(
u

(i)
k−1

)2
]

. (23)

16 We do not endeavor to compute the scheme implementation cost in this paper. However, once the
costs became available, the government could try and choose a strategy such that its cost would be
constrained; for more on an incentive scheme with constrained costs, see Ref. 13.
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Fig. 3. Pseudo-Hessian definiteness for varying incentive levels.

First, we have to examine the existence of stage equilibria defined analogously to
(23) where the functions Ji are replaced by Ii .

The following Figure 3 is analogous to Figure 1 and shows the definiteness of
the stage games’ pseudo-Hessians for varying values of the incentive parameter U.

As before, the left panels represent entry 1,1 values and the right panels show
the pseudo-Hessian determinants. The dash-dotted lines correspond to U = 0 and
are identical with those in Figure 1. The dashed lines correspond to U = 2. The
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solid lines are drawn for U = 5. It is obvious from the figure that unique equi-
libria exist for U ≥ 0 and q > 0. Larger incentives clearly improve the (negative)
pseudo-Hessian positive definiteness (in particular, see the right bottom panel,
which corresponds to the full-horizon determinant of the pseudo-Hessian). This is
an encouraging result, which suggests that the regulator will have a range of U val-
ues for which equilibria exist and that it will be able to select an environmentally
friendly solution.

Indeed, Figure 4 shows (for q = 0.5) that the modified water levels are such
that x5 is much closer to x1 than before. The dash-dotted line corresponds to U = 0
and is considered environmentally unfriendly (exactly as in Figure 2). The dashed
line (U = 2) and the solid line (U = 5) show that the new equilibrium strategy
can bring x5 very close to x1.

The equilibrium actions leading to the above water levels are shown in Figure
5 upper and bottom panels, for the fishermen (Player 1) and cress producers
(Player 2), respectively. Notice that, under the incentive scheme, the actions are
a fraction of the original actions in Section 6.3. This means that the prisoners’
dilemma mentioned in Section 6.3 has been attenuated (albeit not eliminated
completely).

We notice that the players behave rationally in that they react to the
government control parameter U by modifying mostly their last period’s actions.
This seems sufficient to fulfill the government’s aim to bring the final water level
close to x1.

Fig. 4. Modified state realizations.



426 JOTA: VOL. 128, NO. 2, FEBRUARY 2006

Fig. 5. Modified equilibrium strategy realizations.

To return the system to the same state (or close) as last year appears a
satisfactory result under the assumption that the normalized water level 1 was
environmentally acceptable. In the next section, we will see that the incentive
scheme based on parameters U,W can lead the system to 1.
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Fig. 6. Two-year water levels.

7.2. Multi-Year Extension. An obvious question to ask is whether the
above dynamic four-season dynamic equilibrium will be maintained in the second
and subsequent years. To answer this question, we have computed the equilibrium
strategies for U = 0 and U = 5 (q = 0.5) for the second year, assuming the initial
state equals to x5 (which the government considers as sufficiently close to 1).

Figure 6 shows the corresponding water levels. The dash-dotted line corre-
sponds to U = 0 and the solid line to U = 5. It is apparent that the equilibrium
strategies (aided or not by the incentive scheme) are such that winter equilibrium
levels remain largely unchanged.

The dashed line (mostly overlapping with the other lines but for watch periods
5, 6, 7) shows the water levels in the second year after U = 0 was applied in the
first year and the incentive scheme with U = 5 was implemented from x5 =
1.1798 onward. The government incentive appears efficient in that it motivates
agents to such actions that bring the next winter’s level close to the desired
one, (largely) independently of the previous winter’s level. This means that the
incentive scheme can control successfully the next winter’s level for a broad
range of initial conditions17 . This speaks well about the scheme robustness, i.e.,
it should work satisfactorily also in the presence of a stochastic noise or other
uncertainties.

17 This is obvious from (22). The winter state is largely independent of the autumn water level provided
a large value of U is applied.
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8. Concluding Remarks

The first aim of this paper was to solve a water level competition game.
The obtained results tell us that it is possible for a regional government to induce
agents to a feedback Nash equilibrium where environmental standards are obeyed.
The sufficient features of the model that provides the desired equilibrium include
increasing action costs and a bonus-penalty incentive function.

We choose the agent cost function and the government incentive function to
be quadratic [see (22)]. The former corresponds to the natural way of modeling
getting-away with small infraction (little water let in or out) and being caught
and punished for large amounts of the water transfers. The latter reflects the
government will to spend money on environmental improvements. Both choices
appear politically realistic; hence, we should expect sensible results from our
model, provided its parameters were properly calibrated.

Our second aim was to contribute to the methodology of solutions of state-
coupled dynamic games. We have demonstrated that checking stage games for
DSC and solving them recursively in backward time leads to the establishment of
feedback Nash (Markovian) equilibria.
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