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Stochastic Programming with Equilibrium Constraints
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Abstract. In this paper, we discuss here-and-now type stochastic
programs with equilibrium constraints. We give a general formulation
of such problems and study their basic properties such as measurabil-
ity and continuity of the corresponding integrand functions. We dis-
cuss also the consistency and rate of convergence of sample average
approximations of such stochastic problems.
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1. Introduction

In this paper, we discuss optimization problems where the objec-
tive function is given as the expectation E[F(x, y(x,ω),ω)], with y(x,ω)

being a random vector defined as a solution of a second stage opti-
mization or complementarity problem. By analogy with stochastic pro-
gramming with recourse, we can view such problems as here-and-now
type problems where a decision should be made before a realization of
random data becomes available (see e.g. Ref. 1). We refer to such prob-
lems as stochastic mathematical programming with equilibrium constraints
(SMPEC) problems. The basic difference between SMPEC problems and
classical two-stage stochastic programming problems is that the function
F(x, y(x,ω),ω) does not have to be the optimal value of the correspond-
ing second-stage problem.

SMPEC problems of here-and-now type were discussed in Refs. 2–4
for example. The main subject of Refs. 2 and 3 is an investigation of the
existence of the optimal solutions of SMPEC problems, while in Ref. 4 an

1Professor, School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, Georgia.

223
0022-3239/06/0100-0223/0 © 2006 Springer Science+Business Media, Inc.



224 JOTA: VOL. 128, NO. 1, JANUARY 2006

example of a variant of the newsboy (vendor) problem is discussed and
an approach to the numerical solution of a class of SMPEC problems is
suggested. A convergence theory of discrete approximations of a type of
SMPEC problems different from here-and-now was discussed in Ref. 5.

Stochastic Stackelberg-Nash-Cournot equilibrium problem were for-
mulated in the form of stochastic mathematical programs with comple-
mentarity constraints (SMPCC) and studied in Ref. 6; a general form of
SMPCC is discussed in Ref. 7. There is also an extensive literature on
deterministic MPEC problems. In that respect, we may refer to Refs. 8–9
and references therein.

We use the following notation and terminology. For a number a ∈ R,
we denote

[a]+ :=max{0, a}.

By

||x|| := (xT x)1/2,

we denote the Euclidean norm of the vector x ∈Rn. For a set S⊂Rn, we
denote by

dist(x, S) := infy∈S ||x−y||

the distance from a point x to S and by conv(S) the convex hull of S. For
a convex set S, we denote by TS(x) the tangent cone to S at x ∈S. For a
cone Q⊂Rs , we denote by

Q∗ :={z∈Rs : zT y≤0,∀y ∈Q}

its polar (negative dual) cone. For a mapping G(x, y) from Rn×Rm to Rs ,
we denote by ∇yG(x, y) the matrix of its partial derivative, i.e., the s×m
Jacobian matrix with respect to the vector y. For a function g : Rm→ R,
we denote by

epi(g) :={(x, α) :g(x)≤α}

its epigraph and by ∇2g(y) its m×m Hessian matrix of second-order par-
tial derivatives. For a mapping G(y)= (g1(y), . . . , gs(y)) : Rm → Rs and a
vector d ∈Rm, we denote

∇2G(y)d := ([∇2g1(y)]d, . . . , [∇2gs(y)]d)T .
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For ε ≥ 0, it is said that x̄ is an ε-optimal solution of the problem
of minimization of a function f (x) over a set X if x̄ ∈ X and f (x̄) ≤
infx∈Xf (x)+ ε. For a, b∈R, we define

a∨b :=max{a, b}.

2. Model

In this section, we give a precise definition of the considered class of
SMPEC problems.

Consider the following optimization problem:

Min
x∈X

{f (x) :=E[ϑ(x,ω)]}, (1)

where X is a nonempty closed subset of Rn,

ϑ(x,ω) := inf
y∈S(x,ω)

F (x, y,ω), (2)

and S(x,ω) is the set of solutions of the variational inequality

H(x, y,ω)∈NK(x,ω)(y); (3)

i.e., y∈S(x,ω) iff (3) holds. Here, (�,F, P ) is a probability space, F :Rn×
Rm×�→R is a real-valued function, K :Rn×�⇒Rm is a set-valued map-
ping (multifunction), H : Rn×Rm×�→Rm, and NK(y) denotes a normal
cone to a set K⊂Rm at y. Unless stated otherwise, we make all probabil-
listic statements with respect to the probability measure P . In particular,
the expectation E[·] is taken with respect to P . We refer to (1)–(3) as a sto-
chastic mathematical programming with equilibrium constraints (SMPEC)
problem.

For a convex and closed set K⊂Rm, the corresponding normal cone
is defined in the standard way,

NK(y) :={z∈Rm : zT (y′ −y)≤0,∀y′ ∈K}, if y ∈K, (4a)

NK(y)=∅, if y /∈K. (4b)

For a nonconvex set K, there are several possible concepts of normal
cones. We use the following construction. We assume that K(x,ω) is given
in the form

K(x,ω) :={y ∈Rm :G(x, y,ω)∈Q}, (5)
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where Q⊂Rs is a closed convex cone and G : Rn×Rm×�→Rs is a con-
tinuously differentiable in (x, y) mapping. Then, by definition,

NK(x,ω)(y) :={∇yG(x, y,ω)T λ :λ∈NQ(G(x, y,ω)}, (6)

where NQ(z) is the (standard) normal cone to Q at z. It can be noted that
NK(x,ω)(y), defined in (6), coincides with the polar of the tangent cone to
K(x,ω) at y ∈K(x,ω), provided that a constraint qualification holds at
the point y. Moreover, if the set K(x,ω) is convex, then NK(x,ω)(y) coin-
cides with the standard normal cone.

Let us remark at this point that, in order to ensure that the above
problem is well defined, we need to verify that the expectation E[ϑ(x,ω)]
is well defined. We will discuss this later. Note also that, by definition,
ϑ(x,ω)=+∞ if the set S(x,ω) is empty. Therefore, for a given x ∈X, if
the set S(x,ω) is empty with a positive probability, then f (x)=+∞. That
is, implicitly the optimization in (1) is performed over such x ∈X that the
set S(x,ω) is nonempty for almost every (a.e.) ω∈�.

For NK(x,ω)(y) defined in (6), the variational inequality (3) takes the
form of the following so-called generalized equations:

−H(x, y,ω)+∇yG(x, y,ω)T λ=0, λ∈NQ(G(x, y,ω)). (7)

Since Q is a convex cone, we have that, for any z∈Q,

NQ(z)={z∗ ∈Q∗ : zT z∗ =0}, (8)

where Q∗ is the polar of the cone Q. Therefore, λ∈NQ(G(x, y,ω)) iff

λ∈Q∗, G(x, y,ω)∈Q, λT G(x, y,ω)=0, (9)

or equivalently iff

G(x, y,ω)∈NQ∗(λ).

It follows that we can write the generalized equations (7) as the variational
inequality (cf. Ref. 10):

H(x, ζ,ω)∈NQ(ζ ), (10)

where ζ := (y, λ)∈Rm+s and

H(x, ζ,ω) :=
[−H(x, y,ω)+∇yG(x, y,ω)T λ
G(x, y,ω)

]
, Q :=Rm×Q∗. (11)
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It can be observed that the set Q is a closed convex cone which does
not depend on x and ω. The price of this simplification is that the var-
iational inequality (10) is to be solved jointly in y and λ. We denote by
S(x,ω)⊂ Rm+s the set of solutions of the variational inequality (10); for
y ∈ Rm, we denote by �(x, y,ω) the set of all λ satisfying equations (7).
Note that �(x, y,ω) is nonempty iff y ∈S(x,ω).

By the above discussion, S(x,ω) is also the set of solutions of the
generalized equations (7) and the set S(x,ω) is obtained by the projection
of the set S(x,ω) onto Rm. Therefore, ϑ(x,ω) coincides with the optimal
value of the following problem:

Miny∈Rm,λ∈Rs F (x, y,ω), (12a)

s.t. −H(x, y,ω)+∇yG(x, y,ω)λ=0, (12b)

λ∈Q∗,G(x, y,ω)∈Q, λT G(x, y,ω)=0. (12c)

Moreover, if

H(x, y,ω)=−∇yh(x, y,ω),

where h : Rn× Rm×�→ R is a continuously differentiable in (x, y) func-
tion, then the generalized equations (7) represent the first-order (KKT)
optimality conditions for the optimization problem

Min
y∈Rm

h(x, y,ω), s.t. G(x, y,ω)∈Q. (13)

We refer to the set S(x,ω) of solutions of the corresponding variational
inequality as the set of stationary points of (13). That is, y is a stationary
point of (13) if there exists λ∈Rs such that

∇yh(x, y,ω)+∇yG(x, y,ω)T λ=0, λ∈NQ(G(x, y,ω)). (14)

The set �(x, y,ω) of all λ satisfying (14) represents the set of Lagrange
multipliers associated with y. It is well known that, under a constraint
qualification, a locally optimal solution of (13) is also its stationary point.
In the case where the set S(x,ω) is given by the set of stationary points of
an optimization problem of the form (13), we refer to (1) as a stochastic
bilevel mathematical progamming (SBMP) problem.

Example 2.1. Let Q :=−Rr+ ×{0}⊂Rs , where Rr+ is the nonnegative
orthant of Rr , {0} is the null space of Rr−s , and

G(x, y,ω)= (g1(x, y,ω), . . . , gs(x, y,ω)).
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Here, the set

K(x,ω)={y :gi(x, y,ω)≤0,

i=1, . . . , r, gi(x, y,ω)=0, i= r+1, . . . , s} (15)

is defined by a finite number of inequality and equality constraints. Also,
the normal cone to Q at z∈Q can be written as follows:

NQ(z)={z∗ ∈Rs : z∗i ≥0, i=1, . . . , r, z∗i zi =0, i=1, . . . , r} (16)

and

∇yG(x, y,ω)T λ=
s∑
i=1

λi∇ygi(x, y,ω),

where λ∈Rs ; hence, the generalized equations (7) take the form

−H(x, y,ω)+
∑s

i=1
λi∇ygi(x, y,ω)=0, (17a)

gi(x, y,ω)≤0, i=1, . . . , r, (17b)

gi(x, y,ω)=0, i= r+1, . . . , s, (17c)

λi ≥0, λigi(x, y,ω)=0, i=1, . . . , r. (17d)

Example 2.2. Suppose that, for x ∈X, the set S(x,ω) is given by the
set of optimal solutions of the following optimization problem:

Min
y∈Rm

q(ω)T y, s.t. T (ω)x+W(ω)y=h(ω), y≥0, (18)

where q(ω) and h(ω) are vector-valued and T (ω) and W(ω) are matrix-
valued random variables defined on the probability space (�,F, P ). The
above problem (18) is a linear programming problem. Moreover, if

F(x, y,ω) := cT x+q(ω)T y,
then the corresponding problem (1) becomes a two-stage stochastic linear
program with recourse.

We have that y(x,ω) is an optimal solution of (18) iff y(x,ω) is a
solution of the variational inequality

−q(ω)∈NK(x,ω)(y), (19)

where

K(x,ω) :={y ∈Rm :T (ω)x+W(ω)y=h(ω), y≥0}. (20)
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Here, for every (x,ω) ∈ Rn × �, the set K(x,ω) is convex polyhedral
and the corresponding normal cone is defined in the standard way. The
set S(x,ω) of solutions of problem (18), or equivalently the variational
inequality (19), can be empty, contain a single extreme point of K(x,ω),
or can be formed by a nontrivial face of K(x,ω). Let us remark that
the set S(x,ω) can be empty for two somewhat different reasons. Namely,
it may happen that the feasible set K(x,ω) of problem (18) is empty, in
which case its optimal value is +∞, or it may happen that problem (18)
is unbounded from below, i.e., its optimal value is −∞. Note that, in our
framework, in both cases we assign the value +∞ to the corresponding
function ϑ(x,ω).

The dual of problem (18) is

Max
λ
λT (h(ω)−T (ω)x), s.t. W(ω)T λ≤q(ω). (21)

The optimality conditions (14) take here the form

y≥0, W(w)T λ−q(ω)≤0, (22a)

yT (W(ω)T λ−q(ω))=0, T (ω)x+W(ω)y−h(ω)=0, (22b)

and can be written as the variational inequality (10) with ζ = (y, λ) and

H(x, ζ,ω) :=
[
W(ω)T λ−q(ω)
T (ω)x+W(ω)y−h(ω)

]
, Q :=Rm+ ×Rs . (23)

3. Properties of SMPEC Problems

In this section, we discuss some basic properties of the SMPEC prob-
lem (1) with the function ϑ(x,ω) given by the optimal value of the prob-
lem (12). To some extent, such SMPEC problem can be studied in the
framework of two-stage stochastic programming problems with recourse
(see Chapters 1 and 2 in Ref. 11).

As it was mentioned in the previous section, we need to ensure that
the expectation E[ϑ(x,ω)] is well defined for any x ∈X. That is, we need
to verify that

ϑx(ω) :=ϑ(x,ω)
is measurable and

either E[(ϑx(ω))+]<+∞ or E[(−ϑx(ω))+]<+∞.
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For a thorough discussion of the following measurability concepts, we
may refer to Refs. 12 and 13. When considering the space Rn ×�, we
equip it always with the sigma algebra given by the product of the Borel
sigma algebra of Rn and F . A multifunction G :�⇒Rn is said to be closed
valued if G(ω) is a closed subset of Rn for every ω∈�. A closed valued
multifunction G is said to be measurable if G−1(A) ∈ F for every closed
set A⊂ Rn. A function h : Rn ×�→ R is said to be random lower semi-
continuous if the epigraphical mapping ω 
→ epi h(·,ω) is closed valued
and measurable (random lower semicontinuous functions are called nor-
mal integrands in Ref. 13). It is said that a mapping G : Rn×�→Rm is a
Carathédory mapping if G(x,ω) is continuous in x for every ω and is
measurable in ω for every x. Note that a Carathédory function g(x,ω) is
random lower semicontinuous. We have the following result (e.g. Theorem
14.37 in Ref. 13).

Theorem 3.1. Let g : Rn×�→R be a random lower semicontinuous
function. Then, the min function φ(ω) := infx∈Rng(x,ω) is measurable and
the multifunction G(ω) := arg minx∈Rn g(x,ω) is closed valued and mea-
surable.

We make the following assumption throughout the paper.

(A1) The mappings H(x, y,ω), G(x, y,ω), and the function
F(x, y,ω) are Carathéodory mappings, i.e., continuous in
(x, y) and measurable in ω.

Consider the variational inequality (10). By Assumption (A1), we have
that the mapping H(x, ζ,ω), defined in (11), is a Carathéodory mapping.
The variational inequality (10) can be transformed into an optimization
problem as follows. Consider the following (regularized) gap function:

γ (x, ζ,ω) := sup
ζ ′∈Q

{H(x, ζ,ω)T (ζ ′ − ζ )− (1/2)||ζ − ζ ′||2}. (24)

Regularized gap functions were introduced in Refs. 14 and 15 (see
also Section 10.2.1 in Ref. 16 for a discussion of gap functions). We have
that, for given x and ω, a point ζ̄ ∈Q is a solution of (10), i.e.,

ζ̄ ∈S(x,ω), iff γ (x, ζ̄ ,ω)=0.

Since

γ (x, ζ,ω)≥0, for any ζ ∈Q,
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it follows that ζ̄ ∈S(x,ω) iff ζ̄ is an optimal solution of the problem

Min
ζ∈Q

γ (x, ζ,ω), s.t. γ (x, ζ,ω)=0. (25)

We have also that the gap function γ (x, ζ,ω) is continuous in (x, ζ ),
measurable in ω, and hence is a Carathéodory function. Consequently, we
obtain that the multifunction (x,ω) 
→ S(x,ω) is closed valued and mea-
surable.

The function ϑx(ω) can be written also in the form

ϑx(ω)= inf
(y,λ)∈S(x,ω)

F (x, y,ω). (26)

For a given x, since the multifunction S(x, ·) is closed valued and mea-
surable and since by (A1) the function F(x, ·, ·) is random lower semicon-
tinuous, we obtain that ϑx(ω) is measurable. This settles the question of
measurability of the integrand function inside the expectation in (1).

It is said that ζ(ω)= (y(ω), λ(ω)) is a measurable selection of S(x,ω)

if ζ(ω)∈S(x,ω), for a.e. ω∈�, and ζ(ω) is measurable. Consider now the
function

f̃ (x) := inf
ζ(·)∈S(x,·)

E[F(x, y(ω),ω)], (27)

where ζ(·)∈S(x, ·) means that the optimization is performed over all mea-
surable selections ζ(ω) of S(x,ω). By the definition, f̃ (x) :=+∞ if the set
S(x,ω) is empty with positive probability. We have then that

f (x)= f̃ (x), for every x ∈X.

Indeed, assume that S(x,ω) is nonempty for a.e. ω∈� [otherwise, f (x)=
f̃ (x)= +∞]. For any measurable selection ζ(ω) ∈ S(x,ω), we have that
F(x, y(·), ·) ≥ ϑx(·) and hence f̃ (x) ≥ f (x). Conversely, by the Castaing
representation theorem (Theorem 14.5 in Ref. 13), for any ε > 0, there
exists a measurable selection ζ(ω)∈S(x,ω) such that

F(x, y(·), ·)≤ϑx(·)+ ε.

It follows that

f̃ (x)≤f (x)+ ε,

and hence f̃ (x)=f (x). We obtain the following result.
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Lemma 3.1. Problem (1) is equivalent to the problem

Min
x∈X,ζ(·)∈S(x,·)

E[F(x, y(ω),ω)], (28)

where the notation ζ(·)∈S(x, ·) means that the optimization is performed
over all measurable selections ζ(ω) of S(x,ω) and such x∈X that S(x,ω)

is nonempty for a.e. ω∈�.
In other words, the optimization in (28) is peformed over x ∈X and

measurable ζ(ω)= (y(ω), λ(ω)) which satisfy the feasibility constraints of
problem (12). In particular, suppose that �= {ω1, . . . , ωK} is finite with
respective probabilities p1, . . . , pK . Then, we can write the problem (1) in
the following equivalent form:

Min
x∈X,y1,... ,yK

∑K

k=1
pkF (x, yk,ωk), (29a)

s.t. −H(x, yk,ωk)+∇yG(x, yk,ωk)λk =0, k=1, . . . ,K, (29b)

λk ∈Q∗, G(x, yk,ωk)∈Q,
λTk G(x, yk,ωk)=0, k=1, . . . ,K. (29c)

4. Properties of the Expectation Function

In this section, we discuss the continuity and differentiability proper-
ties of the expectation function f (x) := E[ϑ(x,ω)], where ϑ(x,ω) is given
by the optimal value of problem (12).

Consider a point x̄ ∈X and suppose that there exists a P -integrable
function ψ(ω) such that ϑ(x,ω)≥ψ(ω) for all ω∈� and all x in a neigh-
borhood of x̄. It is said that a measurable function ψ :�→ R is P -inte-
grable if E[|ψ |]<+∞. Then, we have by the Fatou lemma that

lim inf
x→x̄

E[ϑ(x,ω)]≥E[lim inf
x→x̄

ϑ(x,ω)]. (30)

It follows that f (·) is lower semicontinuous at x̄ if ϑ(·,ω) is lower
semicontinuous at x̄ for a.e. ω ∈�. Therefore, the question of the lower
semicontinuity of f (·) is reduced to studying the lower semicontinuity of
ϑ(·,ω).

It is not difficult to give an example of a min-function of a paramet-
ric family of continuous functions which is not lower semicontinuous (e.g.
Example 4.1 in Ref. 17). Therefore, we need some type of a boundedness
condition. We consider a point x̄∈X and make the following assumptions.
Recall that S(x,ω) denotes the set of solutions of the generalized equa-
tions (7) and that S(x,ω) coincides with the feasible set of problem (12).
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(A2) The mappings H(·, ·,ω),∇yG(·, ·,ω) and function F(·, ·,ω) are
continuous.

(A3) For x = x̄, the set S(x̄,ω) is nonempty and the (possibly
empty) sets S(x,ω) are uniformly bounded for all x in a neigh-
borhood of x̄.

Let us observe that, because of Assumption (A2) and since cone Q
and cone Q∗ are closed, the multifunction x 
→ S(x,ω) is closed. That is,
if xn→ x̄, ζn∈S(xn,ω) and ζn→ ζ̄ , then ζ̄ ∈S(x̄,ω). The following result
follows easily by the compactness arguments and closedness of the multi-
function S(·,ω); it is quite well known.

Lemma 4.1. Suppose that Assumptions (A2) and (A3) hold. Then,
the min function ϑ(·,ω) is lower semicontinuous at x̄.

By the above discussion, we have the following result.

Proposition 4.1. Suppose that Assumptions (A2) and (A3) hold for
a.e. ω ∈ � and there exists a P -integrable function ψ(ω) such that
ϑ(x,ω)≥ψ(ω) for all ω∈� and all x in a neighborhood of x̄. Then, the
expectation function f (x) is lower semicontinuous at x̄.

The above proposition shows that, under mild boundedness condi-
tions, the expectation function is lower semicontinuous. Then, it follows
that problem (1) has an optimal solution provided it has a nonempty and
bounded level set,

levαf :={x ∈X :f (x)≤α},
for some α∈R; we refer to such condition as the inf-compactness condition.

In order to ensure the continuity of f (x), one needs to investigate the
continuity properties of ϑ(·,ω). That is, by using the Lebesgue dominated
convergence theorem, it is straightforward to show that, if there exists a
P -integrable function ψ(ω) such that |ϑ(x,ω)|≤ψ(ω), for a.e. ω∈� and
all x in a neighborhood of x̄, then f (·) is continuous at x̄ if ϑ(·,ω) is con-
tinuous at x̄ for a.e. ω∈� (e.g. Ref. 11, page 66).

Consider the following assumption associated with a point ȳ∈S(x̄,ω).

(A4) To every x in a neighborhood of x̄, there corresponds a yω(x)∈
S(x,ω) such that yω(x) tends to ȳ as x→ x̄.

The above assumption implies that the set S(x,ω), hence the set S(x,ω),
is nonempty for all x in a neighborhood of x̄. Then, we have the following
result (e.g. Proposition 4.4 in Ref. 17).
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Lemma 4.2. Suppose that Assumptions (A2) and (A3) are satisfied
and that Assumption (A4) holds with respect to a point ȳ∈arg miny∈S(x̄,ω)

F (x̄, y,ω). Then, the min function ϑ(·,ω) is continuous at x̄.

The above discussion implies the follwing proposition.

Proposition 4.2. Suppose that Assumptions (A2)–(A4) hold for a.e.
ω ∈� and there exist a P -integrable function ψ(ω) such that |ϑ(x,ω)| ≤
ψ(ω) for all ω∈� and all x in a neighborhood of x̄. Then, the expecta-
tion function f (x) is continuous at x̄.

The above Assumption (A4) is formed actually by two parts, namely:

(A4a) The set S(x,ω), equivalently S(x,ω), is nonempty for all x in
a neighborhood of x̄.

(A4b) There exists a selection yω(x) ∈ S(x,ω) converging to ȳ as
x→ x̄.

The nonemptiness of S(x,ω) can be ensured by various conditions.
For example, consider the optimization problem (13). It has an opti-
mal solution ȳω(x) provided the corresponding inf compactness condition
holds. Moreover, if a constraint qualification holds at ȳω(x), then ȳω(x) is
a stationary point and hence S(x,ω) in nonempty. For a general discus-
sion of existence of solutions of variational inequalities, we may refer to
Ref. 18 and Section 2.2 of Ref. 16. For example, if the set K =K(x,ω)

is convex, then the variational inequality (3) has a solution if there exists
y∗ ∈K such that the set

{y ∈K :H(x, y,ω)T (y−y∗)>0}
is bounded (see Proposition 2.2.3 in Ref. 16). Note that the set K(x,ω) is
closed, since it is assumed that G(x, ·,ω) is continuous and Q is closed.
In particular, this condition holds if the set K is convex and bounded.

A way to ensure the above condition (A4b) is to verify the local
uniqueness of the solution ȳ. Indeed, let ȳ be an isolated point of S(x̄,ω);
i.e., there is a neighborhood V ⊂ Rm of ȳ such that S(x̄,ω)∩V ={ȳ}. Of
course, we can always choose the neighborhood V to be bounded. In that
case, under the boundedness assumption (A3), we have by compactness
arguments that, if yω(x)∈ S(x,ω)∩V , then yω(x) tends to ȳ as x→ x̄. It
is also of interest to estimate the rate at which yω(x) converges to ȳ. We
say that the multifunction x 
→S(x,ω) is locally upper Hölder of degree γ
at x̄ for ȳ, if there exist neighborhoods W and V of x̄ and ȳ, respectively,
and a constant c= c(ω) such that

||yω(x)− ȳ||≤ c||x− x̄||γ , (31)
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for all x ∈W and any yω(x)∈S(x,ω)∩V . In particular, if this holds with
γ =1, we say that S(·,ω) is locally upper Lipschitz at x̄ for ȳ.

It is possible to give various conditions ensuring the local uniqueness
of a solution ȳ ∈ S(x̄,ω). For fixed x̄ ∈X and ω∈�, we use the notation
H(·)=H(x̄, ·,ω) and G(·)=G(x̄, ·,ω), etc. It is said that the Robinson
constraint qualification for the system G(y)∈Q holds at ȳ if

[∇G(ȳ)]Rm+TQ(G(ȳ))=Rs . (32)

Note that, if (32) holds, then the set �(ȳ)=�(x̄, ȳ,ω) of the correspond-
ing Lagrange multipliers is bounded. Noted also that, if the system is
defined by a finite number of constraints, as in Example 2.1, then the
Robinson constraint qualification coincides with the Mangasarian-Fromo-
vitz constraint qualification.

Recall that the cone

C(ȳ) :={d ∈Rm :H(ȳ)T d=0,∇G(ȳ)d ∈TQ(G(ȳ))}
is called the critical cone. For a vector d ∈Rm and G(y)=(g1(y), . . . , gs(y)),
consider the set of Lagrange multipliers

�∗(ȳ, d) :=arg max
λ∈�(ȳ)

s∑
i=1

λid
T∇2gi(ȳ)d.

We have the following result (see Theorems 3.1, 3.2, 4.3, and 5.1 in Ref.
19).

Proposition 4.3. Consider a point ȳ ∈ S(x̄,ω). Suppose that H(y) is
continuously differentiable, G(y) is twice continuously differentiable, the
Robinson constraint qualification (32) holds, and the cone Q is polyhe-
dral. Then, ȳ is an isolated point of S(x̄,ω) if the following condition
holds for vectors d ∈Rn :

∇H(ȳ)d ∈ conv {∪λ∈�∗(ȳ,d)[∇2G(ȳ)d]T λ}+NC(ȳ)(d) implies d=0. (33)

Also, if the above condition (33) holds and if H(x, y,ω) is continuously
differentiable and G(x, y,ω) is twice continuously differentiable jointly in
x and y, then S(·,ω) is locally upper Hölder of degree γ = 1/2, at x̄ for
ȳ. Moreover, if the mapping G(x, y,ω) and hence the set K(x,ω) do not
depend on x, then S(·,ω) is locally upper Lipschitz at x̄ for ȳ.

It is possible to extend the above condition (33) to situations where
the cone Q is not polyhedral (see Ref. 19), although the analysis becomes
more involved. Of course, if the mapping G(y) is affine, then

∇2G(y)=0;
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hence, the system in the left-hand side of (33) reduces to

∇H(ȳ)d ∈NC(ȳ)(d).

Condition (33) is equivalent to the quadratic growth condition, for a
scaled regularized gap function, to hold at the point ȳ. In case ȳ is a
locally optimal solution of the optimization problem (13), condition (33)
is equivalent (under the assumptions of the above proposition) to the fol-
lowing quadratic growth condition: there exists c>0 and a neighborhood
V of ȳ such that

h(y)≥h(ȳ)+ c||y− ȳ||2, ∀y ∈K(x̄,ω)∩V. (34)

In the general case of G(x, y,ω) depending on x, in order to ensure
the locally upper Lipschitz continuity of S(·,ω) at x̄ for ȳ, one needs con-
ditions which are considerably stronger than assumption (33). For opti-
mization problems, for example, the quadratic growth condition (34) does
not imply the locally upper Lipschitz continuity of S(·,ω) and a strong
form of the second-order optimality conditions is needed (see Ref. 20).

Of course, for any yω(x)∈arg miny∈S(x,ω)F (x, y,ω), we have that

ϑ(x,ω)=F(x, yω(x),ω).

Consequently, if F(·, ·,ω) is continuously differentiable and hence is
locally Lipschitz continuous, we can write

|ϑ(x,ω)−ϑ(x̄,ω)|= |F(x, yω(x),ω)−F(x̄, ȳ,ω)|≤�(ω)||yω(x)− ȳ||,

where x ∈W and �(ω) is a corresponding Lipschitz constant (independent
of x). Then, it follows from (31) that, for x ∈W ,

|ϑ(x,ω)−ϑ(x̄,ω)|≤κ(ω)||x− x̄||γ , (35)

where

κ(ω) :=�(ω)c(ω).

In turn, the above inequality (35) implies that, for x ∈W ,

|f (x)−f (x̄)|≤L||x− x̄||γ , (36)

where

L :=E[κ(ω)].
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Of course, the estimate (36) is meaningful only if the expectation E[κ(ω)],
hence the constant L, is finite.

The Lipschitz continuity and differentiability properties of the opti-
mal value function ϑ(·,ω) were also studied also in Ref. 21 in the case
when the set K(x,ω) is defined by a finite number of constraints, as in
Example 2.1.

Let us discuss now the differentiability properties of f (x). By f ′(x̄, p)
and ϑ ′

ω(x̄, p), we denote the directional derivatives of f (·) and ϑ(·,ω)
respectively at x̄ in the direcion p. It is said that f (·) is directionally differ-
entiable at x̄ if f ′(x̄, p) exists for all p∈Rn. By using the Lebesgue dom-
inated convergence theorem, it is not difficult to show the following (see
Chapter 2, Proposition 2 in Ref. 11).

Lemma 4.3. Suppose that ϑ(x̄, ·) is P -integrable, ϑ(·,ω) is direction-
ally differentiable at x̄ ∈X for a.e. ω ∈�, and there exists a P -integrable
function κ :�→R+ such that (35) holds with γ =1, i.e.,

|ϑ(x,ω)−ϑ(x̄,ω)|≤κ(ω)||x− x̄||, (37)

for all x in a neighborhood of x̄ and a.e. ω∈�. Then, f (·) is directionally
differentiable at x̄ and

f ′(x̄, p)=E[ϑ ′
ω(x̄, p)], ∀p∈Rn. (38)

Of course, (36) follows from (37) with γ =1; hence, the above assump-
tions imply that f (x) is finite valued for all x near x̄.

Suppose now that, for all x near x̄, there exists

yω(x)∈arg min
y∈S(x,ω)

F (x, y,ω)

converging to a point ȳ as x→ x̄. Then, since

ϑ(x,ω)=F(x, yω(x),ω),

we obtain by the chain rule that

ϑ ′
ω(x̄, p)=∇yF (x̄, ȳ,ω)T y′

ω(x̄, p), (39)

provided that F(x̄, ·,ω) is continuously differentiable and the directional
derivative y′

ω(x̄, p) does exist. Concerning the directional differentiability
of yω(x), we have the following result (Corollary 4.1 in Ref. 19).
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Proposition 4.4. Suppose that the assumptions of Proposition 4.3
and Assumption (A4) holds and that: (i) the mapping G(x, y,ω) does not
depend on x; (ii) for a given ω∈� and any p∈Rn, the system

∇xH(x̄, ȳ,ω)p+∇yH(x̄, ȳ,ω)d
∈ conv {∪λ∈�∗(ȳ,d)[∇2G(ȳ)d]T λ}+NC(ȳ)(d) (40)

has the unique solution d̄= d̄(p). Then, yω(·) is directionally differentiable
at x̄ and y′

ω(x̄, p)= d̄(p).
Note that, by setting p=0 in (40), we obtain that condition (ii) in the

above proposition implies condition (33) of Proposition 4.3.

5. Statistical Inference

In order to solve SMPEC problems numerically, one needs to discret-
ize (possibly continuous) distributions of the involved random variables.
In this section, we discuss briefly the Monte Carlo sampling approach to
such a discretization. Assume that all the involved random data depend
on a random vector ξ(ω), where ξ(·) :�→ Rd is a measurable mapping.
Denote by �⊂ Rd the support of the distribution of ξ(ω). Let F(x, y, ξ)
be a real-valued function, F : Rn × Rm × �→ R, and suppose that the
objective function in (2) can be written (with a certain abuse of nota-
tion) as F(x, y, ξ(ω)), and similarly H(x, y, ξ(ω)) and G(x, y, ξ(ω)). Let
ξ1, . . . , ξN be a random sample of ξ(ω). Define

f̂N (x) := (1/N)
N∑
j=1

ϑ(x, ξj ), (41)

where ϑ(x, ξ) is the optimal value of the following problem:

Miny∈Rm,λ∈Rs F (x, y, ξ), (42a)

s.t. −H(x, y, ξ)+∇yG(x, y, ξ)λ=0, (42b)

λ∈Q∗, G(x, y, ξ)∈Q, λT G(x, y, ξ)=0. (42c)

Consequently, the true (expected value) optimization problem (1) is approx-
imated by the following so-called sample average approximation (SAA)
problem:

Min
x∈X

f̂N(x). (43)
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Let us denote by υ̂N and ŜN the optimal value and the set of optimal
solutions respectively of the SAA problem (43); let us denote by υ∗ and S∗
the optimal value and the set of optimal solutions, respectively, of the true
problem (1). Note that here the above optimal value function depends on
ω ∈� through the random vector ξ(ω); therefore, we write ϑ(x, ξ) when
we view it as a function of the two vector variables x∈Rn and ξ ∈Rm; we
write ϑ(x, ξ(ω)) when we view it as a random function.

It is possible to apply an available statistical inference to the SAA
problem (43) in a more or less straightforward way. By the (strong) law of
large numbers (LLN), we have that, under standard conditions, e.g. if the
sample is iid (independent identically distributed), f̂N (x) converges point-
wise (i.e., for every fixed x∈X) with probability one (w.p.1) to f (x). More-
over, the following uniform convergence result holds (e.g. Proposition 7 in
Ref. 22).

Proposition 5.1. Let V be a nonempty and compact subset of Rn.
Suppose that:

(i) For a.e. ω, the function ϑ(·, ξ(ω)) is continuous on V .

(ii) There is a P -integrable function ψ(ω) such that |ϑ(x, ξ(ω))| ≤
ψ(ω) for all x ∈V and ω∈�.

(iii) The random sample ξ1, . . . , ξN is iid.

Then, f (x) is continuous on V and f̂N (x) converges f (x) w.p.1 uniformly
on V , i.e.,

sup
x∈V

|f̂N (x)−f (x)|→0, w.p.1, as N→∞.

We have the following consistency result.

Proposition 5.2. Suppose that there is a compact set V ⊂X such that
the above assumptions (i)–(iii) hold and moreover that the set ŜN is non-
empty and is contained in V w.p.1 for N large enough. Then, υ̂N con-
verges w.p.1 to υ∗ and sup

x∈ŜN dist(x, S∗)→0 w.p.1 as N→∞.

In order to verify the above assumption (i), we can use the analysis
of the previous section. By ad hoc methods, we may verify, for a.e. ω∈�,
the existence of a selection

yω(x)∈S(x, ξ(ω)), for all x ∈X.
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Furthermore, making sure that yω(x) is locally unique, i.e., yω(x) is an iso-
lated point of S(x, ξ(ω)), we obtain under mild boundedness conditions
that yω(·) is continuous at x. Finally, we would have to verify that yω(x)
is a minimizer of F(x, ·,ω) over S(x, ξ(ω)). Of course, this holds automat-
ically if S(x, ξ(ω))={yω(x)} is a singleton.

5.1. Exponential Rates of Convergence. By using the large deviations
(LD) theory, it is also possible to give an estimate of the sample size N
which is required in order to solve the true problem with a given accuracy.
Assume that the sample is iid. For constants ε>δ≥0, consider the set of
ε-optimal solutions of the true problem and the set of δ-optimal solutions
of the SAA problem (43). Let us make the following assumptions. Recall
that the moment generating function of a random variable Z is defined as

M(t) :=E
[
etZ

]
.

(B1) There exists a constant σ > 0 such that, for any x′, x ∈X, the
moment generating function Mx′,x(t) of ϑ(x′,ω) − ϑ(x,ω) −
E

[
ϑ(x′,ω)−ϑ(x,ω)] satisfies

Mx′,x(t)≤ exp
[
(1/2)σ 2t2

]
, ∀t ∈R. (44)

For fixed x′, x, if the random variable

Z(ω) :=ϑ(x′,ω)−ϑ(x,ω)

has a normal distribution, then the above Assumption (B1) holds with σ 2

being the variance of Z(ω). In general, condition (B1) means that the tail
probabilities Prob(|Z(ω)|>t) are bounded from above by O(1) exp

(
t2/2σ 2

)
;

here O(1), denotes a generic constant.
Further, suppose that X is a bounded subset of Rn of diameter

D := sup
x′,x∈X

‖x′ −x‖

and that there exists a (measurable) function κ :�→ R+ and γ > 0 such
that the following relation holds:

|ϑ(x, ξ)−ϑ(x̄, ξ)|≤κ(ξ)‖x− x̄‖γ , (45)
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for all x, x̄ ∈X and all ξ ∈�. It follows by (45) that

|f̂N (x)− f̂N (x̄)|≤N−1
N∑
j=1

|ϑ(x, ξj )−ϑ(x̄, ξ j )|≤ κ̂N‖x− x̄‖γ , (46)

where

κ̂N :=N−1
N∑
j=1

κ(ξj ).

Let us make also the following assumption.

(B2) The moment generating function Mκ(t) := E
[
etκ(ω)

]
of κ(ξ) is

finite valued for all t in a neighborhood of 0.

It follows that the expectation L := E [κ(ω)] is finite; moreover, by the
Cramér LD theorem, for any L′>L, there exists a positive constant β=
β(L′) such that

P(κ̂N >L
′)≤ e−Nβ. (47)

Then, we have the following estimate:

N ≥
[
4σ 2/(ε− δ)2

] [
n

{
log D+γ−1 log

[
2L′/(ε− δ)]}+ log (O(1)/α)

]
∨[

β−1 log(2/α)
]
,

(48)

for the sample size which is required to solve the true problem with accu-
racy ε > 0 by solving the SAA problem with accuracy δ ∈ [0, ε). That is,
if α ∈ (0,1) is a given significance level and N satisfies (48), then with
probability at least 1 − α any δ-optimal solution of the SAA problem is
an ε-optimal solution of the true problem. The distinctive feature of the
estimate (48) is that the dimension n of the first stage problem enters it
linearly. For a detailed derivation of this result and a further discussion
of complexity of stochastic programs, we refer to Refs. 22 and 23.
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