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Abstract. One of the main ingredients of interior-point methods is
the generation of iterates in a neighborhood of the central path.
Measuring how close the iterates are to the central path is an
important aspect of such methods and it is accomplished by using
proximity measure functions. In this paper, we propose a unified
presentation of the proximity measures and a study of their relation-
ships and computational role when using a generic primal-dual inte-
rior-point method for computing the analytic center for a standard
linear optimization problem. We demonstrate that the choice of the
proximity measure can affect greatly the performance of the method.
It is shown that we may be able to choose the algorithmic param-
eters and the central-path neighborhood radius (size) in such a way
to obtain comparable results for several measures. We discuss briefly
how to relate some of these results to nonlinear programming prob-
lems.

Key Words. Primal-dual interior-point methods, central path, proxim-
ity measures.

1The first author was partially supported by Simón Bolı́var University, Venezuelan
National Council for Sciences and Technology (CONICIT) Grant PG97-000592, Center
for Research on Parallel Computing of Rice University, and TU Delft. The authors thank
Amr El Bakry, Richard Tapia, Adolfo Quiroz, and Pedro Berrizbeitia for discussions
and suggestions. They acknowledge the observations and comments of the editors and
an anonymous referee.

2Professor, Computing Scientific Department and Center for Statistics and Mathematical
Software (CESMa), Simón Bolı́var University, Caracas, Venezuela; Computing and
Mathematical Sciences Department, Texas A&M University of Corpus Christi, Corpus
Christi, Texas.

3Professor, Delft University of Technology, Department of Electrical Engineering,
Mathematics, and Computer Science, Delft, Netherlands.

303
0022-3239/05/1100-0303/0 © 2005 Springer Science+Business Media, Inc.



304 JOTA: VOL. 127, NO. 2, NOVEMBER 2005

1. Introduction

The concept of the central path has played a crucial role in the
development and analysis of interior-point methods. All primal-dual
interior-point methods for linear programming require the iterates to
remain in an appropriate neighborhood of the central path. This adher-
ence to the central path promotes global convergence of the duality gap
sequence and it ensures a polynomial bound on the number of itera-
tions required to produce an appropriate solution of the problem. Differ-
ent polynomial bound are obtained for linear programming depending on
which proximity measure a function measuring the distance to the central
path is used in the analysis; see Refs. 1–3.

Proximity measures can be categorized in several ways (see Ref. 4).
Some measures are used to measure distance to a specific point on the
central path. Such measures depend often on the perturbation or barrier
parameter. Other measures, deal with the distance to the central path as
a set and thus they are parameter-free measures. Some measures have
the barrier property; i.e., the value of the measure tends to infinity at
a sequence of points approaching the boundary of the positive orthant.
Yet other measures are finite for all points in the positive orthant. With
all these different attributes of proximity measures, it is not clear which
measures are practically useful.

In interior-point implementations for linear programming [e.g. LIPSOL
(Ref. 5) and PCx (Ref. 6)], the iterates are confined to a reasonably large
neighborhood. On the other hand, in certain applications, as the one
considered in Refs. 7–8, the iterates are required to remain in a relatively
small neighborhood of the central path.

The concept of central path or closely related definitions has been
useful for designing interior-point algorithms for other optimization
problems such as linear complementarity, semidefinite programming, con-
vex nonlinear programming, and even general nonlinear programming
problems (e.g. Refs. 9–10). The proximity to the central path can be used
to improve the global convergence behavior of primal-dual interior-point
methods for nonlinear programming as shown by Argaez, Tapia, and
Velasquez (Ref. 11).

Although proximity measures have been used extensively in
interior-point methods, there does not seem to be a comprehensive and
unified presentation of them nor a study of their computational role. In
this paper, we propose such a unified presentation using a standard linear
optimization problem. Therefore, we define the concept of proximity mea-
sure in this context. We select several proximity measures from the litera-
ture and introduce also new measures in an attempt to sample the several



JOTA: VOL. 127, NO. 2, NOVEMBER 2005 305

categories of proximity measures discussed above. We study some of their
properties and the relationship between these measures.

We present a generic primal-dual interior-point algorithmic frame-
work based on the long-step shrinking-neighborhood algorithm (LSSN)
proposed by Gonzalez-Lima, Tapia, and Potra (Ref. 12) for effectively
computing the analytic center of the solution set in linear programming.
We show that the search direction of this algorithm (Newton direction
for the perturbed optimality conditions) is of descent for all the measures
considered and we investigate the numerical effect of the choice of the
proximity measures on the performance of the algorithm. We consider this
algorithm as a natural setting for our study, since its behavior depends
strongly on the proximity to the central path. We demonstrate that the
choice of the proximity measure can affect greatly its performance.

The structure of the paper is as follows. In Section 2, we introduce
the optimization problem and some relevant concepts as well as the nota-
tion that we use. In Section 3, we define the proximity measures and pres-
ent the ones to be considered in this paper. In Section 4, we present the
algorithmic framework and show that the search direction is of descent for
all the proximity measures. Properties and relationships among the mea-
sures are presented in Section 5. In Section 6, we present our numerical
experience with the proposed algorithm. We analyze its performance when
using the proximity measures defined in Section 3. We modify these mea-
sures such that comparable performances of the algorithm are obtained
for some of the tested problems. Section 7 is devoted to the presentation
of an interesting class of measures and to study its properties. Finally,
some conclusions and remarks are given in Section 8.

2. Preliminaries and Notation

We consider the following linear programming problem in standard
form:

min ctx, s.t. Ax = b, x ≥0, (1)

where c, x ∈Rn, b∈Rm, A∈Rm×n, m<n, and A has full rank m.
The Karush-Kuhn-Tucker (KKT) optimality conditions for (1) are

F(x, y, z)= ((Ax −b), (Aty + z− c), (XZe))t =0, (x, z)≥0, (2)

where X =diag (x), Z =diag (z), and e is the n-vector of all ones.
The feasibility set of problem (2) is

F ={(x, y, z) :Ax =b,Aty + z= c, (x, z)≥0
}
.
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A feasible point (x, y, z) ∈ F is said to be strictly feasible if x and z are
strictly positive. The set of all the strictly feasible points is denoted by F+.
In this paper, we assume that F+ �=∅.

We denote the solution set of problem (2) by S, so we have

S ={(x, y, z) :F(x, y, z)=0, (x, z)≥0}.

The central path P associated with problem (2), parameterized by the
parameter µ>0, is defined as the collection of points (x(µ), y(µ), z(µ))∈
F+ that solve the perturbed KKT system

Fµ(x, y, z)=F(x, y, z)+µ(0, . . . ,0, e)t , (x, z)≥0. (3)

Then,

P ={(x(µ), y(µ), z(µ)) is a strictly feasible point satisfying

X(µ)Z(µ)e=µe}.

Notice that (x, y, z) belongs to the central path if and only if

XZe=µ∗e, with µ∗ = xtz/n.

Due to the assumption that F+ �=∅, the central path is well defined and as
µ goes to zero (see Ref. 1), the central-path point (x(µ), y(µ), z(µ)) con-
verges to a unique solution where the product of the positive components
in the relative interior of S is maximized, the so-called analytic-center
solution.

This fact plays a critical role result in the development of most
primal-dual interior-point algorithms. These methods attempt to follow the
central path by solving approximately the optimality conditions (3) using a
damped Newton method. Hence, to measure the proximity to the central
path and to define the neighborhoods of the central path becomes a very
important issue. In Section 3 we will study formally these concepts.

In this paper, we use the following notations. If w ∈ Rn, we denote
by 1/w or w−1 the vector (1/w1, . . . ,1/wn)

t and by w2 the vector
(w2

1, . . . ,w
2
n)

t ; max w denotes max1≤i≤n wi ; (similarly, for min w). If u ∈
Rn, we denote by uw the vector (u1w1, . . . , unwn)

t . The notations ‖ · ‖1
and ‖·‖ are used for the L1-norm and the Euclidean L2-norm respectively.

The natural logarithmic function is denoted by log(·). Let f, g be two
functions with the same domain. Then, we say that f =O(g) if there exists
a constant C >0 such that |f |≤C|g| for g sufficiently small.
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3. Proximity Measures

In the context of primal-dual interior-point methods, proximity or
centrality measures are functions that measure in some way the distance
between any strictly feasible point and the central path. Several func-
tions have been proposed in the interior-point literature to measure the
proximity to the central path; see for example Refs. 4 and 13–14. Most of
these functions attain their optimum value at either a specific point of the
central path or on all points of the central path.

Because of the central path definition, the most standard measure
used in the literature is the one based in the Euclidean norm between the
vectors xz and µe for any µ>0; this is to say

f 2
µ(x, y, z)=‖(xz−µe)/µ‖.

Most of the existent theoretical and practical results for short-steps
algorithms rely on the use of this L2-norm proximity measure (Refs. 1–14).

Another measure considered by several authors in the context of
linear and nonlinear programming is, for any µ>0,

f S
µ (x, y, z)=

∥∥∥
√

xz/µ−
√

µ/xz

∥∥∥ .

This measure can be written as a scaled version of the Euclidean L2-norm
measure, since

f S
µ (x, y, z)=

∥∥∥(XZ)−0.5(xz−µe)

∥∥∥
/√

µ=
∥∥∥
√

µ/xz(xz/µ− e)

∥∥∥ .

Therefore, in this paper, we call it the nonlinearly scaled L2-norm.
Jansen (Ref. 13) proposed this measure in the analysis of a primal-dual

method for linear programming problems. Argaez and Tapia (Ref. 9) intro-
duced this measure in the context of primal-dual methods in nonlinear
programming. Nesterov and Todd (Ref. 15) proposed several proximity mea-
sures based on self-concordance functions of self-scaled cones and their
derivatives. The above measure can be deduced from their definition.

Finally, we consider the logarithmic barrier function as presented in
Ref. 13. This is, for any µ > 0,

f Log
µ (x, y, z)=xtz/µ−

i=n∑

i=1

log(xizi)−n+n log(µ).
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Notice that, up to the constant −n + n log(µ), this is the well-known
logarithmic barrier function used by many authors for analyzing pri-
mal-dual interior-point methods in linear and nonlinear programming
(Ref. 11–16).

An interesting characteristic of the last two measures with respect to
the first one is that the values of f S

µ (x, y, z) and f
Log
µ (x, y, z) tends to

infinity when xizi tends to zero for any i = 1, . . . , n. Therefore, when any
point is too close to a boundary of the feasible set, the measures are quite
large.

All the previous measures depend explicitly on the barrier parameter
µ and attain their minimal value at the central point (x(µ), y(µ), z(µ)).
We call the functions that posses this property as point-proximity measures.
A formal definition follows.

Definition 3.1. For any µ > 0, a point-proximity measure is a func-
tion fµ : F+ → {0} ∪ R+ such that f (x, y, z) = 0 if and only if (x, y, z) =
(x(µ), y(µ), z(µ)).

There are other measures that do not depend explicitly on the
parameter µ. Such functions measure the distance between a given strictly
feasible point and the central path set. We call such functions as
path-proximity measures. Any point-proximity measure fµ induces a
path-proximity measure f defining f =fµ∗ , with µ∗ =arg minµ>0 fµ.

As an illustration, let us consider the logarithmic barrier function
f

Log
µ∗ for µ∗ =xT z/n. This measure is found in the interior-point literature

(e.g. Kojima et al, Ref. 14) and is related to the function

f R = (xT z/n)/�1≤i≤n(xizi)
1/n,

since

f
Log
µ∗ =n log f R.

The function f R has been used by Tanabe (Ref. 16) in the context of
general nonlinear systems of equations for measuring the distance to the
central variety.

Path-proximity measures can be derived also from projective metrics.
A formal definition is in order.

Definition 3.2. A path-proximity measure is a function f : F+ →
{0}∪R+ such that f (x, y, z)=0 if and only if (x, y, z)∈P .
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In this paper, we focus our attention on the following path-proximity
measures.

(i) L2-norm measure evaluated at µ1 =xtz/n,

f L2(x, y, z)=‖xz−xtz/n e‖/(xt z/n).

It is clear that

f L2(x, y, z)≤f L2
µ (x, y, z), for all µ>0 and for all (x, y, z).

(ii) Nonlinearly scaled L2-norm measure squared evaluated at µ2 =√‖xz‖1/‖(1/xz)‖1,

f S2
(x, y, z)=

√
xT z‖(1/xz)‖1 −n.

It can be seen that µ2 minimizes the function (f S
µ (x, y, z))2 for

all µ>0.
(iii) �1/�2 ratio measure defined by

f L(x, y, z)=1− (1/
√

n
)
xT z/‖xz‖.

This measure can be deduced from the projective metric used
by Lagarias (Ref. 18) in analyzing the Karmarkar algorithm.
The same measure can be deduced also from the definition of
proximity measure given in Nesterov and Todd (Ref. 15).

(iv) Hilbert measure defined by

f H (x, y, z)= log (max(xz)/min(xz)) .

This measure is closely related to max(xz)/min(xz), used by
researchers in interior-point methods; see for example Roos,
Terlaky, and Vial (Ref. 15). It is deduced from the definition of
the Hilbert projective metric and extends naturally to more gen-
eral optimization problems such as semidefinite programming
and certain infinite-dimensional optimization problem. El-Bakry
(Ref. 19) presents a detailed study of this function.

(v) �−∞-norm measure, defined by

f −∞(x, y, z)=1−n min(xz)/‖xz‖1.

This measure has been used extensively in the analysis,
development, and implementations of primal-dual interior-point
methods; see Ref. 1. It defines a larger neighborhood and we
include it here as a reference. However, we focus on the study
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of the other measures, since they represent more restrictive
central-path following strategies.

Then, we call a proximity measure either a point-proximity measure
or a path-proximity measure.

Using the concept of proximity measure, we can define a neighborhood
of the central path as follows.

Definition 3.3. A β-neighborhood of the central path is defined as

Nf (β)={(x, y, z) : (x, y, z)∈F+, f (x, y, z)≤β
}
,

where β >0 and f is a proximity measure.

In the next section, we show that all the proximity measures presented
here are such that the Newton direction for the perturbed conditions (3) is
of descent for each of them. We describe also the algorithm that we use as
a framework to investigate the effect of different choices of the proximity
measures.

4. Algorithmic Framework

Let us notice that the proximity measures are really defined depend-
ing on the vector xz; the vector y does not appear in the definition. It is
well known that, under the standard assumptions, the vector y is uniquely
defined depending on the vectors x, z if the point (x, y, z) is a strictly feasi-
ble point. Therefore, from now on, we suppress the vector y when working
with the proximity measures. Moreover, for convenience, for all the mea-
sures I =L2,Log, S, S2,L,H , we write f I instead of f I (x, z) and ∇f I or
δf I to denote the gradient ∇(x,z)f

I or the subgradient δ(x,z)f
I for non-

differentiable functions. We refer to Rockafellar (Ref. 20) for the definition
of subgradient.

Lemma 4.1. Let µ>0, let (x, y, z) ∈ R
2n+m, with (x, z) > 0 and

xz−µe �=0. Let �w = (�x,�z)t be a direction satisfying the equation

Z�x +X�z=−xz+µe. (4)

Then, the following properties hold:

(i) (∇(f
L2
µ )2)t�w =−(f

L2
µ )2,

(ii) (∇(f S
µ )2)t�w =−(f S

µ )2 −‖(XZ)−1(xz−µe)‖,
(iii) (∇f

Log
µ )t�w =−(f S

µ )2,
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(iv) (∇(f L2)2)t�w ≤−4(f L2)2, if µ ≤ xtz/n,
(v) ∇(f S2

)t�w =1/2(xt z‖1/xz‖1)
−1/2µ(n‖1/xz‖1 −xtz‖1/xz‖2),

(vi) (∇f L)t�w =−µ
√

n/‖xz‖(n− ((xt z)/‖xz‖)2),
(vii) (δf H )t�w =−µ(1/min(xz)−1/max(xz)).

Proof. The proof comes from the definition of the proximity
measures and the computation of their gradient or subgradient functions.
We omit the proof here for brevity. The interested reader is referred to
Ref. 21 for details.

Using this lemma, we obtain the following result.

Theorem 4.1. Let µ > 0, (x, z) > 0, such that xz − µe �= 0 and let
(�x,�z) be a direction satisfying the complementarity equation (4).
Then, (�x,�z) is descent direction for (i) the point-proximity measures
f

L2
µ . f S

µ f
Log
µ , (ii) the path-proximity measures f S2

, f H , f L, and (iii) if
µ≤xtz/n also for f L2 .

Proof. Except for items (v) and (vi), the proof is straightforward
from the previous lemma. To obtain the result for f L, observe that

‖xz‖2
1 ≤‖xz‖2n.

Similar observation is used for f S2
; therefore,

∇(f S2
)t�w ≤ (1/2)(xt z)−1/2‖1/xz‖1/2

1 (µ/n) (n2 −xtz‖1/xz‖1).

Using the Cauchy-Schwarz inequality, we obtain that

n2 −xtz‖1/xz‖1 <0, if xz �=µe. �

The next algorithm is based on the long-step shrinking neighbor-
hood LSSN algorithm by González-Lima et al (Ref. 12). It has two main
ingredients; approaching the central path and decreasing the gap. Prox-
imity to the central path is obtained considering a fixed value of µ and
approximately solving the perturbed nonlinear system (3). At each itera-
tion, the gap is decreased because of the way the algorithmic parameters
are chosen. In order to solve approximately (3), a damped Newton method
is applied. Then, a merit function is used to measure the progress towards
the central path. Also, a proximity measure is used to compute how close
are the iterates from the central path. The central-path strategy idea used
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in the LSSN algorithm has been extended to the design of algorithms for
(general) nonlinear programming; see Refs. 9–10.

Algorithm 4.1. LSSN Generic Algorithm. Consider w0 = (x0, y0, z0)∈
F+ and β > 0. Let fµ be a point-proximity measure and let g be any
proximity measure. Choose η∈ (0,1/2) and 0<l <u<1. Do until conver-
gence the steps below.

Step 1. Choose µ>0.
Step 2. Proximity to the Central Path. If

g(wk)≤β, (5)

go to Step 6.
Step 3. Compute the New Iterate.
Step 3.1. Solve for �wk = (�xk,�yk,�zk),F ′(wk)(�wk)t

=−Fµ(wk).
Step 3.2. Choose τ k ∈ (0,1) and compute the steplength αk =

min(1, τ kâk), where âk =−1/min(tk), with tk = (�xk/wk

(1, . . . , n),�zk/wk(n+m+1, . . . , n)).
Step 3.3. Form wk+1 = wk +αk�wk.
Step 4. Line Search.
Step 4.1. If

fµ(wk+1) ≤ fµ(wk)+ηαk∇fµ(wk)t (�wk)t , (6)

go to Step 5.
Step 4.2. If not, reduce αk:=ραk, with ρ ∈ [l, u], and form wk+1 =wk

+αk�wk.
Step 4.3. Go to Step 4.1.
Step 5. Set k := k +1 and go to Step 2.
Step 6. Reduce µ.
Step 7. Do Steps 3.1, 3.2, 3.3.
Step 8. Set k := k +1 and go to Step 1.

In the following section, we study some properties and relationships
between the different measures and their corresponding neighborhoods.

5. Properties

The following result establishes a useful relationship between the
Euclidean proximity measures considered in this paper. A proof for the
first part in the case when µ=xtz/n can be found in Ref. 4.
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Proposition 5.1. Let µ>0. Then,

f L2
µ (µ/max(xz))1/2 ≤f S

µ ≤ (µ/min(xz))1/2 f L2
µ .

From this, the following results are obtained:

(i) For any β >0, the set of points {(x, y, z)∈N L2(β) : min(xz)/µ>

1} ⊂ N S(β). The set of points {(x, y, z) ∈ N S(β) : max(xz)/µ <

1}⊂N L2(β).
(ii) There holds that

∣∣∣f L2
µ −f S

µ

∣∣∣≤
(
f S

µ

)2
.

(iii) If µ=σxtz/n, with σ ∈ (0,1), then

f S
µ ≤√

σ
√

1/(1−f −∞)f L2 .

Besides, if min(xz)≥γ (xT z/n), with γ ∈ (0,1), then

f S
µ ≤

√
σ/γ f L2

µ .

Proof. Let us recall that
(
f S

µ

)2 = (1/µ)

∥∥∥(XZ)−0.5 (xz−µe)

∥∥∥
2
. (7)

Then,
(
f S

µ

)2 ≤ (1/µ)

∥∥∥(XZ)−0.5
∥∥∥

2 ‖xz−µe‖2 ,

which implies that
(
f S

µ

)2 ≤µ

∥∥∥(XZ)−0.5
∥∥∥

2 (
f L2

µ

)2
.

Since X and Z are diagonal matrices,
∥∥∥(XZ)−0.5

∥∥∥
2 = max

1≤j≤n

(
1/xj zj

)=1/min(xz).

Besides, equation (7) can be stated as
(
f S

µ

)2 = (1/µ)
∑

(xizi −µ)2/xizi .

Therefore,
(
f S

µ

)2
(x, y, z)≥ (µ/max(xz))‖xz/µ− e‖2
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and the first part of the proposition is obtained. Items (i) and (ii) follow
in a straight forward way from this result.

In order to prove (ii), we just need to obtain bounds for the values of
µ/min(xz) and µ/max(xz). Let us call

v =
√

xz/µ, vmin =min(v), vmax =max(v).

It can be seen easily that

f S
µ =

∥∥∥v −v−1
∥∥∥ .

Then,

f S
µ ≥

∣∣∣vmax −v−1
max

∣∣∣ and f S
µ ≥

∣∣∣vmin −v−1
min

∣∣∣ .

Assume vmax ≥1. Then,
∣∣∣vmax −v−1

max

∣∣∣=−1/vmax +vmax.

Therefore, we obtain

vmax ≤1+f S
µ .

This inequality is obviously true if vmax <1.
Assume vmin ≤1. Then,
∣∣∣vmin −v−1

min

∣∣∣=1/vmax −vmin.

Therefore, we obtain

vmin ≥1−f S
µ .

This inequality is obviously true if vmin >1.
From the first part of the proposition, we have that

f S
µ vmin ≤ f L2

µ ≤ f S
µ vmax.

Therefore,

−
(
f S

µ

)2 +f S
µ ≤f L2

µ ≤f S
µ +

(
f S

µ

)2

and the proof of (ii) is complete.
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Fig. 1. Comparison of N
f

L2
µ (β)

and N
f S
µ (β)

.

In the xizi space, Figure 1 illustrates the relationship, between the
β-neighborhoods for the central-point Euclidean proximity measures f

L2
µ

and f S
µ . The neighborhoods defined by these Euclidean measures are

never totally included one into the other, as it is stated in the previous
proposition.

The neighborhoods defined by the logarithmic barrier function have
a similar shape as the ones defined by the nonlinearly scaled L2-norm
measure. They differ essentially in the size of the neighborhood. The next
proposition establishes a relationship between these two measures.

Proposition 5.2. Let µ > 0. Then, f
Log
µ ≤ (

f S
µ

)2
. The equality is

satisfied if and only if the (x, y, z) satisfies xz=µe. Therefore,

N S
µ (β)⊂N Log

µ (β) , for β ∈ (0,1).

Proof. For notational convenience, let us denote vi =xizi/µ. Because
of the definitions of the measures, it is suffices to prove that

v −1− log(v) ≤
(
v1/2 −v−1/2

)2
, for all v ∈R, v >0,
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since

f Log
µ =

n∑

i=n

(vi −1− log(vi))

and

(
f S

µ

)2 =
n∑

i=1

(
v

1/2
i −v−1/2

)2
.

Let us call

f (v)=v−1 −1+ log(v).

Then, we have just to prove that

f (v)≥0, 0=f (1), for all v >0.

But

f 1(v)=−v−2 +v−1 ≥0, if v ≥1 and f 1(v)≤0 if v ≤1

and the proof is complete.

In order to understand and being able to compare the different
measures, for any (x, y, z)∈F+ we consider the angle between vectors xz

and e. Let us call it θ . It is clear that, if θ is close to zero, then (x, y, z)

is close to the central path P . The angle does not depend directly on the
scaling or the norms used, so we consider this quantity as the preferred
measure to quantify the distance between any point and the central path
set. Therefore, in the next propositions, we characterize the measures intro-
duced in terms of θ .

Proposition 5.3. Let µ>0. Then,

(
f L2

µ

)2 =n+‖xz‖2 /µ2 −2
√

n‖xz‖ cos θ/µ

=n+ (xt z)2/n(µ2) cos2 θ −2xtz/µ.

If µ=σ(xtz)/n with σ >0, then

(
f L2

µ

)2 =n
(
−1+1/σ 2 cos2 θ

)
.
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Therefore,

f L2 =√
n tan θ.

Proof. The proof comes directly from applying the law of cosines to
the triangle formed by the vector µe, xz, and xz−µe.

The relationship between f L2 and the angle θ has been presented in
Sturm (Ref. 22).

The next propositions characterize the L and S2 measures in terms
of θ .

Proposition 5.4. The measure f L =1− cos θ =2 sin2 θ/2.

Proof. The proof comes directly by using the fact that

(xz)t e=‖xz‖√n cos θ.

Proposition 5.5. The measure f S2 = C(x, y, z) cos1/2 θ − n, with
C(x, y, z)=

√
‖xz‖‖1/xz‖1

√
n.

Proof. Using the law of cosines, we have

(xz)t e=‖xz‖√n cos θ and (1/xz)t e=‖1/xz‖√n cos θ ′,

with θ ′ equal to the angle between the vectors 1/xz and e. Multiplying
both equalities and observing that

(xz)t e=xtz and (1/xz)t e=‖1/xz‖1,

we obtain the following equation:

xtz‖1/xz‖1 =‖xz‖‖1/xz‖n cos θ cos θ ′.

Then,
(
f S2 +n

)2 =‖xz‖‖1/xz‖ cos θ cos θ ′.

On the other hand,

cos θ ′ =‖1/xz‖1/(‖1/xz‖√n).

Substituting this equality in the definition of f S2
, we have the desired

result.
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In the following result, we characterize the measures for small val-
ues of θ . Although the next result holds only for small values of θ , we
consider it relevant, since it shows that, even then, the proximity mea-
sures have very different values which produces different numerical per-
formances of the generic LSSN algorithm. We will use the next result to
define some modifications of the proximity measures considered such that
similar performances of the algorithm are obtained for the modified mea-
sures.

Theorem 5.1. Consider (x, y, z)∈F+ and let us call w=xz. Let θ be
the angle between vectors w and e, i.e.,

cos θ =wte/‖w‖√n.

For any µ>0, let us denote

C1µ(w)= (‖w‖/µ−√
n
)2 and C2µ(w)=√

n‖w‖/µ.

Let us call

C3(w)=
√

‖w‖‖1/w‖1
√

n−n and C4(w)= (−C3(w)−n)/4.

Then,

(i)
(
f

L2
µ

)2 =C1µ(w)+C2µ(w)θ2 +O(θ4),

(ii) f L2 = θ
√

n+O(θ3),
(iii) f S2 =C3(w)+C4(w)θ2 +O(θ4),
(iv) f L = θ2

2 +O(θ4),
(v) f H ≤ θ

√
n+O(θ3).

Proof. The proof comes from the previous propositions and the
Taylor series. Let us consider the Taylor series of the function cos θ

around θ =0. This is,

cos θ =1+ θ2/2+O(θ4).

Substituting in Proposition 5.3, we obtain

f L2
µ =n+ (‖w‖/µ)2 −2

√
n‖w‖/µ+2

√
n (‖w‖/µ) θ2/2+O(θ4).

Rearranging the first term, we obtain the proof of part (i). Parts (ii), (iii),
and (iv) can be shown in a similar way, considering the Taylor series of
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tan θ and cos θ around 0 and the previous propositions. Finally, let us
observe that

1−f L2 ≤min(xz)/
(
xT z/n

)
≤max(xz)/

(
xT z/n

)
≤1+f L2 .

Then,

log (max(xz)/min(xz))≤ log
((

1+f L2
)

/
(

1−f L2
))

.

But locally, log
[(

1+f L2
)
/
(
1−f L2

)]
is the same order of f L2 . Using (ii)

of this theorem, we get the result for the proximity measure f H . This con-
cludes the proof.

6. Numerical Experience

In this section, we discuss the numerical results obtained from apply-
ing the generic LSSN algorithm to a subset of the NETLIB test problems
and, considering the different proximity measures. The experiments were
performed in 64 bit arithmetic using codes implemented in MATLAB4.
The starting points for the algorithms are obtained following Lustig,
Marsden, and Shanno (Ref. 24) and are not necessarily feasible. The line-
search strategy (backtracking) defined in Step 4 of the generic LSSN algo-
rithm was implemented using the value α=10−4 and a fixed value ρ =1/2.

In all problems, the parameters τ k were chosen as

τ k =1−min(0.05,0.05(xk)T zk).

Therefore, τ k =0.95 far away from the solution set and is closer to 1 when
the duality gap is small.

The parameter µ was chosen as in the LSSN algorithm (see Ref. 12
for a detailed explanation). This is to say that a parameter σ 0 ∈ (0,1) is
chosen at the beginning of the algorithm. Then,

µ=σ 0(xk)t zk/n, for k ∈{0}∪
{
k ≥1 :g

(
xk−1, yk−1, zk−1

)
≤β

or g
(
xk, yk, zk

)
≤β

}
,

with g a proximity measure. The proximity measure used for the line
search strategy was

(
f L2

µ

)2
.

4MATLAB is a registered trademark of the MathWorks, Inc.
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We say that a problem is solved to an accuracy of 10−8 if the algo-
rithm is terminated when

max

(∣∣ctxk −bT yk
∣∣

1+ ∣∣bT yk
∣∣ ,

‖Axk −b‖1

1+‖x‖1
,

∥∥AT yk + zk − c
∥∥

1

1+∥∥yk
∥∥

1 +∥∥zk
∥∥

1

, g
(
xk, yk, zk

)
)

≤10−8.

The algorithm stops when the problem is solved to the given accuracy or
when the number of iterations reaches 120. In this latter case, we say that
the algorithm did not converge.

The results obtained showed that the algorithm can be very sensitive
to the choice of the proximity measure in terms of total number of iter-
ations and backtrackings. As an illustration, consider Tables 1 and 2. In
these tables, we are showing the number of iterations required for the algo-
rithm to converge for some of the tested problems, considering the differ-
ent measures and different values of β, the neighborhood size. Observe
that, in some cases, as for problems Sctap1 or Lotfi, the difference in
the number of iterations, from one measure to another, can be very high.
Moreover, it can be the case that the algorithm converges only for some
of the measures and not for all of them, as is the case for problem Blend.

We tested also the problems using as a merit function in the line
search strategy the logarithmic barrier function, which we denoted as
f

Log
µ . The results obtained are similar to the ones obtained with the L2-

norm merit function in terms of total number of iterations of the algo-
rithm for each measure. Even for the cases where the algorithm did not
converge using the L2-norm merit function, the same result was obtained
using the logarithmic barrier function. However, we believe that this may
not be the case for all problems or for all path following algorithms.

Table 1. Number of iterations using different proximity measures.

Problem f L2 f S2
f L f H f

L2
µ f S

µ f
Log
µ β σ 0

ISRAEL 68 64 58 68 68 68 64 0.01 0.01
” 64 59 67 61 64 64 61 0.25 0.01
” 68 56 67 68 54 54 53 10 0.01

SCSD1 NC∗ 25 23 NC NC NC 29 0.01 0.01
” 26 24 27 27 NC NC 27 0.25 0.01
” 25 24 27 27 39 39 26 10 0.01

BLEND 44 32 31 44 44 44 32 0.01 0.001
” NC 31 34 NC NC NC 30 0.25 0.001
” 35 29 34 36 34 34 29 10 0.001
” 34 31 29 34 34 34 32 0.01 0.01
” 32 29 27 32 32 33 29 0.25 0.01
” 41 34 31 41 41 41 36 0.01 0.1

∗Nonconvergence
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Table 2. Number of iterations using different proximity measures.

Problem f L2 f S2
f L f H f

L2
µ f S

µ f
Log
µ β σ 0

BLEND 36 33 28 35 37 37 33 0.25 0.1
” 29 28 28 29 28 28 28 10 0.1
” 72 60 45 66 98 98 74 0.25 0.5
” 47 45 45 47 47 47 45 10 0.5

SCTAP1 32 29 27 32 32 33 30 0.25 0.001
” 54 52 56 54 59 59 59 0.25 0.01
” 67 64 42 55 95 95 91 0.25 0.1

LOTFI NC∗ NC 45 NC NC NC NC 0.01 0.01
” 92 62 48 88 92 95 63 0.25 0.001
” 96 66 47 92 96 99 64 0.25 0.01
” 106 76 53 102 106 109 76 0.25 0.1
” 96 66 47 92 96 99 49 10 0.01

∗Nonconvergence

From Tables 1 and 2, we observe that, using the �1/�2 ratio measure,
the algorithm requires less number of iterations to converge for most of
the tested problems than using the other measures. Moreover, convergence
using this measure is always attained. The logarithmic barrier measure is
the best choice from the point-proximity measures and the performance
of the algorithm is sometimes very similar to the one obtained using the
�1/�2 ratio measure. Therefore, these two measures are the best choices
among the considered proximity measures.

The difference in performance is related to the different values of the
measures. From our numerical experimentation, we say that the values of
the point-proximity measures are the largest from all of the measure values
unless the iterate is very close to the central path. The �1/�2 ratio measure
has the smallest value and it is always much smaller than the other mea-
sure values unless the iterate is very close to the central path set.

We also performed some tests including feasibility considerations in
the proximity condition [condition (5)], the merit functions, and using
a slightly different algorithm more adequate for nonlinear programming.
For more details on these tests, we refer to Ref. 21. The experimentation
showed that, although the total number of iterations changes, the relative
performance among measures is preserved.

The parameters β and µ, or equivalently σ 0, play an important role
in the behavior of the generic LSSN algorithm. Because of the difference
in values of the proximity measures, the way of choosing the parameter β

when defining the neighborhoods of the central path is not clear. In order
to compare the behavior of the algorithm with respect to the different
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measures we need to choose the parameters such that the comparisons are
as fair as possible. In the following section, we address this issue.

6.1. Normalization of the Proximity Measures. In an attempt to
make the comparison among the measures less dependent to the choice of
the neighborhood size β, we use Theorem 5.1. There, we found a descrip-
tion of the measures in terms of the angle between the vectors xz and
e for any strictly feasible point (x, y, z). We denoted this angle by θ . We
modified the measures so that locally they are of similar order, depend-
ing on this angle. Since the algorithm usually requires less number of
iterations for convergence of the �1/�2 ratio measure, we modified the
measures so that locally they behave as the �1/�2 ratio measure. This is
equivalent to comparing the measures using different values of the size
neighborhood in a fairer fashion.

The definition of the normalized measures was based in the descrip-
tion given by Theorem 5.1 and the performance of the algorithm. This
is to say, from Theorem 5.1, the path-proximity measures f L2 , f H , f L

were easy to describe in terms of the angle θ . It is not the same case for
the other measures, since the characterization in Theorem 5.1 depends also
on other values. However, because of the relationships between the differ-
ent measures and the performance of the LSSN algorithm we considered
also a modification of the other measures. Because of the way the algo-
rithm works, small values of θ correspond to small values of the distance
between the vector xz and µe and this is what we used in the definition
of the normalized measures. This fact (that does not have to be true in
general) is true because of the way the parameter µ is chosen in the algo-
rithm and because of the way in which the algorithm performs. For more
details, see Ref. 12. We include Figure 2 to illustrate this comment. In
this figure, if at iteration k of the algorithm we consider the correspond-
ing vector xz, the vector x̂ẑ denotes the corresponding vector at iteration
k + 1. Observe that the distance between the vector x̂ẑ and the vector µe

is always less than the distance between the vectors xz and µe when the
angle θ reduces its value. In Theorem 5.1, this observation implies that,
for small θ , C1µ(w) and C3(w) are close to zero.

Table 3 shows the new proximity measures considered. For conve-
nience, we refer to these measures as the normalized measures. We applied
the generic LSSN algorithm using the normalized proximity measures on
the same subset of NETLIB problems previously tested.

Table 4 shows the results obtained with the normalized proxim-
ity measures for some of the tested problems. Comparing the results in
Table 4 with the ones in Tables 1 and 2, we observe that the proximity
measures can be modified so that similar results are obtained in terms of
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Fig. 2. Relationship of the consecutive vectors XZe and X̂Ẑe generated by the algorithm.

Table 3. Normalized proximity measures.

f̃ L2 = (f L2 )2/2n f̃ S2 =2f S2
/n f̃ L =f L f̃ H = (f H )2/2n

f̃ L2
µ =f L2

µ /2n f̃ S
µ =f S

µ /2n f̃
Log
µ =

√
f

Log
µ /2n

the number of iterations required for convergence. However, some of the
measures can still be better than others in terms of the accuracy of the
solution. This latter topic deserves further research.

Table 4. Number of iterations using normalized proximity measures.

Problem f L2 f S2
f L f H f

L2
µ f S

µ f
Log
µ β σ 0

ISRAEL 67 57 67 67 60 67 67 0.25 0.01
” 67 67 67 67 68 68 68 10 0.01

SCSD1 23 23 23 25 27 27 24 0.01 0.01
BLEND 33 29 34 34 28 31 31 0.25 0.001

” 45 45 45 45 46 46 46 0.25 0.5
SCTAP1 42 42 42 42 42 42 42 0.25 0.1
LOTFI 45 65 45 48 45 54 44 0.01 0.01

” 47 49 47 47 48 48 49 10 0.01
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7. Comparison of Point-Proximity Measures

In this section, we consider the class of nonlinear scaled L2-norm
proximity measures defined as

∥∥(XZ)−q(xz−µe)
∥∥2

/µ, for q ≥ 0. We
observe that, for q =1/2, this is the nonlinearly scaled L2-norm proximity
measure (squared) considered in this paper. This is also the measure used
in nonlinear programming problems; see Argaez and Tapia (Ref. 9). For
q = 0, this is the measure ‖xz−µe‖2 /µ used in (general) nonlinear pro-
gramming problems; see Ref. 11.

In Argaez et al. (Ref. 11), it is shown that the use of the latter prox-
imity measure gives poorer results (in terms of total number of iterations)
than the use of the former proximity measure for central-path following
primal-dual methods for nonlinear programming problems. Our numerical
results confirm what is presented in Ref. 11 (which is interesting, since the
measure ‖xz−µe‖ /

√
µ is closely related to f L2

µ ), although we highlight
that, in Ref. 11, different algorithms are used with the different proxim-
ity measures. In our case, the same algorithm (therefore, the same way of
choosing the perturbation parameter µ) was used for comparing the mea-
sures.

Let us now denote

v =
√

µ/xz and φ(vi)= (v
2q−2
i −v

2q
i )2.

Observe that vi =1 for all i =1, . . . , n if and only if if xz=µe. In this case,
φ(vi)=0. A straightforward calculation shows that

∥∥(XZ)−q(xz−µe)
∥∥2

/µ=µ(1−2q)
∥∥∥v2q−2 −v2q

∥∥∥
2

=µ(1−2q)
i=n∑

i=1

(v
2q−2
i −v

2q
i )2

=µ(1−2q)
i=n∑

i=1

φ(vi).

In order to study this class of proximity measures and better understand
the relationship among them, we use the next result which states some
properties of the function φ.

Lemma 7.1. Let q ∈ [0,1] and φ : R+ → {0} ∪ R+ defined as φ(v) =
(v2q−2 −v2q)2. Then:

(i) We have that φ(1)=φ′(1)=0, φ′′(v)>0, and limv→0 φ′′(v)=+∞
for q ∈ [0,1). If q =1, then limv→0 φ′′(v)=−4.
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(ii) If q ∈ [0,1/2), then limv→0 φ′′(v) = 0. If q = 1/2, then
limv→∞ φ′′(v)=2. If q ∈ (1/2,1], then limv→∞ φ′′(v)=+∞.

Proof. In a straightforward computation, we obtain that

φ′′(v)=4((4q2 −q)v4q−2 − (8q2 −10q +3)v4q−4 + (4q2 −9q +5)v4q−6)

=4(a(q)v4q−2 +b(q)v4q−4 + c(q)v4q−6),

with

a(q)= (4q −1)q,

b(q)=−8(q −1/2)(q −3/4),

c(q)=4(q −1)(q −5/4).

If q ∈ [0,1), then,

φ′′(v)=4v4q−6((a(q)v4 +b(q)v2 + c(q)).

Since 4q − 6 < 0 and c(q) > 0, then limv→0 φ′′(v) = +∞. If q = 1, then
φ′′(v)=4(3v2 −1) and we obtain part (i) of the lemma.

In order to prove part (ii), we use the same arguments. If q ∈ [0,1/2),
then

4q −6<4q −4<4q −2<0.

Then,

limv→∞ φ′′(v)=0.

If q = 1/2, then a direct computation gives limvi→∞ φ′′(v) = 2. If q ∈
(1/2,1), then

4q −6<4q −4<0 and 4q −2>0.

Also, a(q)>0. Then, limvi→∞ φ′′(v)=+∞. This is also true if q =1, since
we have

φ′′(v)=4(3v2 −1).

This completes the proof.
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Therefore, the lemma is saying that the nonlinearly scaled L2-norm
measure (squared) is the one, from the q-class previously considered, with
the smallest value of q ∈ [0,1] such that φ′′(vi) is bounded away from zero
when xizi is approaching zero for some i. This property may explain the
better performance for q = 1/2 when comparing with q = 0. However, if
greater values of q >1/2 are used, the best performance is also found for
q =1/2. This may be explained by the observation that q =1/2 is the value
that gives a balance in the exponents of the variables vi .

We conclude this section by mentioning that the nonlinearly scaled
L2-norm naturally arises in the definition of primal-dual interior-point
methods. See Peng, Roos, and Terlaky (Ref. 3) for more details. Based on
this measure, a new class of proximity measures f

Sq
µ =‖w−q −w‖ for q ≥1

with W =√
XZ/µ has been proposed as well as a new class of polynomial

primal-dual methods.

8. Conclusions

In this paper, we considered different proximity measures and studied
their effect on the computation of central path points. It can be seen that
the choice of the proximity measure impacts strongly the numerical behav-
ior of primal-dual interior-point algorithms following the central path.

A generic algorithm for computing the analytic center, based on the
LSSN algorithm proposed in Ref. 12, was introduced and used as a tool
to study the differences between the measures.

We defined two different types of proximity measures, the
point-proximity measure and path-proximity measure. Except the L2-norm
measure and the �1/�2 ratio proximity measure, all the other measures
considered satisfy the so-called barrier property. Our numerical experimen-
tation shows that this property is not strictly necessary in order to obtain
a good numerical behavior of the algorithm.

In terms of the best choice of measure from our experimentation we
can conclude that the logarithmic barrier function is the most adequate
when using point-proximity measures, and the �1/�2 ratio measure is the
best option when the closeness to the central path is more important than
the closeness to a specific central point. However, it is clear that this con-
clusion relies on the choice considered of the neighborhood size. Then, we
presented in this paper an attempt to relate the measures and normalize
them, so that similar numerical behavior is obtained for the algorithm.

Finally, we pointed out some aspects and trends (as nonlinear pro-
gramming or long-step algorithms) where the use and study of the prox-
imity measures is relevant.
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