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Local Convergence of an Inexact-Restoration Method
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Abstract. Local convergence of an inexact-restoration method for
nonlinear programming is proved. Numerical experiments are per-
formed with the objective of evaluating the behavior of the purely
local method against a globally convergent nonlinear programming
algorithm.
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1. Introduction

Inexact-restoration (IR) methods (see Ref. 1–3) are modern versions
of the classical feasible methods (Ref. 4–12) for nonlinear programming.
The main iteration of an IR algorithm consists of two phases: in the resto-
ration phase, infeasibility is reduced; in the optimality phase, a Lagrangian
function is approximately minimized on an appropriate linear approxima-
tion of the constraints. Global convergence is obtained in Ref. 1 by means
of a trust-region strategy where the trust balls are not centered in the
current point, as in several sequential quadratic programming algorithms
(see for example Ref. 13) but in the inexactly restored point. The merit
function used in Ref. 1 is a sharp Lagrangian as defined in Ref. 14, Exam-
ple 11.58.
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Merit functions are useful tools in all branches of optimization. How-
ever, it has been observed that, in many practical situations, the perfor-
mance of optimization algorithms that do not impose the decrease of a
merit function is better than the performance of algorithms whose global
convergence is based on merit functions. The reason is that the merit func-
tion decrease imposes a restrictive path toward the limit point, whereas
sometimes the purely local algorithm climbs over merit function valleys in
an efficient way.

In unconstrained optimization, nonmonotone strategies, where the
decrease of the merit function is not required at every iteration (Ref. 15),
became a popular tool in the last decade.

In nonlinear programming, the more consistent strategy for glob-
alizing algorithms without the use of merit functions seems to be the
filter technique introduced by Fletcher and Leyffer (Ref. 16). Gonzaga,
Karas, and Vanti (Ref. 17) applied the filter strategy to an algorithm
that resembles inexact restoration. Previous attempts of eliminating merit
functions as globalization tools for semifeasible methods go back to
Ref. 18.

It is not difficult to modify poor algorithms in order to obtain
theoretically globally convergent methods. This can be made using both
monotone or nonmonotone strategies. In general, the modification of a
poor local method leads to a global method. A good globally convergent
method is usually good even before the global modification and sometimes
the purely local version is better than the global one. One of the key fea-
tures that allow one to predict practical behavior of an optimization algo-
rithm is the presence of a local convergence theorem with order of con-
vergence. In general, the existence of such a theorem indicates that the
model used at each iteration to mimic the original problem is adequate.
This was our motivation for developing a local convergence theory for the
inexact-restoration algorithm. Since our main objective is to explain and
test the behavior of methods for solving practical problems, the numerical
experiments that complete this paper are directed to evaluate the efficiency
and robustness of the purely local algorithm, against globally convergent
ones.

The local algorithm and its convergence theory is presented in
Section 2. In Section 3, we describe the implementation. Numerical
experiments are shown in Section 4 and conclusions are given in
Section 5.
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2. Local Convergence of Inexact Restoration

In this section, we assume that �⊂R
n is closed and convex. We also

assume that f : R
n → R and h : R

n → R
m admit continuous first deriva-

tives on an open set that contains �. The optimization problem to be
considered is

min f (x), s.t. h(x)=0, x ∈�. (1)

For all x ∈�,λ∈R
m, we define the Lagrangian function L(x,λ) as

L(x,λ)=f (x)+〈h(x), λ〉.
We denote

∇h(x)= (∇h1(x), . . . ,∇hm(x)) and h′(x)=∇h(x)T .

Therefore,

∇L(x,λ)=∇f (x)+∇h(x)λ.

The symbol ‖ · ‖ denotes always the Euclidean norm in this paper. Let
P be the projection operator onto � with respect to ‖ · ‖. We say that
(x∗, λ∗)∈�×R

m is a critical pair of the optimization problem (1) if

h(x∗)=0 and P(x∗ −∇L(x∗, λ∗))−x∗ =0. (2)

Under suitable constraint qualifications, every local minimizer of (1)
defines, with its Lagrange multipliers, a critical pair; see for example Ref.
19. In this section, we analyze a locally convergent algorithm for finding
critical pairs, without any mention to the origin of the nonlinear system
(2). We address the solution of this nonsmooth nonlinear system of equa-
tions using a variation of the inexact-restoration algorithm introduced in
Ref. 1. we denote

G(x,λ)=P(x −∇L(x,λ))−x, ∀x ∈�,λ∈R
m.

Therefore, ‖h(x)‖ is a measure of the feasibility of x ∈ � and ‖G(x,λ)‖
measures the optimality of the pair (x, λ). Given the current iterate x ∈�,
the IR idea is to find first a more feasible point y ∈� and then to find a
more optimal point z such that z∈� and h′(y)(z−y)=0. This condition
will be relaxed in (5).

The inexact-restoration iteration depends on five algorithmic param-
eters θ ∈ [0,1), η ∈ [0,1) and K1,K2,K3 > 0. The first two indicate the
amount of improvement that we require in the feasibility phase and the
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optimality phase, respectively. The role of K1 and K3 is to maintain
the new iterate reasonably close to the current one; see Refs. 1, 3 for
details. The constant K2 gives a tolerance for the linear infeasibility of the
optimality phase minimizer.

Given x ∈ � and λ ∈ R
m, we say that an IR iteration starting from

(x, λ) can be completed or is well defined if we compute y, z∈�,µ∈R
m

such that:

‖h(y)‖≤ θ‖h(x)‖, (3)

‖y −x‖≤K1‖h(x)‖, (4)

‖h′(y)(z−y)‖≤K2‖G(y,λ)‖2, (5)

‖P(z−∇L(z, λ)−∇h(y)(µ−λ))− z‖≤η‖G(y,λ)‖, (6)

‖z−y‖+‖µ−λ‖≤K3‖G(y,λ)‖. (7)

The motivation for the condition (6) comes from considering that, in
the optimality phase, one generally minimizes the Lagrangian L(z, λ) sub-
ject to z∈� and h′(y)(z−y)=0. Writing the optimality conditions for this
subproblem and defining µ−λ as the vector of Lagrange multipliers cor-
responding to these conditions, we obtain

P(z−∇L(z, λ)−∇h(y)(µ−λ))− z=0.

So, inequality (6) is an inexact version of this condition. The stability con-
ditions (4) and (7) express the necessity of staying close to the current
point if this point is close to feasibility or optimality, respectively.

Given the pair (x, λ) ∈ � × R
m, if the IR iteration can be completed

giving (z,µ), we denote

N[θ,η,K1,K2,K3](x, λ)= (z,µ).

For simplicity, we denote always

N(x,λ)=N[θ,η,K1,K2,K3](x, λ)= (z,µ).

Throughout this section, we assume that ∇f and ∇h are Lipschitz
continuous. To simplify the notation and without loss of generality, we
assume that, for the same Lipschitz constant γ and, for all x,w ∈ �, i =
1 . . . ,m,

‖∇f (x)−∇f (w)‖≤γ ‖x −w‖, (8a)

‖∇hi(x)−∇hi(w)‖≤γ ‖x −w‖, (8b)
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‖∇h(x)−∇h(w)‖≤γ ‖x −w‖, (9)

‖h(w)−h(x)−h′(x)(w −x)‖≤γ ‖(w −x)‖2. (10)

We define the following constants, that will be used along this section:

c=max{K1,K2,K3},
c1 =2c+ cγ,

c2 = cγ,

c3 = c+2c2 + c2γ,

c4 = c2γ + c.

Theorem 2.1. Assume that the IR iteration starting from (x, λ) can
be completed and (z,µ)=N(x,λ). Then,

‖h(z)‖≤ θ‖h(x)‖+ c4 [‖G(x,λ)‖+ (c1 + c2‖λ‖)‖h(x)‖]2 , (11)

‖G(z,µ)‖≤η[(c1 + c2‖λ‖)‖h(x)‖+‖G(x,λ)‖]

+c4[‖G(x,λ)‖+ (c1 + c2‖λ‖)‖h(x)‖]2, (12)

‖z−x‖≤ (c3 + c4‖λ‖)‖h(x)‖+ c‖G(x,λ)‖, (13)

‖µ−λ‖≤ (c3 + c4‖λ‖)‖h(x)‖+ c‖G(x,λ)‖. (14)

Proof. By (10),

‖h(z)−h(y)‖≤‖h′(y)(z−y)‖+γ ‖z−y‖2.

So, by (3), (5), and (7),

‖h(z)‖≤ θ‖h(x)‖+ (γ c2 + c)‖G(y,λ)‖2. (15)

Now, by (4) and (8)–(10),

‖G(y,λ)−G(x,λ)‖=‖P(y −∇L(y,λ))−y − (P (x −∇L(x,λ))−x)‖
≤‖y −x‖+‖P(y −∇L(y,λ))−P(x −∇L(x,λ))‖
≤‖y −x‖+‖y −x +∇L(x,λ)−∇L(y,λ)‖
≤ 2‖y −x‖+‖∇f (y)−∇f (x)‖+‖[∇h(x)−∇h(y)]λ‖
≤ 2c‖h(x)‖+γ ‖y −x‖+γ ‖y −x‖‖λ‖
≤ (2c+ cγ + cγ ‖λ‖)‖h(x)‖= (c1 + c2‖λ‖)‖h(x)‖.



234 JOTA: VOL. 127, NO. 2, NOVEMBER 2005

Therefore,

‖G(y,λ)‖≤‖G(x,λ)‖+ (c1 + c2‖λ‖)‖h(x)‖. (16)

So, by (15) and (16),

‖h(z)‖≤ θ‖h(x)‖+ (γ c2 + c)[‖G(x,λ)‖+ (c1 + c2‖λ‖)‖h(x)‖]2.

Therefore, (11) is proved.
Now,

‖P(z−∇L(z,µ))− z‖
=‖P(z−∇f (z)−∇h(z)µ)− z‖
=‖P [z−∇f (z)−∇h(z)(µ−λ)+∇h(z)(µ−λ)−∇h(z)µ]− z‖
=‖P [z−∇f (z)−∇h(z)λ−∇h(z)(µ−λ)]− z‖
=‖P [z−∇L(z, λ)−∇h(y)(µ−λ)+ (∇h(y)−∇h(z))(µ−λ)]− z‖.

Using the property

‖P(v +w)− z‖≤‖P(v +w)−P(v)‖+‖P(v)− z‖≤‖w‖+‖P(v)− z‖,
with

v = z−∇L(z, λ)−∇h(y)(µ−λ),

w = (∇h(y)−∇h(z))(µ−λ),

by (6), (8)–(10), and (7), we get

‖P(z−∇L(z,µ))− z‖
≤‖P [z−∇L(z, λ)−∇h(y)(µ−λ)]− z‖+‖∇h(y)−∇h(z)‖‖µ−λ‖
≤η‖G(y,λ)‖+γ ‖y−z‖‖µ−λ‖≤η‖G(y,λ)‖+γ (‖y−z‖+‖µ−λ‖)2

≤η‖G(y,λ)‖+γ c2‖G(y,λ)‖2.

So, by (16),

‖G(z,µ)‖≤η[‖G(x,λ)‖+ (c1 + c2‖λ‖)‖h(x)‖]

+γ c2[‖G(x,λ)‖+ (c1 + c2‖λ‖)‖h(x)‖]2.

Therefore, (12) is also proved.
Now, by (4), (7), and (16),

‖z−x‖≤‖y −x‖+‖z−y‖≤ c‖h(x)‖+ c‖G(y,λ)‖
≤ c‖h(x)‖+ c[‖G(x,λ)‖+ (2c2 + c2γ + c2γ ‖λ‖)‖h(x)‖]

= (c+2c2 + c2γ + c2γ ‖λ‖)‖h(x)‖+ c‖G(x,λ)‖.
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So, (13) is proved.
Moreover, by (7) and (16),

‖µ−λ‖≤ c‖G(y,λ)‖≤ c‖G(x,λ)‖+ (2c2 + c2γ + c2γ ‖λ‖)‖h(x)‖.
Thus, (14) is also proved.

From now on, we assume that (x̄, λ̄) ∈ � × R
m is a critical pair. So,

h(x̄)=0 and G(x̄, λ̄)=0.
We define also

M =2‖λ̄‖+1, c5 = c1 + c2M,

and H ∈R
2×2 by

H =
(

θ 0
c5 η

)
.

The eigenvalues of H are θ and η. Since both are strictly smaller than 1,
given an arbitrary ε > 0, there exists a vector norm ‖ · ‖H on R

2 such
that

‖H‖H =ρ ≤max{θ, η}+ ε <1. (17)

Moreover, this norm is monotone in the sense that

0≤v ≤w ⇒‖v‖H ≤‖w‖H .

From now on, we fix a contraction parameter r such that

ρ <r <1. (18)

Theorem 2.2. There exist ε1 > 0, δ1 > 0, β > 0 such that, if r is given
by (18), ‖x − x̄‖≤ ε1,‖λ− λ̄‖≤ δ1, and the IR iteration from (x, λ) is well
defined, with (z,µ)=N(x,λ), then

‖λ‖≤M, (19a)

∥∥∥∥∥∥
⎛
⎝ ‖h(z)‖

‖G(z,µ)‖

⎞
⎠

∥∥∥∥∥∥
H

≤ r

∥∥∥∥∥∥
⎛
⎝ ‖h(x)‖

‖G(x,λ)‖

⎞
⎠

∥∥∥∥∥∥
H

, (19b)

‖z−x‖≤β

∥∥∥∥∥∥
⎛
⎝ ‖h(x)‖

‖G(x,λ)‖

⎞
⎠

∥∥∥∥∥∥
H

, (20)
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‖µ−λ‖≤β

∥∥∥∥∥∥
⎛
⎝ ‖h(x)‖

‖G(x,λ)‖

⎞
⎠

∥∥∥∥∥∥
H

. (21)

Proof. Take

δ0 =‖λ̄‖+1.

Then,

‖λ− λ̄‖≤ δ0.

So,

‖λ‖≤‖λ̄‖+ δ0;

thus,

‖λ‖≤M.

By (11) and (12), if ‖λ− λ̄‖≤ δ0 and the iteration is well defined, we have
that

‖h(z)‖≤ θ‖h(x)‖+ c4[‖G(x,λ)‖+ (c1 + c2M)‖h(x)‖]2,

‖G(z,µ)‖≤ (c1 + c2M)‖h(x)‖+η‖G(x,λ)‖+ c4[‖G(x,λ)‖
+(c1 + c2M)‖h(x)‖]2.

So, since the norm ‖ · ‖H is monotone,

∥∥∥∥∥∥
⎛
⎝ ‖h(z)‖

‖G(z,µ)‖

⎞
⎠

∥∥∥∥∥∥
H

≤
∥∥∥∥H

( ‖h(x)‖
‖G(x,λ)‖

)∥∥∥∥
H

+ c4

∥∥∥∥
(

[‖G(x,λ)‖+ (c1 + c2M)‖h(x)‖]2

[‖G(x,λ)‖+ (c1 + c2M)‖h(x)‖]2

)∥∥∥∥
H

≤ρ

∥∥∥∥
( ‖h(x)‖

‖G(x,λ)‖
)∥∥∥∥

H

+ c4[‖G(x,λ)‖+ (c1 + c2M)‖h(x)‖]2 ×
∥∥∥∥
(

1
1

)∥∥∥∥
H

.

Now, by the equivalence of norms in R
2, there exists ᾱ >0 such that, for

all a,b >0,
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(c1 + c2M)a +b≤ ᾱ

∥∥∥∥∥∥
⎛
⎝a

b

⎞
⎠

∥∥∥∥∥∥
H

;

so,

∥∥∥∥
( ‖h(z)‖

‖G(z,u)‖
)∥∥∥∥

H

≤ρ

∥∥∥∥
( ‖h(x)‖

‖G(x,λ)‖
)∥∥∥∥

H

+c4ᾱ

∥∥∥∥
( ‖h(x)‖

‖G(x,λ)‖
)∥∥∥∥

2

H

∥∥∥∥
(

1
1

)∥∥∥∥
H

.

Since ‖h(x)‖ and ‖G(x,λ)‖ are continuous and vanish at x̄, λ̄, taking δ1
and ε1 small enough, with δ1 ≤ δ0, we obtain (19).

Now, let us prove (20) and (21). By (13) and (14), if ‖x − x̄‖≤ε1,‖λ−
λ̄‖≤ δ1, and if the iteration is well defined,

max{‖z−x‖,‖µ−λ‖}≤ (c3 + c4M)‖h(x)‖+ c‖G(x,λ)‖. (22)

But by the equivalence of norms in R
2, there exists β >0 such that, for all

a, b>0,

(c3 + c4M)a + cb≤β

∥∥∥∥
(

a

b

)∥∥∥∥
H

.

Therefore, taking

a =‖h(x)‖ and b=‖G(x,λ)‖,

(20) and (21) follow from (22).

From now on, for all x ∈ � such that ‖x − x̄‖ ≤ ε1 and ‖λ − λ̄‖ ≤ δ1,
we define

R(x,λ)=
∥∥∥∥
( ‖h(x)‖

‖G(x,λ)‖
)∥∥∥∥

H

.

In the next theorem, we prove that, if (x0, λ0) is close enough to the
critical pair (x̄, λ̄), the sequence generated by (xk+1, λk+1)=N(xk, λk) con-
verges to a critical pair. Uniqueness of the critical pair is not assumed.
Convergence at a linear rate can take place for a different critical pair
than (x̄, λ̄).
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Theorem 2.3. Let (x̄, λ̄) be a critical pair. Let ρ and r be given by
(17) and (18). Assume that ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] are such that the IR
iteration starting from (x, λ) can be completed whenever ‖x − x̄‖≤ ε2 and
‖λ− λ̄‖≤ δ2. For all k = 0,1,2, . . . , if ‖xk − x̄‖≤ ε2 and ‖λk − λ̄‖≤ δ2, we
define (xk+1, λk+1)=N(xk, λk). Then, there exist ε3 ∈ (0, ε2] and δ3 ∈ (0, δ2]
such that, taking ‖x0 − x̄‖≤ ε3 and ‖λ0 − λ̄‖≤ ε3, we have:

(a) The whole sequence {xk}, k =0,1,2, . . . , is well defined and

‖xk − x̄‖≤ ε2, ‖λk − λ̄‖≤ δ2, for all k =0,1,2, . . . . (23)

(b) R(xk+1, λk+1) ≤ rR(xk, λk) and R(xk, λk) ≤ rkR(x0, λ0) for all k =
0,1,2, . . . .

(c) The sequence {(xk, λk)} is convergent to a critical pair (x∗, λ∗).
(d) For all k =0,1,2, . . . ,

‖xk −x∗‖≤ [
βrk/(1− r)

]
R(x0, λ0),

‖λk −λ∗‖≤ [
βrk/(1− r)

]
R(x0, λ0),

(24)

where β >0 is the constant defined in the thesis of Theorem 2.2.

Proof. Define

�(ε, δ)=max{R(x,λ)| ‖x − x̄‖≤ ε,‖λ− λ̄‖≤ δ}.
By the continuity of R(x,λ) and the fact that R(x̄, λ̄)=0, we have that

lim
ε→0,δ→0

�(ε, δ)=0.

Let ε3 ≤ ε2/2 and δ3 ≤ δ2/2 such that

�(ε3, δ3)≤R(x0, λ0) and β�(ε3, δ3)/(1− r)≤min{ε2, δ2}/2.

Let x0 ∈�,λ0 ∈R
m be such that ‖x0 − x̄‖≤ ε3,‖λ0 − λ̄‖≤ δ3. Then,

ε3 +βR(x0, λ0)/(1− r)≤ ε2, δ3 +βR(x0, λ0)/(1− r)≤ δ2. (25)

Let us prove by induction on k that xk, λk are well defined,

R(xk, λk)≤ rkR(x0, λ0), (26)

‖xk − x̄‖≤ ε3 +βR(x0, λ0)

k−1∑
j=0

rj , (27)
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‖λk − λ̄‖≤ δ3 +βR(x0, λ0)

k−1∑
j=0

rj . (28)

For k =0, (26), (27), (28) are obviously true. Assume as inductive hypoth-
esis, that (26), (27), (28) hold for some k. Then, by (25), since

k−1∑
j=0

rj ≤
∞∑

j=0

rj =1/(1− r),

we have that

‖xk − x̄‖≤ ε2 ≤ ε1, ‖λk − λ̄‖≤ δ2 ≤ δ1.

Therefore, by the hypothesis of the theorem, xk+1 and λk+1 are well
defined. Then, by (19),

R(xk+1, λk+1)≤ rR(xk, λk).

So, by the inductive hypothesis (26),

R(xk+1, λk+1)≤ rk+1R(x0, λ0).

Now, by Theorem 2.2 and the inductive hypothesis,

‖xk+1 − x̄‖≤‖xk − x̄‖+‖xk+1 −xk‖

≤ ε3 +βR(x0, λ0)

k−1∑
j=0

rj +βR(xk, λk)

≤ ε3 +βR(x0, λ0)

k−1∑
j=0

rj +βrkR(x0, λ0)

≤ ε3 +βR(x0, λ0)

k∑
j=0

rj .

Therefore, (27) holds replacing k by k+1. Analogously, we prove that (28)
holds replacing k by k+1. So far, the inductive proof is finished. Thus, the
sequence is well defined,

‖xk − x̄‖≤ ε3 +βR(x0, λ0)

k−1∑
j=0

rj

≤ ε3 +βR(x0, λ0)/(1− r)≤ ε2, (29)
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‖λk − λ̄‖≤ δ3 +βR(x0, λ0)

k−1∑
j=0

rj

≤ δ3 +βR(x0, λ0)/(1− r)≤ δ2, (30)

for all k =0,1,2, . . . . Thus, (a) and (b) proved.
Now, by Theorem 2.2 and (b), for all k =0,1,2, . . . we have that

‖xk+1 −xk‖≤βR(xk, λk)≤βrkR(x0, λ0),

‖λk+1 −λk‖≤βR(xk, λk)≤βrkR(x0, λ0).

This means that, for all k, j =0,1,2, . . . ,

‖xk+j −xk‖≤β
(
rk +· · ·+ rk+j−1

)
R(x0, λ0)

≤
[
βrk/(1− r)

]
R(x0, λ0),

‖λk+j −λk‖≤β
(
rk +· · ·+ rk+j−1

)
R(x0, λ0)

≤
[
βrk/(1− r)

]
R(x0, λ0).

Therefore, {xk} and {λk} are Cauchy sequences, thus convergent to x∗ ∈�

and λ∗ ∈R
m, respectively. Taking limits, we have the error estimates

‖xk −x∗‖≤
[
βrk/(1− r)

]
R(x0, λ0),

‖λk −λ∗‖≤
[
βrk/(1− r)

]
R(x0, λ0).

From R(xk, λk) ≤ rkR(x0, λ0) and by the continuity of R we obtain that
R(x∗, λ∗)=0. Therefore, the theorem is proved.

Remark 2.1. We used the fact that ‖ ·‖ is the Euclidean norm in the
theorems above because the properties of the projection operator P are
part of the proving arguments. In the particular case in which �=R

n, the
projection P is the identity. In this case, it is easy to see that the results
hold for an arbitrary norm.

Theorem 2.4. In addition to the hypotheses of Theorem 2.3, assume
that the parameters θ and η depend on k and tend to zero. Then,
R(xk, λk) tends to zero Q-superlinearly and (xk, λk) tends to (x∗, λ∗)
R-superlinearly.
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Proof. The fact that R(xk, λk) tends to zero Q-superlinearly follows
from Part (b) of Theorem 2.3. By (20) and (21) ‖xk+1 −xk‖+‖λk+1 −λk‖
is bounded by a sequence that tends superlinearly to zero. This implies
that (xk+1 −x∗, λk+1 −λ∗) tends R-superlinearly to zero.

Theorem 2.5. In addition to the hypotheses of Theorem 2.3, assume
that θ = η = 0. Then, R(xk, λk) converges Q-quadratically to zero and the
convergence of (xk, λk) to (x∗, λ∗) is R-quadratic.

Proof. From (11) and (12), R(xk, λk) tends to zero Q-quadratically.
By (20) and (21) ‖xk+1 −xk‖+‖λk+1 −λk‖ is bounded by a sequence that
tends quadratically to zero. This implies that (xk+1 − x∗, λk+1 − λ∗) tends
R-quadratically to zero.

Remark 2.2. Although somewhat cumbersome, it is not difficult to
prove that, under some classical assumptions, the hypothesis of Theo-
rem 2.3 holds. The more simple case occurs when x̄ is an interior point
of �. In this case, the critical pair x̄, λ̄ is a solution of the nonlinear
system

h(x)=0, ∇f (x)+∇h(x)λ=0.

If the Jacobian of this nonlinear system is nonsingular at (x̄, λ̄), Brent’s
generalized method (Ref. 20, 21) defines an admissible iteration for con-
stants that depend only on (x̄, λ̄). The basic properties of this method
guarantee that the iteration is well defined in a neighborhood of the crit-
ical pair and that the conditions (3)–(7) are satisfied.

The case in which x̄ is not interior can be reduced to the interior case
after some manipulations assuming the nonsingularity of a reduced non-
linear system.

3. Implementation

From now on, we define

�={
x ∈R

n|�≤x ≤u
}
.

Algorithm 3.1 is an implementation of (3)–(7). Suppose that the initial
pair (x0, λ0) is given, x0 ∈ �, as well as the algorithmic parameters θ ∈
[0,1), η∈ [0,1),K1,K2, K̃3 >0, and ε≥0. The algorithm describes the steps
to obtain (xk+1, λk+1) starting from (xk, λk).
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Algorithm 3.1.

Step 1. Feasibility Phase. Solve approximately the minimization
problem

min
y

‖h(y)‖2, s.t. ‖y −xk‖∞ ≤K1‖h(xk)‖, y ∈�. (31)

The approximate solution yk is asked to satisfy

‖h(yk)‖≤max{ε, θ‖h(xk)‖}. (32)

If not able to find such an approximate solution, stop the
execution declaring “Failure at the Feasibility Phase”.

Step 2. Test solution. If ‖h(yk)‖∞ ≤ ε and ‖G(yk, λk)‖∞ ≤ ε, termi-
nate the execution of the algorithm. The pair (yk, λk) is an
approximate solution of the problem (exact solution if ε=0).

Step 3. Optimality Phase. Obtain an approximate solution of

minzL(z, λk), s.t. h′(yk)(z−yk)=0,

‖z−yk‖∞ ≤ K̃3 max{1,‖yk‖∞}, z∈�. (33)

Let (λk+1 − λk) ∈ R
m be the vector of Lagrange multipliers

associated to the approximate solution xk+1 of (33). This
approximate solution is asked to satisfy

‖h′(yk)(xk+1 −yk)‖≤max{ε,K2‖G(yk, λk)‖2}, (34)

‖P̃ [xk+1 −∇L(xk+1, λk)−∇h(yk)(λk+1 −λk)]−xk+1‖
≤max{ε, η‖G(yk, λk)‖}, (35)

where P̃ is de Euclidean projection operator onto the box

�∩{z∈R
n| ‖z−yk‖∞ ≤ K̃3 max{1,‖yk‖∞}.

If not able to satisfy these requirements, we declare “Failure
at the Optimality Phase”.

Approximate solutions that satisfy (34)–(35) exist since the feasible
set is nonempty and compact. Therefore, the diagnostic of failure at the
optimality phase can only represent lack of success of the algorithm used
to solve the linearly constrained optimization problem (33). This failure
never occurred in our experiments. The situation is somewhat different in
the feasibility phase, because in this case it is possible to incorporate the
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theoretically required steplength control in the definition of the optimiza-
tion problem (31). In this case, failure might be a characteristic of the
problem. For example, “Failure at the Feasibility Phase” necessarily occurs
if xk is a global minimizer of (31) where h(xk) �=0.

It is well known by practitioners that, in the process of solving non-
linear systems, locally convergent methods can be improved by the simple
device of maintaining the distance between consecutive iterates under con-
trol. See Ref. 22. This is the role of the constraint

‖z−yk‖∞ ≤ K̃3 max{1,‖yk‖∞}

in (33).
We used Gencan (Ref. 23) for solving (31) and Algencan, a straight-

forward augmented lagrangian algorithm based on Gencan for solving
(33). Very likely, these are not the best choices from the point of view
of efficiency, but they serve for the main questions that we want to be
answered by the numerical experiments, which are related with robust-
ness. Nevertheless, we mention that, in recent works (Ref. 24, 25), excellent
numerical behavior of augmented lagrangian algorithms applied to linearly
constrained minimization has been reported.

4. Numerical Experiments

The question that we want to answer by means of numerical
experiments may be formulated as follows: How bad is the local inex-
act-restoration method when compared to globally convergent nonlinear-
programming algorithms? Of course, the key point is robustness. The
comparison between local and global methods in nonlinear optimization
is sometimes surprising. As far as in 1979, Moré and Cosnard (Ref. 22)
published a numerical study where Brent’s method for solving nonlinear
systems (Ref. 26, 27) appeared to be better than globally convergent non-
linear solvers when a suitable control for the steplength was used. The
analogy between the local inexact-restoration method and the generalized
Brown-Brent methods (Ref. 20) as well as the natural way in which step-
length controls appear in our implementation increases the motivation for
the numerical study.

We selected all the nonlinearly constrained problems with quadratic
or nonlinear objective function from the Cute collection (Ref. 28). Imple-
mentation details are given in Ref. 29. A comparison against Lancelot
(Ref. 30) is given in Table 1 of Ref. 29. Surprisingly, for the set of prob-
lems considered, Algorithm 3.1 was at least as robust as Lancelot.
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5. Conclusions

Inexact-restoration algorithms for nonlinear programming are based on
the inexact achievement of feasibility at each iteration followed by the inex-
act minimization of the Lagrangian on a linear approximation of the con-
straints. Different methods can be used at both phases of the IR algorithm.
In this paper we proved a local convergence result for an inexact-restora-
tion algorithm. Essentially, the theorem says that, if the IR iterations is well
defined in a neighborhood of the solution, then linear convergence takes
places to some solution of the KKT system. Under additional assumptions,
the convergence is superlinear or quadratic.

Based on the fact that, in Newtonian methods for nonlinear sys-
tems of equations, practical convergence can be improved dramatically by
means of simple steplength control modifications, we proposed a modifi-
cation of the optimality phase of IR that maintains implicitly the step-
length under control. The proposed modification resembles a trust-region
constraint added to the natural constraints of the feasibility phase. How-
ever, this trust-region constraint is fixed and not reduced according to the
merit function decrease as in Ref. 1.

Numerical experiments showed that the IR algorithm with this simple
modification is at least as robust as a well established globally convergent
nonlinear programming method in a set of problems taken from the Cute
collection.

The conclusion of this work is not that one should abandon the pro-
ject of defining algorithms with the best possible convergence theories,
including global convergence, but to put in evidence what kind of prac-
tical effects one should expect from globally convergent methods (with or
without merit functions). It seems that one should be tolerant with local
methods that use a lot of information about the true problem, as inexact
restoration does, and that the main effect of global modifications should
be to maintain the steplength under control. Probably, this reinforces the
importance of working with filter strategies and with algorithms that do
not force the merit function decrease at every iteration.

The results of this paper can be extended straightforwardly to the
solution of KKT systems of the following type:

h(x)=0, x ∈�, P (x −F(x)−∇h(x)λ)−x =0.

Essentially, the modifications in the proof required to consider these
systems consist in the judicious replacement of ∇f (x) by F(x) in the proper
places. This opens the path for the application of inexact restoration to
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variational inequalities, equilibrium problems, and other extensions of con-
strained optimization.
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1. Martínez, J. M., Inexact-Restoration Method with Lagrangian Tangent
Decrease and New Merit Function for Nonlinear Programming, Journal of
Optimization Theory and Applications, Vol. 111, pp. 39–58, 2001.
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