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Local Convexity on Smooth Manifolds1,2

T. Rapcsák3

Abstract. Some properties of the spaces of paths are studied in
order to define and characterize the local convexity of sets belong-
ing to smooth manifolds and the local convexity of functions defined
on local convex sets of smooth manifolds.
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1. Introduction

A convex function has convex less-equal level sets. That the converse
is not true was realized by De Finetti (Ref. 1.). The problem of level sets,
formulated and discussed first by Fenchel in 1951, is as follows (see Ref.
2, p. 117): Under what conditions a nested family of closed convex sets is
the family of level sets of a convex function?

Fenchel (Refs. 2–3) gave necessary and sufficient conditions for a con-
vex function with prescribed level sets, furthermore, for a smooth convex
function under the additional assumption that the given subsets are the
level sets of a twice continuously differentiable function. In the first case,
seven conditions were deduced; while the first six are simple and intuitive,
the seventh is rather complicated. This fact and the additional assumption
in the smooth case, according to which the given subsets are the level sets
of a twice continuously differentiable function, seem to be the motivation
of Roberts and Varberg (Ref. 4, p. 271) is raising the following question
of level sets among some unsolved problems:“What nice conditions on a
nested family of convex sets will ensure that it is the family of level sets
of a convex function?”
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The Fenchel problem of level sets consists of different subproblems. If
the union of the level sets A⊆Rn is a convex set, then a quasiconvex func-
tion can be constructed with the prescribed level sets ( Fenchel, Ref. 2), so
the original question now reads as finding the conditions under which the
level sets of a quasiconvex function are those of a convex function. In
the case of a convex set A ⊆ Rn and a continuous quasiconvex function,
the question is to characterize the convex image transformable functions.

In the theory of economics, Debreu (Ref. 5) proved his famous
theorem on the representation of a continuous and complete preference
ordering by a utility function. In economics, it is important to express a
continuous, complete, and convex preference ordering by a concave utility
function, or in other words to transform a continuous quasiconcave func-
tion into a concave function preserving the same upper-level set mapping.
Crouzeix (Ref. 6) and Kannai (Refs. 7–8) studied the problem of concavifi-
ability of convex preference orderings (i.e., the problem of the existence of
a concave function having the same level sets as a given continuous quasi-
concave function) and they developed the Fenchel results further.

In the smooth case, the original problem is divided into two parts.
The first part is to give conditions for the existence of a smooth pseudo-
convex function with the prescribed level sets; the second part is to char-
acterize the smooth convex image transformable functions.

Rapcsák (Ref. 9) gave an explicit formulation of the gradient of the
class of smooth pseudolinear functions, which results in the solution of the
first part of the Fenchel problem in the case of a nested family of con-
vex sets whose boundaries are hyperplanes defining an open convex set.
This result was generalized by Rapcsák (Refs. 10–11) for the case where
the boundaries of the nested family of convex sets in Rn+1 are given by
n-dimensional differentiable manifolds of class C3 and the convex sets
determine an open or closed convex set in Rn+1.

A first complete set of necessary and sufficient conditions for the sec-
ond part of the level set problem was derived by Fenchel (Refs. 2–3).
Later, several contributions were published by different authors and these
results are presented within a unified framework in the book of Avriel
et al. (Ref. 12).

In this paper and in a companion paper (Ref. 20), a new and nice
geometric necessary and sufficient condition is given for the existence of
a smooth convex function with the level sets of a given smooth pseudo-
convex function, this is a new solution for the second part of the Fenchel
problem of level sets in the smooth case. The main theorem is proved by
using a general differential geometric tool, the geometry of paths defined
on smooth manifolds which is the subject of this paper. This approach
provides a complete geometric characterization of a new subclass of
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pseudoconvex functions originating from analytical mechanics, an exten-
sion of the local-global property of nonlinear optimization to nonconvex
open sets, a powerful tool (a linear connection which does not depend on
either the original data or the Riemannian metric) to improve the struc-
ture of a function or a problem from the optimization point of view, and a
new view on convexlike and generalized convexlike mappings in the image
analysis; see e.g. Giannessi (Refs. 13–14), and Mastroeni et al. (Ref. 15).

In Section 2, some properties of the spaces of paths are studied in
order to define and characterize the local convexity of sets belonging to
smooth manifolds and the local convexity of functions defined on the local
convex sets of smooth manifolds.

2. Space of Paths

Let M be a smooth C2 n-dimensional connected manifold and let m

be a point in M. The tangent space T Mm at m is an n-dimensional vec-
tor space. A 2-covariant tensor at m is a real-valued 2-linear function on
T Mm × T Mm. A 2-covariant tensor is positive semidefinite [definite] at a
point m ∈ M if the corresponding matrix is positive semidefinite [definite]
on T Mm × T Mm in any coordinate representation. A 2-covariant tensor
field is positive semidefinite [definite] on a set A⊆M if it is a positive semi-
definite [definite] tensor at every point of A. A path γ on M is a smooth
mapping γ : [0,1] → M. The space of paths is based on the differentiable
structure of the manifold.

Definition 2.1. The mapping � is a linear connection on an open
subset A of M under these conditions:

(i) a set of n3 smooth (at least continuously differentiable) functions

�
l3
l1l2

, l1, l2, l3 =1, . . . , n,

is given in every system of local coordinates on A;
(ii) the sets of functions �

l3
l1l2

and �
l3
l1l2

, l1, l2, l3 = 1, . . . , n, given in a
coordinate representation x and u, respectively, are transformed by
the rule

�
l3
l1l2

=�
k3
k1k2

∂xl3

∂uk3

∂uk1

∂xl1

∂uk2

∂xl2

+ ∂2ul3

∂xl1∂xl2

∂xl3

∂uk3
,

for all l1, l2, l3, k1, k2, k3 =1, . . . , n, (1)

where two coinciding indices mean summation.
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Definition 2.2. A �-geodesics, i.e. a geodesics of a linear connection
� on an open set A⊆M, is a path such that each coordinate expression
of it satisfies the differential equations

x
′′
l3
(t)+�

l3
l1l2

(x(t))x′
l1
(t)x′

l2
(t)=0, t ∈ [0,1], l3 =1, . . . , n. (2)

Let

� =




�1

�2

...

�n


 ,

where �i, i = 1, . . . , n, are n × n matrices. Then, the �-geodesics can be
given in a coordinate neighborhood as follows:

x
′′
(t)=−x′(t)T �(x(t))x′(t), t ∈ [0,1]. (3)

By the theory of differential equations, equation (3) has a solution at
every point and in every direction. Let Rn,R,R+,R≥ be the n-dimen-
sional Euclidean space, the 1-dimensional Euclidean space consisting of
real numbers, positive real numbers, and nonnegative real numbers, respec-
tively.

Definition 2.3. Let � be a linear connection on an open subset A⊆
M. Then, A is �-convex if, for all m1,m2 ∈A, there exists a �-geodesics γ

such that γ (0)=m1, γ (1)=m2, and γ ⊆A.

A function f :A→R is strictly �-convex on a �-convex set A if it is
(strictly) convex along all the �-geodesics belonging to A.

By the definition, the following inequalities hold for every �-geodesic
belonging to A and joining two arbitrary points m1,m2 ∈A:

f (γ (t))≤ (1− t)f (γ (0))+ tf (γ (1)), t ∈ [0,1], (4)

where γ (0)=m1, γ (1)=m2.
If �

l3
l1l2

=0, l1, l2, l3 =1, . . . , n, then the �-convex set A⊆Rn is a con-
vex set and the �-convex function f : A → R is a convex function on A,
where

γ (t)=m1 + t (m2 −m1), t ∈ [0,1]. (5)

A function f : A → R defined on a �-convex set A ⊆ M is strictly
�-concave if −f is (strictly) �-convex.
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Geodesic convexity derived from Riemannian metrics on Riemannian
manifolds was studied in details from the differential geometric point of
view in Udriste (Ref. 16) and from optimization theoretical point of view
in Rapcsák (Ref. 11). Here, these approaches are developed further. The
following statements are direct generalization of the results related to geo-
desic convexity.

Lemma 2.1.

(i) If A ⊆ M is a �-convex set and if gi : A → R, i = 1, . . . , l, are
�-convex functions, then the intersection of the level sets

l⋂
i=1

Agi(m0)={m∈A|gi(m)≤gi(m0),m0 ∈A}, i =1, . . . , l, (6)

is a �-convex set.
(ii) If A ⊆ M is a �-convex set and if gi : A → R, i = 1, . . . , l, are

�-convex functions, then the nonnegative linear combinations of
�-convex functions are �-convex on A.

(iii) If A⊆M is a �-convex set, if f :A→R a �-convex function, and
if φ :R→R a nondecreasing convex function, then φf is �-convex
on A.

Theorem 2.1. If A⊆M is a �-convex set and if f :A→R a �-convex
function, then a local minimum of f is a global minimum.

Definition 2.4. Let � be a linear connection on an open subset A⊆
M. Then A is locally �-convex if a neighborhood U (x) of every point x ∈
A exists such that all the pairs of points m1,m2 ∈U (x) can be joined by a
unique �-geodesic belonging to U(x); i.e.,

γ (0)=m1, γ (1)=m2, γ ⊆U(x).

A function f : A → R is locally (strictly) �-convex on A if A is a
locally �-convex set and f is (strictly) convex along all the �-geodesics
belonging to a �-convex neighborhood of every point of A.

The next statement demonstrates the importance of Definition 2.4.

Theorem 2.2. Whitehead Theorem (Ref. 17). Let W(M;�) be the set
of all geodesics of some linear connection � on a smooth n-dimensional
manifold M. Then, M is locally convex with respect to W(M;�); i.e.,
M is locally �-convex.
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Theorem 2.3. If A ⊆ M is an open set, if f : A → R is a differen-
tiable function, and if � is a linear connection on A, then f is locally
(strictly) �-convex on A iff, for every pair of points m1 ∈A, m2 ∈A in any
�-convex neighborhood and for a connecting geodesics γ (t), t ∈ [0,1],
γ (0)=m1, γ (1)=m2,

f (m2)−f (m1)(>)≥df (m1)/dt, (7)

where df (m1)/dt denotes the derivative of df (γ (t))/dt at the point 0.

Proof. By Definition 2.4, a function f is locally (strictly) �-convex
on A if A is a locally �-convex set and if f is (strictly) convex along
all the �-geodesics belonging to a �-convex neighborhood of every point
of A. Since A is an open set, by the Whitehead theorem A is locally
�-convex. Thus, it is sufficient to verify the statement only in an arbitrary
�-convex neighborhood.

The local (strict) �-convexity of f in a �-convex neighborhood
means the (strict) convexity of the single-variable function along the
connecting �-geodesics for every pair of points in this �-convex neigh-
borhood. By the first-order characterization, a differentiable function
f (γ (t)), t ∈ [0,1], is (strictly) convex iff formula (7) holds, from which the
statement follows.

By formula (7), the local (strict) �-convexity of the function f is
equivalent to the local �-invexity (Ref. 18); moreover, in the case of every
pair of points (m1,m2) ∈ A × A, the invexity map satisfies η(m1,m2) ∈
T Mm1 and is equal to the tangent vector at m1 of the �-geodesics joining
the points m1 and m2.

Definition 2.5. A point m of the n-dimensional manifold M is said to
be a critical (stationary) point of the smooth map f :M →R if the deriv-
ative of the function f at that point is equal to zero.

Corollary 2.1. Let A ⊆ M be an open �-convex set and let f : A →
R be a differentiable (strictly) �-convex function. Then, every stationary
point of f is a (strict) global minimum point. Moreover, the set of global
minimum points is �-convex.

Monotonicity notions studied for geodesic convex functions by Udriste
(Ref. 16) can be applied directly to �-convex functions.

Definition 2.6. Let A ⊆ M be an open set, and let f : A → R be a
differentiable function. Then df/dt is locally (strictly) �-monotone on A
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if, for every pair of points m1 ∈A,m2 ∈A, in any �-convex neighborhood,
and for a connecting geodesics γ (t),0≤ t ≤1, γ (0)=m1, γ (1)=m2,

df (m1)/dt −df (m2)/dt (<)≤0. (8)

If M = Rn or if we consider a coordinate representation, then the
(strict) �-monotonicity of df/dt means that

∇f (m1)γ
′(0)−∇f (m2)γ

′(1)(<)≤0, (9)

where the row vector ∇f denotes the gradient of the function f .

Theorem 2.4. Let A⊆M be an open set and let f :A→R be a differ-
entiable function. Then, f is locally (strictly) �-convex on A iff df/dt is
locally (strictly) �-monotone on A.

Let us introduce the notation

V T � =
n∑

i=1

vi�
i, (10)

where the vector V = (v1, . . . , vn)
T belongs to an n-dimensional vector

space; let C2(A,R) denote the set of all twice continuously differentiable
functions of A into R.

Definition 2.7. The covariant derivative of a smooth function on the
manifold M is equal to the derivative in any coordinate representation. A
vector field V is defined on the manifold M as a smooth map V :M →Rn

such that V (m)∈T Mm for all m∈M. The covariant derivative with respect
to a linear connection � on a covariant vector field V is equal to

D�V =JV −V T �, (11)

in any coordinate representation, where JV denotes the Jacobian matrix
of the corresponding vector field at each point of an arbitrary coordinate
neighborhood.

Theorem 2.5. If A ⊆ M is an open set, if f ∈ C2(A,R), and if � is
a linear connection on A, then f is locally (strictly) �-convex on A iff
the second covariant derivative tensor field D2

�f of the function f with
respect to � is (strictly) positive semidefinite on A.
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Proof. By Definition 2.4, a function f is locally (strictly) �-convex
on A if A is a locally �-convex set and f is (strictly) convex along all the
�-geodesics belonging to a �-convex neighborhood of every point of A.
Since A is an open set, by the Whitehead theorem A is locally �-convex.
Thus, it, is sufficient to verify the statement only in an arbitrary �-convex
neighborhood.

Consider an arbitrary coordinate representation x(u), (u)∈U ⊆Rn, of
the manifold M in any �-convex neighborhood U of A. Then, a �-geode-
sics joining two arbitrary points in this neighborhood can be given in the
form x(u(t)), t ∈ [0,1]. Since all the geodesics joining two arbitrary points
in this neighborhood can be extended to an open interval (t1, t2), the
�-convexity of the single variable C2 function f (x(u(t))), t ∈ (t1, t2), is
equivalent to the nonnegativeness of the second derivative at every point.

By differentiating twice the function f (x(u(t))), t ∈ (t1, t2), we obtain
that

(d/dt)f (x(u(t)))=∇xf (x(u(t)))Jx(u(t))u′(t), (12a)

(d2/dt2)f (x(u(t)))=u′(t)T Jx(u(t))T Hxf (x(u(t)))Jx(u(t))u′(t)
+∇xf (x(u(t)))

(
u′(t)T Hux(u(t))u′(t)

)

+∇xf (x(u(t)))Jx(u(t))u′′(t). (12b)

As the curve x(u(t)), t ∈ (t1, t2), is a geodesics, we can substitute the fol-
lowing system of differential equations for u′′(t) :

u′′(t)=−u′(t)T �(u(t))u′(t), t ∈ (t1, t2), (13)

where the n×n×n matrix � contains the second Christoffel symbols and
u′(t), t ∈ (t1, t2), are the tangent vectors. Considering only geodesics at each
point and in every direction, we obtain the geodesics Hessian matrix

H
g
u f (x(u))=Jx(u)T Hxf (x(u))Jx(u)+∇xf (x(u))Hx(u)

−∇xf (x(u))Jx(u)�(u), u∈U ⊆Rn, (14)

where the matrix multiplication Jx(u)�(u), u ∈ U ⊆ Rn, is defined by the
rule related to the multiplication of a row vector and a 3-dimensional
matrix, applied consecutively for every row vector of Jx(u); see formula
(10). Note that the result does not depend on the order of the multiplica-
tion in the term

∇xf (x(u))Jx(u)�(u), u∈U ⊆Rn.
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As the gradient ∇uf (x(u)) is equivalent to the expression

D�f (x(u)=∇xf (x(u))Jx(u), u∈U ⊆Rn, (15)

in any coordinate representation, where D�f denotes the first covariant
derivative of f with respect to �, which is a covariant vector field; on a
covariant vector field V , the covariant derivative with respect to � is equal
to

D�V =JV −V T �,

where JV denotes the Jacobian matrix of the corresponding vector field
at each point of an arbitrary coordinate neighborhood; the right-hand
side of the expression (14) is exactly the second covariant derivative of
f (x(u)), u∈U ⊆Rn, with respect to �, i.e.,

D2
�f (x(u))=Jx(u)T Hxf (x(u))Jx(u)+∇xf (x(u))Hx(u)

−∇xf (x(u))Jx(u)�(u), u∈U ⊆Rn. (16)

From the smoothness property of the function and the manifold, as well
as from the Whitehead theorem, it follows that f is locally (strictly)
�-convex on A iff the second covariant derivatives D2

�f are positive semi-
definite in every �-convex neighborhood. By considering the fact that
D2

�f is a tensor at every point, we obtain the statement.

Corollary 2.2. The �-convexity property of sets and functions defined
on a differentiable manifold is invariant under regular nonlinear coordi-
nate transformations.

We remark that Theorems 2.1 and 2.3–2.5 are derived from the cor-
responding statements in Rapcsák (Ref. 11); while the second covariant,
derivative is a tensor field on M,� is not.

Corollary 2.3. If A ⊆ Rn is an open set, if f ∈ C2(A,R), and if
�(x), x ∈ A, is a continuously differentiable linear connection, then a
locally (strictly) �-convex function f is (strictly) �-convex on A iff the set
A is �-convex.

In Corollary 2.3, the local-global property of the C2 function f on A

is stated, which can be proved directly for continuous functions following
the proof of Theorem 6.1.2 in Rapcsák (Ref. 11). The local-global prop-
erty for pseudoconvex functions was stated first by Komlósi (Ref. 19).

Pini (Ref. 18) investigated invexity on manifolds and the relationship,
based on the integrability of the invexity map, between convexity along
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curves on a manifold and invexity. This corollary and Theorem 2.2 show
that the local-global property, the invexity, and the integrability of the in-
vexity map are equivalent in this framework; therefore, results based on
the latter two notions might be considered the reformulation of the origi-
nal problem without constructing at least one new family of curves satis-
fying the assumptions.

Corollary 2.4. If A ⊆ Rn is an open set f ∈ C2(A,R), and �(x), x ∈
A, is a continuously differentiable linear connection, then f is locally
(strictly) �-convex on A iff the matrices

D2
�f (x)=Hf (x)−∇f (x)�(x), x ∈A, (17)

are (strictly) positive semidefinite.

Proof. If M =Rn, then there exists a coordinate representation of Rn

such that Jx(u)= In (the identity matrix in Rn) and Hx(u) is equal to the
null matrix for all u∈Rn; thus, the formula of D2

�f derives from (16).

Remark 2.1. Let A ⊆ Rn be an open subset. The linear connection
�

l3
l1,l2

, l1, l2, l3 =1, . . . , n is locally Lipschitz if each point of A has a neigh-
borhood such that a constant K exists satisfying

∣∣∣�l3
l1,l2

(x1)−�
l3
l1,l2

(x2)

∣∣∣≤K‖x1 −x2‖, l1, l2, l3 =1, . . . , n,

for all pairs x1, x2 in this neighborhood, where the symbol ‖·‖ denotes the
Euclidean norm.

By the theory of differential equations, the local �-convexity of the
set A can be obtained by the local Lipschitz property of the linear con-
nection which may substitute the continuous differentiability of the linear
connection in Corollary 2.4.

Corollary 2.4 results directly in a condition for the local �-convexity
of a smooth function.

Corollary 2.5. If A ⊆ Rn is an open set, if f ∈ C2(A,R), and if
∂f/∂xi 	= 0, i = 1, . . . k, ∂f/∂xi = 0, i = k + 1, . . . , n, for some 0 ≤ k ≤ n on
A then f is locally strictly �-convex on A with respect to

�i(x)= [1/(k∂f (x)/∂xi)] (Hf (x)− In), i =1, . . . , k, x ∈A, (18a)

�i(x)= In, i =k +1, . . . , n, x ∈A. (18b)
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3. Concluding Remarks

The local convexity of sets based on the space of paths belonging
to smooth manifolds is investigated; then, the local convexity of functions
defined on local convex sets is introduced and characterized by using the
Whitehead theorem (Ref. 17). A characterization like this may be useful
not only in optimization theory, but in the image analysis of optimiza-
tion theory, the main principles of which were established by Giannessi
in 1984 (Ref. 13). Theorems 2.3, 2.4, 2.5 provide some results to form a
new subclass of locally convexlike mappings consisting of a finite num-
ber of locally �-concave functions with the same linear connection �. We
remark that locally convexlike mappings like these can be constructed by
given linear connections; see e.g. Corollary 2.4. By Corollary 2.3, a map-
ping belonging to this subclass is convexlike iff the set A⊆M is �-convex
with the same linear connection. It follows that the notion of convexlike
mapping defined in the image space is in connection with the given space
and the local-global property.
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