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Abstract. In this paper, we introduce systems of simultaneous gen-
eralized vector equilibrium problems and prove the existence of their
solutions. As application of our results, we derive the existence theo-
rems for solutions of systems of vector saddle–point problems. Conse-
quently, we prove the existence of a solution of systems of generalized
minimax inequalities. Further application of our results is also given
to establish the existence of a solution of a Debreu-type equilibrium
problem for vector-valued functions.
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1. Introduction and Formulations

In 1994, Husain and Tarafdar (Ref. 1) introduced simultaneous vari-
ational inequalities and gave some applications to the minimization prob-
lems. These were further studied by Fu (Ref. 2) for the vector-valued case
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with applications to vector complementarity problems. Very recently, Lin
(Ref. 3) considered and studied simultaneous vector equilibrium problems
and proved existence results for their solution. By using these results, he
derived existence results for the solution of a vector saddle-point problem.

In the recent past, systems of scalar (vector) equilibrium prob-
lems and scalar (vector) generalized equilibrium problems were used as
tools to solve Nash equilibrium problems for vector-valued functions and
Debreu-type equilibrium problems for vector-valued functions; see for
example Refs. 4–10 and references therein.

Because of the applications to vector optimization, game theory, and
economics, the saddle-point problem for vector-valued functions emerged
as a new direction for the researchers; see for example Refs. 10–12 and ref-
erences therein.

In this paper, we consider systems of simultaneous generalized vector
equilibrium problems (SSGVQEP), which contains generalized vector equi-
librium problems (Ref. 13), systems of vector equilibrium problems (Ref. 4),
systems of generalized vector variational-like inequalities (Ref. 5), and simul-
taneous vector variational inequalities (Ref. 2) as special cases. By using the
Kakutani fixed-point theorem, we establish an existence result for solutions
of (SSGVQEP). In Section 3, we derive several existence results for solutions
of the above mentioned problems. These existence results either improve or
extend known results in the literature. We consider also systems of vec-
tor saddle-point problems (SVQSPP) and systems of minimax inequalities
(SQMI). In Section 4, as applications of our existence result for solutions
of (SSGVQEP), we prove existence of solutions of (SVQSPP) and (SQMI).
In Section 5, we give another application of our results to establish the exis-
tence of a solution of a Debreu-type equilibrium problem, also known as
constrained Nash equilibrium problem.

Let A be a nonempty subset of a topological vector space (t.v.s.) X ;
we denote by in A, Ā, and coA, the interior of A in X , the closure of A in
X , and the closed convex hull of A, respectively. The family of all subsets
of A is denoted by 2A.

Let Z be a t.v.s. and let P be a closed convex cone in Z with P �=∅.
Then, P induces the vector ordering in Z setting, ∀x, y ∈P ,

x ≤P y ⇔y −x ∈P,

x �P y ⇔y −x /∈P.

Since int P �=∅, we also have the weak ordering in Z setting, ∀x, y ∈P ,

x ≤P y ⇔y −x ∈ int P,

x ≮P y ⇔y −x /∈ intP.
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The ordering ≥P , �P , >P , ≯P are defined similarly. A cone P is called
pointed if P ∩ (−P)={0}.

Throughout the paper, unless specified otherwise, I is any index set
(finite or infinite). For each i ∈ I , let Xi and Yi be two nonempty convex
subsets of locally convex t.v.s. Ei and Fi , respectively; let Zi be a real t.v.s.
Let

X =
∏

i∈I

Xi and Y =
∏

i∈I

Yi .

For each i ∈ I , let Ci :X→2Zi be a multivalued map such that, for all x ∈
X,Ci(x) is a closed convex cone with apex at the origin. For each i ∈ I ,
let

Pi =
⋂

x∈X

Ci(x)

such that Pi defines a vector ordering on Zi . For each i ∈I , let Si :X→2Xi

and Ti :X→2Yi be multivalued maps with nonempty values; let fi :X×Y ×
Xi →Zi and gi :X×Y ×Yi →Zi be trifunctions. We consider the following
problems of systems of simultaneous generalized vector equilibrium prob-
lems (SSGVQEP) in three forms:

(SSGVQEP)(I) Find (x̄, ȳ) ∈ X × Y such that, for each i ∈ I, x̄i ∈
Si(x̄), ȳi ∈Ti(x̄),

fi(x̄, ȳ, xi)∈Ci(x̄), ∀xi ∈Si(x̄),

gi(x̄, ȳ, yi)∈Ci(x̄), ∀yi ∈Ti(x̄).

(SSGVQEP)(II) Find (x̄, ȳ) ∈ X × Y such that, for each i ∈ I, x̄i ∈
Si(x̄), ȳi ∈Ti(x̄),

fi(x̄, ȳ, xi) /∈−Ci(x̄)\{0}, ∀xi ∈Si(x̄),

gi(x̄, ȳ, yi) /∈−Ci(x̄)\{0}, ∀yi ∈Ti(x̄).

(SSGVQEP)(III) Find (x̄, ȳ) ∈ X × Y such that, for each i ∈ I, x̄i ∈
Si(x̄), ȳi ∈Ti(x̄),

fi(x̄, ȳ, xi) /∈−int Ci(x̄), ∀xi ∈Si(x̄),

gi(x̄, ȳ, yi) /∈−int Ci(x̄), ∀yi ∈Ti(x̄);
in this case, we assume that int Ci is nonempty for each i ∈ I .

Remark 1.1. For each i ∈ I and for all x ∈X, let Ci(x) be a pointed
cone and let Pi =∩x∈XCi(x); it is easy to see that Pi is also pointed.
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Remark 1.2. For each i ∈I and for all x ∈X, if Ci(x) is also pointed,
then every solution of (SSGVQEP)(I) is a solution of (SSGVQEP)(II) and
every solution of (SSGVQEP)(II) is a solution of (SSGVQEP)(III). But the
reverse implication does not hold.

Indeed, let (x̄, ȳ) ∈ X × Y be a solution of (SSGVQEP) (I); then for
each i ∈ I, x̄i ∈Si(x̄), ȳi ∈Ti(x̄),

fi(x̄, ȳ, xi)∈Ci(x̄), ∀xi ∈Si(x̄),

gi(x̄, ȳ, yi)∈Ci(x̄), ∀yi ∈Ti(x̄).

Since for each i ∈ I and ∀x ∈X, Ci(x) is a pointed cone, we have

Ci(x)∩ (−Ci(x))={0};
therefore,

Ci(x)∩ (−Ci(x)\{0})=∅.

Hence,

fi(x̄, ȳ, xi) /∈−Ci(x̄)\{0}, ∀xi ∈Si(x̄),

gi(x̄, ȳ, yi) /∈−Ci(x̄)\{0}, ∀yi ∈Ti(x̄).

The second statement follows from the fact that

−int Ci(x)⊆−Ci(x)\{0}, ∀x ∈X and for each i ∈ I.

For each i ∈ I , we denote by L(Ei,Zi) the space of all continu-
ous linear operators from Ei into Zi and let Yi be a nonempty subset
of L(Ei,Zi). For each i ∈ I , let gi = 0. Then, (SSGVQEP)(I) reduces to
the following systems of generalized implicit vector variational inequalities
problem:

(SGIVQVIP)(I) Find (x̄, ȳ) ∈ X × Y such that, for each i ∈ I, x̄i ∈
Si(x̄), ȳi ∈Ti(x̄) satisfying

fi(x̄, ȳ, xi)∈Ci(x̄), ∀xi ∈Si(x̄).

Analogously, we can define (SGIVQVIP)(II) and (SGIVQVIP)(III)
problems of systems of generalized implicit vector quasivariational inequal-
ities corresponding to (SSGVQEP)(II) and (SSGVQEP)(III), respectively.

The (SGIVQVIP) contains the problem of systems of generalized vec-
tor variational like inequalities (SGVQVLIP) as a special case. Recently,
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the weak formulation of (SGVQVLIP) was introduced and studied by
Ansari and Khan (Ref. 5). They used (SGVQVLIP) as a tool to prove the
existence of a solution of the Debreu-type equilibrium problem for non-
differentiable and nonconvex vector-valued functions.

When for each i ∈ I,Xi =Yi, Si ≡Ti, and fi ≡gi , then (SSGVQEP) is
called system of vector equilibrium problems. In this case, (SSGVQEP)(III)
was considered and studied by Ansari et al (Ref. 4) for fi(x, y, yi) =
hi(x, yi). They gave further applications to systems of generalized vec-
tor variational-like inequalities and Debreu-type equilibrium problems for
vector-valued functions.

When I is a singleton set and gi ≡0, then (SSGVQEP)(I) was consid-
ered and studied by Fu (Ref. 13).

When I is singleton set, X = Y, Si ≡ Ti, Si(x) = X, fi(x, y, xi) =
ϕ(x, y), gi(x, y, yi)=φ(x, y), then (SSGVQEP)(III) reduces to the problem
of simultaneous vector variational inequalities. Fu (Ref. 2) considered and
studied the problem of simultaneous vector variational inequalities for a
fixed cone C. If C =R+, the problem of simultaneous variational inequal-
ities was introduced and studied by Husain and Tarafdar (Ref. 1) with
applications to optimization problems.

By making suitable choices of fi and gi , we can derive several systems
of variational inequalities and systems of (quasi) equilibrium problems stud-
ied in the literature; see for example Refs. 4–8, 14, and references therein.

2. Preliminaries

Throughout the paper, all topological spaces are assumed to be
Hausdorff. Let Z∗ be the dual of a locally convex t.v.s. Z; let P ∗ ⊆ Z∗
be the polar cone of P , that is,

P ∗ ={z∗ ∈Z∗ : 〈z∗, z〉≥0, ∀z∈P }.

We assume that P ∗ has a weak∗ compact convex base B∗. This means
that B∗ ⊆ P ∗ is a weak∗ compact convex set such that 0 /∈ B∗ and P ∗ =
∪λ≥0 λB∗; see for example Ref. 15.

Lemma 2.1. See Ref. 15. Let B∗ be a weak∗ compact convex base of
P ∗ and let z∈Z. Then:

(i) z≥P 0⇔〈z∗, z〉≥0, ∀z∗ ∈P ∗;
(ii) z≥P 0⇔〈z∗, z〉≥0, ∀z∗ ∈B∗.
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Definition 2.1. See Ref. 16. Let (Z, P ) be an ordered t.v.s. and let K
be a nonempty convex subset of a vector space X . A map f : K → Z is
said to be:

(i) convex if, ∀x, y ∈K and t ∈ [0,1], we have

f (tx + (1− t)y)≤P tf (x)+ (1− t)f (y);
(ii) properly quasiconvex if, ∀x, y ∈K and t ∈ [0,1], we have

either f (tx + (1− t)y)≤P f (x)

or f (tx + (1− t)y)≤P f (y);
(iii) properly quasiconcave if −f is properly quasiconvex.

Definition 2.2. Let X and Y be two topological spaces. A multi-
valued map T :X →2Y is said to be:

(i) compact if there exist a compact subset K ⊆ Y such that
T (X )⊆K;

(ii) closed if its graph Gr(T ) = {(x, y) |x ∈ X , y ∈ T (x)} is closed in
X ×Y .

Lemma 2.2. See Ref. 17. Let X and Y be two topological spaces
T : X → 2Y be a continuous multivalued map such that, for each x ∈
X , T (x) is a nonempty compact set of Y . Let ϕ : X ×Y → R be a contin-
uous function. Then, the function M(x)=miny∈T (x) ϕ(x, y) is continuous.

Lemma 2.3. See Ref. 18. Let X and Y be nonempty subsets of the
topological spaces E1 and E2, respectively, and let S :X →2X and T :X ×
Y ×X →2R be multivalued maps. Let the multivalued map m :X ×Y →2R

be defined by

m(x, y)=min T (x, y, S(x)), ∀(x, y)∈X ×Y,

and let the multivalued map M :X ×Y →2X be defined by

M(x, y)={u∈S(x) :m(x, y)∈T (x, y, u)}.
If both S and T are compact continuous multivalued maps with closed
values, then both m and M are closed compact upper semicontinuous
(u.s.c.).

We close this section by mentioning the following Kakutani fixed-
point theorem (Ref. 19), which is the main tool to prove the existence of
a solution of (SSGVQEP).
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Theorem 2.1. See Ref. 19. Let X be a nonempty compact convex
subset of a locally convex t.v.s. and let T :X →2X be an u.s.c. multivalued
map with nonempty compact convex values. Then, T has at least one fixed
point in X .

3. Existence Results for Solutions of (SSGVQEP)

In this section, we establish an existence result for solutions of
(SSGVQEP) by using the Kakutani fixed-point theorem. We derive also
existence results for solutions of (SGIVQVIP)(I), simultaneous gener-
alized vector equilibrium problems, and systems of generalized vector
variational-like inequalities.

Theorem 3.1. For each i ∈I , let Ei,Fi,Zi be real locally convex t.v.s.
and let Fi be also complete. For each i ∈ I , let Xi ⊆ Ei be a nonempty
compact convex set and let Yi ⊆ Fi be a nonempty convex set. Let X =
�i∈IXi and Y = �i∈I Yi . For each i ∈ I , let Si : X → 2Xi be a continuous
multivalued map with nonempty closed convex values and let Ti :X →2Yi

be a continuous multivalued map with nonempty compact convex values.
For each i ∈ I , assume that the following conditions are satisfied.

(i) Ci :X→2Zi is a closed multivalued map such that, ∀x ∈X,Ci(x)

is a closed convex cone with apex at the origin and Pi =
∩x∈XCi(x).

(ii) P ∗
i has a weak∗ compact convex base B∗

i and Zi is ordered by
Pi .

(iii) fi :X ×Y ×Xi →Zi is a continuous function such that:

(a) ∀x ∈X and y ∈Y,fi(x, y, xi)≥Pi
0,

(b) ∀(x, y)∈X×Y , the map ui �→fi(x, y, ui) is properly quasi-
convex.

(iv) gi :X ×Y ×Yi →Zi is a continuous function such that

(a) ∀x ∈X and y ∈Y,gi(x, y, yi)≥Pi
0,

(b) ∀(x, y)∈X ×Y , the map vi �→gi(x, y, vi) is properly quasi-
convex.

Then, there exists a solution (x̄, ȳ)∈X ×Y of (SSGVQEP)(I).

Proof. For each i ∈ I and for any fixed (x, y, ui) ∈ X × Y ×
Xi, (x, y, vi) ∈ X × Y × Yi , 〈z∗

i , fi(x, y, ui)〉 and 〈z∗
i , gi(x, y, vi)〉 are weak∗
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continuous on B∗
i . For each i ∈ I , let

hi(x, y, ui)= min
z∗
i ∈B∗

i

〈z∗
i , fi(x, y, ui)〉

and

pi(x, y, vi)= min
z∗
i ∈B∗

i

〈z∗
i , gi(x, y, vi)〉.

By Lemma 2.2, for each i ∈ I, hi and pi are continuous on X × Y × Xi

and X×Y ×Yi , respectively. For each i ∈ I and ∀(x, y)∈X×Y , define two
multivalued maps �i :X ×Y →2Xi and �i :X ×Y →2Yi by

�i(x, y)=
{
ui ∈Si(x) :hi(x, y, ui)= min

u′
i∈Si(x)

hi(x, y, u′
i )

}
,

�i(x, y)=
{
vi ∈Ti(x) :pi(x, y, vi)= min

v′
i∈Ti(x)

pi(x, y, v′
i )

}
.

Following the approach adopted in the proof of Theorem 1 in Ref. 13, it is
easy to show that, for each i ∈ I and ∀(x, y)∈X×Y,�i(x, y) and �i(x, y)

are closed convex subsets of Si(x) and Ti(x), respectively.
For each i ∈ I and ∀x ∈X,Si(x) is closed subset of a compact set X

is compact, by assumptions on Si and Ti and Proposition 3 in Ref. 20,
pp. 42, Si(X) and Ti(X) are compact.

For each i ∈ I , let Li =coTi(X). Since Fi is quasicomplete, Li is a com-
pact convex subset of Fi (see, for example Ref. 21, pp. 241) and L=�i∈ILi

is a compact convex set of �i∈IFi . Since X × L × Xi and X × L × Li are
compact sets and hi and pi are continuous maps, hi and pi are compact
continuous maps. By Lemma 2.3 (T is a single-valued map in Lemma 2.3),
for each i ∈ I,�i and �i are compact upper semicontinuous multivalued
maps.

For each i ∈ I , define the multivalued map Gi :X ×L→2Xi×Li by

Gi(x, y)= (�i(x, y),�(x, y)), ∀(x, y)∈X ×L.

Then, by Lemma 3 in Ref. 22, for each i ∈ I,Gi is u.s.c. with nonempty
compact convex values. The multivalued map G :X×L→2X×L defined by
G(x, y)=�i∈IGi(xi, yi) is u.s.c. with nonempty compact convex values. By
Theorem 2.1, there exists a point (x̄, ȳ)∈X ×L such that (x̄, ȳ)∈G(x̄, ȳ).
Therefore, for each i ∈ I, x̄i ∈Si(x̄) and ȳi ∈Ti(x̄) such that

hi(x̄, ȳ, xi)≥hi(x̄, ȳ, x̄i ), ∀xi ∈Si(x̄),

pi(x̄, ȳ, yi)≥pi(x̄, ȳ, ȳi ), ∀yi ∈Ti(x̄).
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By (iii)(a) and (iv)(b), for each i ∈ I we have

fi(x̄, ȳ, xi)≥Pi
0,

gi(x̄, ȳ, yi)≥Pi
0;

therefore, from Lemma 2.1, we have

〈z∗
i , fi(x̄, ȳ, x̄i )〉≥0,

〈z∗
i , gi(x̄, ȳ, ȳi )〉≥0, ∀z∗

i ∈B∗
i .

So,

min
z∗
i ∈B∗

i

〈z∗
i , fi(x̄, ȳ, x̄i )〉≥0,

min
z∗
i ∈B∗

i

〈z∗
i , gi(x̄, ȳ, ȳi )〉≥0.

Hence, for each i ∈ I, x̄i ∈Si(x̄) and ȳi ∈Ti(x̄) such that

hi(x̄, ȳ, xi)≥0, ∀xi ∈Si(x̄),

pi(x̄, ȳ, yi)≥0, ∀yi ∈Ti(x̄).

Again by using Lemma 2.1, we get

fi(x̄, ȳ, xi)≥Pi
0, ∀xi ∈Si(x̄),

gi(x̄, ȳ, yi)≥Pi
0, ∀yi ∈Ti(x̄).

that is,

fi(x̄, ȳ, xi)∈Pi ⊆Ci(x̄), ∀xi ∈Si(x̄),

gi(x̄, ȳ, yi)∈Pi ⊆Ci(x̄), ∀yi ∈Ti(x̄).

This completes the proof

For each i ∈ I , if gi ≡0, then we have the following result.

Corollary 3.1. For each i ∈ I , let Ei,Fi,Zi be real locally convex t.v.s
and let Fi be also complete. For each i ∈ I , let Xi ⊆Ei be a nonempty com-
pact convex set and let Yi ⊆Fi be a nonempty convex set. Let X =∏

i∈I Xi

and Y =∏
i∈I Yi . For each i ∈ I , let Si :X→2Xi be a continuous multivalued

map with nonempty closed convex and values and let Ti :X→2Yi be a con-
tinuous multivalued map with nonempty compact convex values. For each
i ∈ I , assume that the following conditions are satisfied.



36 JOTA: VOL. 127, NO. 1, OCTOBER 2005

(i) Ci :X→2Zi is a closed multivalued map such that, ∀x ∈X,Ci(x)

is a closed convex cone with apex at the origin and Pi =⋂
x∈X Ci(x).

(ii) P ∗
i has a weak∗ compact convex base B∗

i and Zi is ordered by
Pi .

(iii) fi :X ×Y ×Xi →Zi is a continuous function such that
(a) ∀x ∈X and y ∈Y,fi(x, y, xi)≥Pi 0;
(b) ∀(x, y) ∈ X × Y, the map ui �→ fi(x, y, ui) is properly quasi-
convex.

Then, there exists a solution (x̄, ȳ)∈X ×Y of (SGIVQVIP)(I).

Remark 3.1. Corollary 3.1 is an extension of Theorem 1 in Ref. 13
to systems of quasiequilibrium problems with a moving cone.

When I is a singleton set, then we have the following result.

Corollary 3.2. Let E,F,Z be real locally convex t.v.s. and let F be
also complete. Let X ⊆E be a nonempty compact convex set and let Y ⊆F

be a nonempty convex set. Let S :X→2X be a continuous multivalued map
with nonempty closed convex values and let T : X → 2Y be a continuous
multivalued map with nonempty compact convex values. Assume that the
following conditions are satisfied.

(i) C : X → 2Z is a closed multivalued map such that, ∀x ∈X,C(x)

is a closed convex cone with apex at the origin and P =⋂
x∈X C(x).

(ii) P ∗ has a weak∗ compact convex base B∗ and Z is ordered by P .
(iii) f :X ×Y ×X →Z is a continuous function such that:

(a) ∀x ∈X and y ∈Y,f (x, y, x)≥P 0;
(b) ∀(x, y) ∈ X × Y , the map u �→ f (x, y, u) is properly quasi-

convex.

(iv) g :X×Y ×Y →Z is a continuous function such that, (a) ∀x ∈X

and y ∈Y,g(x, y, y)≥P 0,
(b) ∀(x, y)∈X×Y, the map υ �→g(x, y, υ) is properly quasicon-
vex.

Then, there exists a solution (x̄, ȳ)∈X ×Y such that x̄ ∈S(x̄), ȳ ∈T (x̄),

f (x̄, ȳ, x)∈C(x̄), ∀x ∈S(x̄),

g(x̄, ȳ, y)∈C(x̄), ∀y ∈T (x̄).
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Let E and Z be Hausdorff topological vector spaces. Let σ be the
family of bounded subsets of E whose union is total in E; that is, the lin-
ear hull of ∪{U :U ∈σ } is dense in E . Let B be a neighborhood base of 0
in Z. When U runs through σ,V through B, the family

M(U,V )={ξ ∈L(E,Z) :∪x∈U 〈ξ, x〉⊆V }

is a neighborhood base of 0 in L(E,Z) for a unique translation-invariant
topology, called the topology of uniform convergence of the sets U ∈ σ,

briefly the σ -topology (see Ref. 23, pp. 79–80).

In order to drive existence results for a solution of the problem of
system of simultaneous generalized vector variational-like inequalities from
Theorem 3.1, we need the following result due to Ding and Tarafdar
(Ref. 23).

Lemma 3.1. Let E and Z be Hausdorff t.v.s. and L(E,Z) be the t.v.s.
under the σ -topology. Then, the bilinear mapping 〈·, ·〉 :L(E,Z)×E →Z is
continuous on L(E,Z)×E .

In addition to the assumptions on Ci :K →2Zi , in the following cor-
ollary, we assume further that Ci(x) is pointed, for each i ∈ I and for all
x ∈K. Then, the following result can be derived easily from Corollary 3.1
by setting

fi(x, y, ui)=〈θi(x, y), ηi(ui, xi)〉.

Corollary 3.3. Let Ei,Xi,Zi, Si,X be the same as in Theorem 3.1.
For each i ∈ I, let L(Ei,Zi) be quasicomplete, let Yi ⊆L(Ei,Zi) be a non-
empty convex set, and let Y =∏

i∈I Yi . For each i ∈ I, let Ti :X→2Yi be a
continuous multivalued map with nonempty compact convex values. For
each i ∈ I, assume that the following conditions are satisfied:

(i) Ci :X→2Zi is a closed multivalued map such that, ∀x ∈X,Ci(x)

is a nonempty closed convex pointed cone and Pi =
⋂

x∈X Ci(x).

(ii) P ∗
i has a weak∗ compact convex base Bi and Zi is ordered by

Pi .
(iii) θi : X ×Y →Yi and ηi : Xi ×Xi →Xi are continuous bifunctions

such that, for each i ∈ I :

(a) ∀xi ∈Xi, ηi(xi, xi)〉≥Pi
0;

(b) ∀(x, y) ∈ X × Y , the map ui �→ 〈θi(x, y), ηi(ui, xi)〉 is prop-
erly quasiconvex.
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Then, there exists a solution (x̄, ȳ) ∈ X × Y of (SGVQVLIP) (I): find
(x̄, ȳ) = ((x̄i)i∈I , (ȳi)i∈I ) ∈ X × Y such that, for each, i ∈ I, x̄i ∈ Si(x̄), ȳi ∈
Ti(x̄) and

〈θi(x̄, ȳ), ηi(xi, x̄i )〉∈Ci(x̄), ∀xi ∈Si(x̄).

Remark 3.2. It is worth to mention that the weak formulation
of (SGVQVLIP)(III) was considered and studied by Ansari and Khan
(Ref. 5). Corollary 3.3 provides the existence of a solution of a more gen-
eral problem than (SGVQVLIP)(III).

4. Systems of Vector Saddle-Point Problems

In this section, we define systems of quasisaddle point problems and
system of quasiminimax inequalities. As application of the results of the
last section, we derive existence result for the solutions of these problems.

Let X,Y,Xi, Yi,Zi, and Ci be the same as defined in the formulations
of (SSGVQEP). Let �i :Xi ×Yi →Zi be a bifunction. We consider the fol-
lowing system of saddle-point problems:

(SVQSPP)(I) Find x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that, for
each, i ∈ I, x̄i ∈Si(x̄), ȳi ∈Ti(x̄),

�i(xi, ȳi )−�i(x̄i , ȳi )∈Ci(x̄), ∀xi ∈Si(x̄),

�i(x̄i , ȳi )−�i(x̄i , yi)∈Ci(x̄), ∀yi ∈Ti(x̄).

(SVQSPP)(II) Find x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that, for
each, i ∈ I, x̄i ∈Si(x̄), ȳi ∈Ti(x̄),

�i(xi, ȳi )−�i(x̄i , ȳi ) /∈−Ci(x̄)\{0}, ∀xi ∈Si(x̄),

�i(x̄i , ȳi )−�i(x̄i , yi) /∈−Ci(x̄)\{0}, ∀yi ∈Ti(x̄).

(SVQSPP)(III) Find x̄ = (x̄i)i∈I ∈X and ȳ = (ȳi)i∈I ∈Y such that, for each
i ∈ I , x̄i ∈Si(x̄), ȳi ∈Ti(x̄),

�i(xi, ȳi )−�i(x̄i , ȳi ) /∈−int Ci(x̄), ∀xi ∈Si(x̄),

�i(x̄i , ȳi )−�i(x̄i , yi) /∈−int Ci(x̄), ∀yi ∈Ti(x̄).

Remark 4.1. For each i ∈ I and ∀x ∈X, if Ci(x) is a convex pointed
cone, then every solution of (SVQSPP)(I) is a solution of (SVQSPP)(II)
and every solution of (SVQSPP)(II) is a solution of (SVQSPP)(III). But
the converse implication is not true.
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If I is a singleton set and Z =R, then (SVQSPP)(I), (SVQSPP)(II), and
(SVQSPP)(III) are called quasisaddle-point problem [for short, (QSPP)].

Of course, if I is a singleton set, Si(x) = Xi , and Ti(x)=Yi,∀x ∈X.
and Zi = R, then the above mentioned (SVQSPP)s reduce to the classical
saddle-point problem.

For each i ∈I , let �i be a real-valued bifunction. We consider also the
following problem of systems of minimax inequalities: find x̄ = (x̄i)i∈I ∈X

and ȳ = (ȳi)i∈I ∈Y such that, for each i ∈ I , x̄i ∈Si(x̄), ȳi ∈Ti(x̄), and

min
ui∈Si(x̄i )

max
vi∈Ti(x̄i )

�i(ui, vi)=�i(x̄i , ȳi )= max
vi∈Ti(x̄i )

min
ui∈Si(x̄i )

�i(ui, vi).

As application of Theorem 3.1, we derive the following existence
result for the solution of (SGVQSPP)(I).

Theorem 4.1. In Theorem 3.1, if conditions (iii) and (iv) are replaced
by the (iii′) then (SVQSPP)(I) has a solution, where

(iii′) �i :Xi ×Yi →Zi is a continuous function such that :

(a) for each fixed yi ∈Yi, xi �→�i(xi, yi) is properly quasiconvex;
(b) for each fixed xi ∈Xi, yi �→�i(xi, yi) is properly quasiconcave.

Proof. For each i ∈ I , let

fi(x, y, ui)=�i(ui, yi)−�i(xi, yi)

gi(x, y, vi)=�i(xi, yi)−�i(xi, vi),

∀x = (xi)i∈I , u= (ui)i∈I ∈X, and y = (yi)i∈I , v = (vi)i∈I ∈Y .

For each i ∈ I and ∀x = (xi)i∈I ∈X and y = (yi)i∈I ∈Y , we have

fi(x, y, xi)=0∈Pi and gi(x, y, yi)=0∈Pi.

For each i ∈ I , since �i is continuous on Xi ×Yi, fi and gi are contin-
uous on X×Y ×Yi and X×Y ×Yi , respectively. By condition (iii), ∀(x, y)∈
X×Y , ui �→�i(ui, yi)−�i(xi, yi) and vi �→�i(xi, yi)−�i(xi, vi) are properly
quasiconvex. The conclusion follows from Theorem 3.1.

If I is a singleton set and Z = R, then we have following existence
result for a solution of the quasisaddle-point problem.

Corollary 4.1. Let E and F be real locally convex t.v.s. and also let
F be quasicomplete. Let X ⊆ E be a nonempty compact convex set and
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let Y ⊆F be a nonempty convex set. Let S :X→2X be a continuous mul-
tivaluated map with nonempty closed convex values and let T : X → 2Y

be a continuous multivalued map with nonempty compact convex values.
Assume that � :X ×Y →Z is a continuous function such that

(a) for each fixed y ∈Y, x �→ l(x, y) is quasiconvex;
(b) for each fixed x ∈X,x �→ l(x, y) is quasiconcave.

Then, (QSPP) has a solution.
As a consequence of Theorem 4.1, we have the following existence

result for the solution of a system of quasiminimax inequalities.

Theorem 4.2. Let Ei,Fi,Xi, Yi,X,Y, Si, and Ti be the same as in
Theorem 3.1. For each i ∈ I , assume that �i : Xi ×Yi → R is a continuous
function satisfying the following conditions:

(i) For each fixed yi ∈Yi, xi �→�i(xi, yi) is quasiconvex.
(ii) For each fixed xi ∈Xi,yi �→�i(xi, yi) is quasiconvex.

Then, (SQMIP) has a solution.

Proof. For each i ∈ I,Zi =R, which has a weak∗ compact base. For
each i ∈ I let Ci(x)= [0,∞),∀x ∈X. By Theorem 4.1, there exists (x̄, ȳ)∈
X ×Y such that, for each i ∈ I, x̄i ∈Si(x̄) and ȳi ∈Ti(x̄) satisfy

�i(xi, ȳi )−�i(x̄i , ȳi )≥0, ∀xi ∈Si(x̄),

�i(x̄i , ȳi )−�i(x̄i , yi)≥0, ∀yi ∈Ti(x̄),

and so,

�i(x̄i , ȳi )= min
ui∈Si(x̄)

�i(ui, ȳi )≤ max
vi∈Ti(x̄)

min
ui∈Si(x̄)

�i(ui, vi),

�i(x̄i , ȳi )= max
vi∈Ti(x̄)

�i(x̄i , vi)≥ min
ui∈Si(x̄)

max
vi∈Ti(x̄)

�i(ui, vi).

Therefore,

min
ui∈Si(x̄)

max
vi∈Ti(x̄)

�i(ui, vi)≤�i(x̄i , ȳi )≤ max
vi∈Ti(x̄)

min
ui∈Si(x̄)

�i(ui, vi),

max
ui∈Ti(x̄)

min
vi∈Si(x̄)

�i(ui, vi)≤�i(x̄i , ȳi )≤ min
ui∈Si(x̄)

max
vi∈Ti(x̄)

�i(ui, vi).

Therefore, there exist x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that, for each
i ∈ I, x̄i ∈Si(x̄), ȳi ∈Ti(x̄i), and

min
ui∈Si(x̄)

max
vi∈Ti(x̄)

�i(ui, vi)=�i(x̄i , ȳi )= max
vi∈Ti(x̄)

min
ui∈Si(x̄)

�i(ui, vi).
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For each i ∈ I , if Xi and Yi are nonempty compact convex sets, and
Si(x) = Xi and Ti(x) = Yi,∀x ∈ X, then from Theorem 4.2 we derived the
following corollary.

Corollary 4.2. For each i ∈ I , let Xi and Yi be nonempty compact
convex subsets of Ei and Fi , respectively. For each i ∈ I , assume that
� :Xi ×Yi →R is a continuous function satisfying the following conditions:

(i) For each fixed yi ∈Yi, xi �→�i(xi, yi) is quasiconvex.
(ii) For each fixed xi ∈Xi, yi �→�i(xi, yi) is quasiconcave.

Then, there exist x̄ = (x̄i)i∈I ∈X and ȳ = (ȳi)i∈I ∈Y such that

min
ui∈Xi

max
vi∈Yi

�i(ui, vi)=�i(x̄i , ȳi )=max
vi∈Yi

min
ui∈Xi

�i(ui, vi).

If I is a singleton, then Theorem 4.2 reduces to the following Corol-
lary 3.2 in Ref. 11.

Corollary 4.3. See Ref. 11. Let E,F,X,Y, S, and T be the same as
in Corollary 4.1. Assume that � : X ×Y → R is a continuous function sat-
isfying the following conditions:

(i) For each fixed y ∈Y, x �→�(x, y) is quasiconvex.
(ii) For each fixed x ∈X,y �→�(x, y) is quasiconcave.

Then, there exists (x̄, ȳ)∈X ×Y such that x̄ ∈S(x̄), ȳ ∈T (ȳ), and

min
u∈S(x̄)

max
v∈T (x̄)

�(u, v)=�(x̄, ȳ)= max
v∈T (x̄)

min
u∈S(x̄)

�(u, v).

5. Debreu-Type Equilibrium Problem

In this section, we give another application of Corollary 3.1 to prove
the existence of a solution of the Debreu-type equilibrium problem for
vector-valued functions.

Let X,Xi,Zi , and Ci be the same as defined in the formulations of
(SSGVQEP). For each i ∈ I , let ϕi : X → Zi be a vector-valued function and
let Xi = ∏

j∈I ,j �=i Xj . We write X = Xi × Xi . For x ∈ X,xi denotes the pro-
jection of x onto Xi ; hence, we write x = (xi, xi). We consider the following
Debreu-type equilibrium problem for vector-valued functions (Debreu VEP).

(Debreu VEP)(I) Find x̄ ∈ X such that, for each i ∈ I, x̄i ∈ Si(x̄), and
ϕi(x̄

i , yi)−ϕi(x̄)∈Ci(x̄), ∀yi ∈Si(x̄).
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(Debreu VEP)(II) Find x̄ ∈ X such that, for each i ∈ I, x̄i ∈ Si(x̄) and
ϕi(x̄

i , yi)−ϕi(x̄) /∈−Ci(x̄)\ {0}, ∀ȳi ∈Si(x̄).
(Debreu VEP)(III) Find x̄ ∈ X such that, for each i ∈ I, x̄i ∈ Si(x̄), and

ϕi(x̄
i , yi)−ϕi(x̄) /∈−int Ci(x̄), ∀ȳi ∈Si(x̄);

in the case, we assume that int Ci is nonempty for each i ∈ I .
Of course, for each i ∈ I , if ϕi is a scalar-valued function, then the

(Debreu VEP)s are the same as the one introduced and studied by Debreu
in Ref. 24. In this case, a large number of papers have appeared already in
the literature; see for example Refs. 10, 14, and references therein. Ansari et
al (Ref. 4) introduced and studied (Debreu VEP) (III) and established sev-
eral existence results for its solution with or without involving �-condensing
maps. This is the first paper in the literature in which the (Debreu-type equi-
librium problem for vector-valued function is considered.

As in the case of (SSGVQEP)s, for each i ∈ I and ∀x ∈ X, if Ci(x)

is also pointed, then every solution of (Debreu VEP) (I) is a solution of
(Debreu VEP) (II) and every solution of (Debreu VEP) (II) is a solution
of (Debreu VEP) (III). But the reverse implication does not hold.

Theorem 5.1. Let Ei,Xi, Si,Zi be the same as Theorem 3.1. For
each i ∈ I assume conditions (i) and (ii) of Theorem 3.1 and in addition:

(iii) ϕi :X→Zi is continuous and properly quasiconvex in each argu-
ment.

Then, there exists a solution x̄ ∈X of (Debreu VEP)(I).

Proof. For each i ∈ I , set Xi = Yi; let fi(x, y, ui) = ϕ(x) − ϕ(xi, ui),
∀x, y ∈X, let ui ∈Xi , and let Ti(x)=Xi∀x ∈X in Corollary 3.1; we get the
conclusion.
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