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Matrix Inequality Approach to a Novel
Stability Criterion for Time-Delay

Systems with Nonlinear Uncertainties
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Abstract. In this paper, a novel stability criterion is presented for
time-delay systems which have nonlinear uncertainties. Based on the
Lyapunov method, a stability criterion is derived in terms of matrix
inequalities which can be solved easily by efficient convex optimiza-
tion algorithms. Numerical examples are included to show the effec-
tiveness of the proposed method.
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1. Introduction

Time delays occur in various industrial systems such as tandem mills,
remote control systems, long transmission lines in pneumatic systems, and
chemical systems. Frequently, the delays are a source of instability and
poor performance (Ref. 1). For more characteristics of the system, see
Refs. 2–4.

Practical systems have some type of uncertainties because it is almost
impossible to obtain an exact mathematical models due to the difficulty of
measuring various parameters, environmental noises, hysteresis or friction,
poor plant knowledge, reduced-order models, uncertain or slowly vary-
ing parameters, and the complexity of the system. This leads the system
to unexpectedly complicated situations. Therefore, many researchers have
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studied extensively the stability analysis of time-delay systems with uncer-
tainties (Refs. 5–8).

The stability criteria developed in the literature are classified often
into two categories according to their nature and the size of the delays,
namely, delay-independent criteria and delay-dependent criteria. In gen-
eral, a delay-dependent stability criterion is less conservative than a
delay-independent one when the size of the time delay is small.

In this paper, we present a novel delay-dependent stability criterion
for uncertain time-delay systems with nonlinear uncertainties. Based on
the Lyapunov second method, two stability criteria are derived in terms
of matrix inequalities. The proposed method employs free weighting matri-
ces, which are easy to select, to obtain less conservative stability criteria.
Furthermore, the matrix inequalities can be solved easily by using vari-
ous convex optimization algorithms (Ref. 9). Three numerical examples are
given to show the superiority of the present result to those available in the
published literature.

Notations. Rn is the n-dimensional Euclidean space. Rm×n denotes
the set of m × n real matrices. A star denotes the symmetric part of a
matrix. X > 0 [X ≥ 0] means that X is a real symmetric positive-defin-
itive matrix [positive-semidefinite matrix]. I denotes the identity matrix
of appropriate dimensions. || · || refers to the induced matrix 2-norm.
diag{· · · } denotes a block diagonal matrix. Cn,h = C([−h,0],Rn) denotes
the Banach space of continuous functions mapping the interval [−h,0]
into Rn, with the topology of uniform convergence.

2. Main Results

Consider the following system:

ẋ(t)=Ax(t)+A1x(t −h)+f (t, x(t))+f (t, x(t −h)), (1a)

x(s)=φ(s), s ∈ [−h,0], (1b)

where x(t) ∈ Rn is the state vector, A ∈ Rn×n and A1 ∈ Rn×n are known
real parameter matrices, h > 0 is a constant delay, φ(s) ∈ Cn,h is a given
continuous vector-valued initial function, the functions f and f1 are non-
linear uncertainties with respect to the current state x(t) and the delayed
state x(t −h). In this paper, the nonlinear uncertainties are assumed to be
bounded in magnitude,

‖f (t, x(t))‖ ≤ α ‖x(t)‖, (2a)

‖f1(t, x(t −h))‖ ≤ α1 ‖x(t −h)‖, (2b)

where α and α1 are positive scalars.
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Now, define an operator D(xt ) :Cn,h →Rn as

D(xt )=x(t)+
∫ t

t−h

Gx(s)ds, (3)

where

xt =x(t + s), s ∈ [−h,0],

and G ∈ Rn×n is a constant matrix which will be chosen so as to make
the system asymptotically stable. With the above operator, the transformed
system is

Ḋ(xt )= ẋ(t)+Gx(t)−Gx(t −h)

= (A+G)x(t)+ (A1 −G)x(t −h)+f (t, x(t))+f1x(t, x(t −h)). (4)

We will need the following well-known facts and lemmas to obtain the
main results.

Fact 2.1. For given matrices D, E, F , with FT F ≤I , and for a scalar
ε >0, the following inequality is always satisfied:

DFE +ET FT DT ≤ εDDT + ε−1ET E.

Fact 2.2. Schur Complement. The linear matrix inequality

[
Z(x) Y (x)

Y T (x) W(x)

]
>0 (5)

is equivalent to

W(x)>0 and Z(x)−Y (x)W−1(x)Y T (x),

where

Z(x)=ZT (x), W(x)=WT (x),

and Y (x) depends affinely on x.

Lemma 2.1. See Ref. 10. For any constant matrix M ∈ Rn×n, M =
MT >0, scalar γ >0, vector function ω: [0, γ ]→Rn such that the integra-
tions are well defined, the following inequality holds:

(∫ γ

0
ω(s)ds

)T

M

(∫ γ

0
ω(s)ds

)
≤γ

∫ γ

0
ωT (s)Mω(s)ds. (6)
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Lemma 2.2. See Ref. 6. Consider an operator D(·): Cn,h → Rn, with
D(xt ) = x(t) + B̂

∫ t

t−h
x(s)ds, where x(t) ∈ Rn and B̂ ∈ Rn×n. For a given

scalar δ, with 0<δ <1, if there exists a positive-definite symmetric matrix
M such that the following inequality holds:

[−δM hB̂T M

hMB̂ −M

]
<0, (7)

then the operator D(xt ) is stable.

We have the following theorem.

Theorem 2.1. For given h, α, α1, the system (1a) is asymptotically
stable if there exist positive-definite matrices X, W , F11, F33, positive sca-
lars εi , i =0, . . . ,3, and matrices Y , F12, F13, F23 satisfying the following
inequalities:



Q11 Q12 Q13 0 0 0 0 �1
	 −h−1X Q23 I I 0 0 0
	 	 Q33 0 0 ε1α1X ε3α1X 0
	 	 	 −ε2I 0 0 0 0
	 	 	 	 −ε3I 0 0 0
	 	 	 	 	 −ε1I 0 0
	 	 	 	 	 	 −ε3I 0
	 	 	 	 	 	 	 �2




<0,

(8a)

with

Q11 =AX +XAT +Y +YT +W +hF11, (8b)

Q12 =XAT +YT +F12, (8c)

Q13 =A1X −Y +hF13, (8d)

Q23 =A1X −Y +F23, (8e)

Q33 =−W +hF33, (8f )

[−X hYT

	 −X

]
<0, (9)
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
F11 F12 F13

	 X F23
	 	 F33


>0, (10)

where

�1 = [IIε0αXε2αXhYT ],

�2 =diag{−ε0I,−ε1I,−ε0I,−ε2I,−0.5hX}.

Proof. Consider a legitimate Lyapunov function candidate V as

V =V1 +V2 +V3 +V4, (11)

where

V1 =DT (xt )PD(xt ), (12)

V2 =2
∫ t

t−h

∫ t

s

xT (u)GT PGx(u)duds, (13)

V3 =
∫ t

t−h

xT (s)T x(s) ds, (14)

V4 =
∫ t

0

∫ s

s−h


x(s)

Gx(u)

x(s −h)




T 
P 0 0

0 P 0
0 0 P





F11 F12 F13

	 P −1 F23
	 	 F33




×

P 0 0

0 P 0
0 0 P





x(s)

Gx(u)

x(s −h)


duds. (15)
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Taking the time-derivative of V leads to

V̇1 =2 D·
T (xt )P Ḋ(xt )

=2
{
x(t)+

∫ t

t−h

Gx(s)ds

}T

P {(A+G)x(t)+ (A1 −G)x(t −h)

+f (t, x(t))+f1(t, x(t −h))}
=xT (t){P(A+G)+ (A+G)T P }x(t)+2xT (t)P (A1 −G)x(t −h)

+2xT (t)Pf (t, x(t))+2xT (t)Pf1(t, x(t −h))

+2
(∫ t

t−h

Gx(s)ds

)T

P (A+G)x(t)

+2
(∫ t

t−h

Gx(s)ds

)T

P (A1 −G)x(t −h)

+2
(∫ t

t−h

Gx(s)ds

)T

Pf (t, x(t))

+2
(∫ t

t−h

Gx(s)ds

)T

Pf1(t, x(t −h)), (16)

V̇2 =2hxT (t)GT PGx(t)−2
∫ t

t−h

xT (s)GT PGx(s)ds

≤ 2hxT (t)GT PGx(t)−
∫ t

t−h

xT (s)GT PGx(s)ds

−h−1
(∫ t

t−h

Gx(s)ds

)T

P

(∫ t

t−h

Gx(s)ds

)
, (17)

V̇3 =xT (t)T x(t)−xT (t −h)T x(t −h), (18)

V̇4 =hxT (t)PF11Px(t)+2xT (t)PF12P

∫ t

t−h

Gx(s)ds

+2hxT (t)PF13Px(t −h)

+
∫ t

t−h

xT (s)GT PGx(s)ds +2
(∫ t

t−h

Gx(s)ds

)T

PF23Px(t −h)

+hxT (t −h)PF33Px(t −h), (19)

where Lemma 2.1 is utilized in (17).
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Using Fact 2.1, we obtain

2xT (t)Pf (t, x(t))≤ ε−1
0 xT (t)PPx(t)+ ε0α

2xT (t)x(t), (20)

2xT (t)Pf1(t, x(t −h))≤ ε−1
1 xT (t)PPx(t)+ ε1α

2
1xT (t −h)x(t −h), (21)

2
(∫ t

t−h

Gx(s)ds

)T

Pf (t, x(t))

≤ ε−1
2

(∫ t

t−h

Gx(s)ds

)T

PP

(∫ t

t−h

Gx(s)ds

)
+ ε2α

2xT (t)x(t), (22)

2
(∫ t

t−h

Gx(s)ds

)T

Pf1(t, x(t −h))

≤ ε−1
3

(∫ t

t−h

Gx(s)ds

)T

PP

(∫ t

t−h

Gx(s)ds

)
+ε3α

2
1xT (t −h)x(t −h).

(23)

From (16)–(23), the time-derivative of V has a new upper bound as
follows:

V̇ ≤

 x(t)∫ t

t−h
Gx(s)ds

x(t −h)




T


1


x(t)∫ t

t−h
Gx(s)ds

x(t −h)


 , (24)

where


1 =

Q11 Q12 Q13

	 Q22 Q23
	 	 Q33


 (25a)

Q11 =P(A+G)+ (A+G)T P + ε−1
0 PP + ε−1

1 PP + ε0α
2I + ε2α

2I

+2hGT PG+T +hPF11P, (25b)

Q12 = (A+G)T P +PF12P, (25c)

Q13 =P(A1 −G)+hPF13P, (25d)

Q22 =−h−1P + ε−1
2 PP + ε−1

3 PP, (25e)
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Q23 =P(A1 −G)+PF23P, (25f)

Q33 =−T + ε1α
2
1I + ε3α

2
1I +hPF33P. (25g)

Hence, if 
1 <0, then a positive scalar λ exists which satisfies

V̇ <−λ‖x(t)‖2 . (26)

Let

X =P −1, W =XT X, Y =GX. (27)

By premultiplying and postmultiplying the inequality 
1 < 0 by
diag{X,X,X} and using Fact 2.2 (Schur complement), the resulting
inequality is equivalent to (8).

Inequality (9) is equivalent to[−P hGT P

	 −P

]
<0 (28)

as can be seen by premultiplying and postmultiplying the inequality (9)
by diag{X−1,X−1}. If inequality (28) holds, then we can prove that there
exists a positive scalar δ, which is less than one, such that[−δP hGT P

	 −P

]
<0, (29)

according to matrix theory. Therefore, from Lemma 2.2, if the inequality
(9) holds, then the operator D(xt ) is stable. The inequality (10) means that
V4 is nonnegative. According to Theorem 9.8.1 in Ref. 1, we conclude that,
if the matrix inequalities (8)–(10) holds, then the system (1) is asymptoti-
cally stable. This completes our proof.

Suppose that the nonlinear uncertainties are norm-bounded and
time-varying,

f (t, x(t))=DF(t)Ex(t), (30a)

f1(t, x(t −h))=D1F1(t)E1x(t −h), (30b)

‖F(t)‖≤1, (30c)

‖F1(t)‖≤1, (30d)

where D, D1, E, E1 are known real constant matrices of appropriate
dimensions. In this case, we have the following result.
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Corollary 2.1. For given h, α, α1, the system (1a) is asymptotically
stable if there exist positive definite matrices X, W , F11, F33, positive sca-
lars εi , i =0, . . . ,3, and matrices Y , F12, F13, F23 satisfying the following
inequalities:




Q11 Q12 Q13 0 0 0 0 �1
	 −h−1X Q23 D D1 0 0 0
	 	 Q33 0 0 ε1E

T
1 X ε3E

T
1 X 0

	 	 	 −ε2I 0 0 0 0
	 	 	 	 −ε3I 0 0 0
	 	 	 	 	 −ε1I 0 0
	 	 	 	 	 	 −ε3I 0
	 	 	 	 	 	 	 �2




<0,

(31a)

with

Q11 =AX +XAT +Y +YT +W +hF11, (31b)

Q12 =XAT +YT +F12, (31c)

Q13 =A1X −Y +hF13, (31d)

Q23 =A1X −Y +F23, (31e)

Q33 =−W +hF33. (31f)

[−X hYT

	 −X

]
<0, (32)


F11 F12 F13

	 X F23
	 	 F33


>0, (33)

where

�1 = [DD1ε0E
T Xε2E

T XhY ],

�2 =diag{−ε0I,−ε1I,−ε0I,−ε2I,−0.5hX}.
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Remark 2.1. In this paper, we use the operator

D(xt )=x(t)+
∫ t

t−h

Gx(s)ds

to transform the original system. Note that, if G is A1, then the trans-
formation is the neutral model transformation (Ref. 1). Since the operator
D(xt ) has a free weighting matrix, it yields results less conservative than
the results obtained by using the neutral model transformation.

Remark 2.2. The solutions of Theorem 2.1 can be obtained by solv-
ing the generalized eigenvalue problem in X, W , F11, F33, Y , F12, F13,
F23, εi , i = 0, . . . ,3, which is a quasiconvex optimization problem. Note
that a locally optimal point of a quasiconvex optimization problem with
strictly quasiconvex objective is globally optimal (Ref. 9). In this paper,
we utilize the Matlab LMI Control Toolbox (Ref. 13), which implements
interior-point algorithms. These algorithms are significantly faster than
classical convex optimization algorithms (Ref. 9).

3. Numerical Examples

Example 3.1. Consider the following time-delay systems with nonlin-
ear uncertainties (Ref. 11):

ẋ(t)=Ax(t)+A1x(t −h)+f (t, x(t))+f1(t, x(t −h)),

A=
[−2 0

0 −1

]
, A1 =

[−1 0
−1 −1

]
,

f (t, x(t))= [δ1 cos t |x1(t) |, δ2 sin t |x1(t) |]T ,

f1(t, x(t −h))= [γ1 cos t |x1(t −h) |, γ2 sin t |x1(t −h) |]T ,

where

| δi |≤α =0.05, |γi |≤α1 =0.1, i =1,2.

Thus, we have

‖f (t, x(t))‖ ≤ α ‖x(t)‖, ‖f1(t, x(t −h))‖ ≤ α1 ‖x(t −h)‖ .
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If we apply Theorem 2.1 to the above system, the result is that the system
is asymptotically stable for any h which is less than 1.3334. Note that the
stability bound on h is 0.7062 by the Cao and Wang criterion (Ref. 11).
The solution via Theorem 2.1 when h=1.3333 is as follows:

X =
[

2.3668×102 1.4176×102

1.4176×102 1.5654×106

]
,

W =
[

2.3670×102 2.1816×102

2.1816×102 1.4390×106

]
,

Y =
[

2.7828×10−3 2.3039×101

−5.9988×101 −4.2754×10−5

]
,

G=YX−1 =
[

2.9424×10−6 1.4717×10−5

−8.9872×10−2 −2.7310×10−1

]
,

F11 =
[

2.6627×102 9.6091×101

9.6091×101 8.0718×105

]
,

F12 =
[

2.3668×102 1.0165×102

1.0165×102 1.0077×106

]
,

F13 =
[

8.8758×101 6.4204×102

1.2220×102 104.5271×105

]
,

F23 =
[

1.1834×102 8.5509×101

1.6112×102 5.7724×105

]
,

F33 =
[

8.8759×101 6.7875×101

6.7875×101 3.7524×105

]
,

ε0 =2.1317×106, ε1 =3.3218×106,

ε2 =2.5304×106, ε3 =4.2574×106.
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Example 3.2. Consider the following system present in Ref. 11
[f (t, x(t))=0, f1(t, x(t −h))=0]:

ẋ(t)=Ax(t)+A1x(t −h),

where

A=
[−3 −2

1 0

]
, A1 =

[−0.5 0.1
0.3 0

]
.

Applying Theorem 2.1 to the above system, the upper bound of the
time delay h which assures the asymptotic stability of the above system
is 1.5875. Table 1 shows the comparison of our result with those of oth-
ers. From Table 1, one can see that our method provides a larger stability
bound.

Example 3.3. Consider the following uncertain system with constant
time delay (Ref. 12):

ẋ(t)=
[−2+ δ1 cos(t) 0

0 −1+ δ2 sin(t)

]
x(t)

+
[−1+γ1 cos(t) 0

−1 −1+γ2 sin(t)

]
x(t −h),

where δ1, δ2, γ1, γ2 satisfy

|δ1|≤1.6, |δ2|≤0.05, |γ1|≤0.1, |γ2|≤0.3.

Note that the above system has norm-bounded time-varying uncer-
tainties. The uncertain matrices are chosen as

D =E =diag
{√

1.6,
√

0.05
}

, D1 =E1 =diag
{√

0.1,
√

0.3
}

.

By applying Corollary 2.1 to the above system, we obtained the sta-
bility bound h as 1.3334.

In Table 2, we compare our result with those of others. From Table 2,
we see that the size of h which guarantees the asymptotic stability of the
above system is larger than that provides by the results in other papers.

Table 1. Stability bounds of the time delay for Example 3.2.

Xu (Ref. 5) Su (Ref. 7) Yan (Ref. 8) Cao and Wang (Ref. 11) This paper

h=0.0667 h=0.1298 h=0.4991 h=0.7602 h=1.5875
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Table 2. Stability bounds of the time delay for Example 3.3.

Li (Ref. 15) Kim (Ref. 12) Kharitomov (Ref. 16) This paper

h=0.2013 h=0.2412 h=0.6096 h=1.3334

4. Conclusions

In this paper, we present a novel stability criterion for the asymptotic
stability of time-delay systems with nonlinear uncertainties. Utilizing an
operator with a free weighting matrix, we transform the original system to
an equivalent time-delay system. Then, the delay-dependent stability crite-
rion is derived in terms of matrix inequalities by establishing a Lyapunov
functional with free weighting matrices. Through numerical examples, we
showed that the derived criteria are less conservative than those in other
published papers.
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