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Abstract. Approaches to approximate the efficient set and Pareto set
of multiobjective programs are reviewed. Special attention is given
to approximating structures, methods generating Pareto points, and
approximation quality. The survey covers more than 50 articles pub-
lished since 1975.
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1. Introduction

1.1. Motivation. In multiobjective programming, several conflicting
and noncommensurate objective (criterion) functions have to be optimized
over a feasible set determined by constraint functions. Due to the con-
flicting nature of the criteria, a unique feasible solution optimizing all the
criteria does not exist. Based on the commonly used Pareto concept of
optimality, one has to deal with a rather large number or infinite number
of efficient solutions. Two different efficient solutions are characterized by
the fact that each of them is better in one criterion but worse in another.
The fact that improvement of one criterion results in a loss in another is
known as the tradeoff between the solutions.
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The primary goal of multiobjective programming is to seek efficient
solutions and/or Pareto outcomes of multiobjective programs (MOPs) and,
if possible, support the decision maker (DM) in choosing a final preferred
solution. Therefore, it is of interest to design methods for obtaining a
complete or partial description of the Pareto set and efficient set, referred
to as the solution sets.

An exact description of these sets might be available analytically as a
closed-form formula, numerically as a set of points, or in mixed form as a
parametrized set of points. Unfortunately, for the majority of MOPs, it is
not easy to obtain an exact description of the solution set that includes
typically a very large number or infinite number of points. Even if it is
theoretically possible to find these points exactly, this is often computa-
tionally challenging and expensive and therefore is usually abandoned. For
some problems, finding the elements of the solution set is even impossible
due to the numerical complexity of the resulting optimization problems.
On the other hand, if it is possible to obtain the complete solution set,
one might not be interested in this task due to overflow of information.

Another reason for approximating the solution set, rather than find-
ing the solution set exactly, is that many real-world problems (e.g. in
engineering) cannot be completely and correctly formulated before a solu-
tion procedure starts. The formulating and solving have to be performed
interactively with the DM as more details about the solution set become
known. The information provided by an approximation can be sufficient
to develop a formulation and an exact solution is not necessary.

Since the exact solution set is very often not attainable, an approx-
imated description of the solution set becomes an appealing alternative.
Approximating approaches have been developed for the following pur-
poses: to represent the solution set when this set is numerically computable
(linear or convex MOPs); to approximate the solution set when some but
not all of the efficient or Pareto points are numerically computable (non-
linear MOPs); and to approximate the solution set when the efficient or
Pareto points are not numerically computable (discrete MOPs).

For any MOP, the approximation requires less effort and often may
be accurate enough to play the role of the solution set. Additionally, if the
approximation represents this set in a simplified, structured, and under-
standable way, it may effectively support the DM. Therefore, approxima-
tion quality and a measure for evaluating it are important aspects of the
approximating approaches.

In the literature, a variety of approaches to approximate the solu-
tion set of MOPs of different types have been proposed. A large major-
ity of the approaches employ an iterative method to produce points or
objects approximating this set. Some approaches are exact and based on
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algorithms equipped with theoretical proofs for correctness and optimality,
while some other approaches are heuristic and often theoretically
unsupported.

This work categorizes, summarizes, and compares methods presented
in more than 50 articles published in the English language since 1975. We
focus on exact approaches, since the other methods have been discussed
in a number of recent publications [e.g. Deb (Ref. 1), Coello Coello et al.
(Ref. 2), or Ehrgott and Gandibleux (Ref. 3)].

Besides the approximation, special attention is given to methods gen-
erating approximating points and the quality aspect of the approxima-
tion. All the approaches employ a solution method to obtain the points
that either become the final approximation or are used to construct other
approximating objects. The solution method is an integrated component of
the resulting approximating algorithm. The reader is referred to Ehrgott
and Wiecek (Ref. 4) for a recent review of solution methods in multiob-
jective programming.

In Subsection 1.2, we present basic concepts and definitions needed
in the survey. In Subsection 1.3, we propose a classification scheme to
review and compare the approaches. Sections 2, 3, 4 constitute the main
body of the paper: they include a review of methods for biobjective pro-
grams (BOPs), MOPs, and a discussion of quality measures, respectively.
The paper is concluded in Section 5.

In Sections 2 and 3, the articles are not reviewed in chronological
order, but with respect to the increasing degree of complexity of the struc-
ture approximating the solution set. Given the same structure, the articles
are discussed according to the complexity of the MOP they refer to. Given
the same problem category, the articles are presented chronologically.

1.2. Notation and Definitions. In the following, basic definitions and
notations used in this survey are given.

The multiobjective program (MOP) is formulated as

min f (x)= (f1(x), . . . , fp(x))T ,

s.t x ∈X,

where X ⊆Rn is the feasible set, f :X →Rp is composed of p real-valued
objective functions, and Rn and Rp are finite-dimensional Euclidean vec-
tor spaces. For the special case p = 2, we refer to this problem as the bi-
objective program (BOP). We define the set of attainable outcomes Y as
follows:

Y :={y ∈Rp :y =f (x), x ∈X}=f (X).
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For y1, y2 ∈Rp, we use the following notation:

y1 ≤y2 :⇔y1 �y2 and y1 �=y2,

y1 <y2 :⇔y1
k <y2

k ,∀k =1, . . . , p.

The Pareto cone is defined as

R
p

� :={
y ∈Rp :yk ≥0 k =1, . . . , p

}
.

According to the Pareto concept of optimality, the efficient set XE and the
weakly-efficient set XwE are defined as

XE :={
x ∈X : � x̄ ∈X :f (x̄)≤f (x)

}
,

XwE :={
x ∈X : � x̄ ∈X :f (x̄)<f (x)

}
.

The images of these sets under the vector-valued mapping f ,

YN :=f (XE), YwN :=f (XwE),

are called the Pareto set and the weak Pareto set, respectively. If the opti-
mality modeled by the Pareto cone is generalized to the optimality with
respect to a pointed convex cone, then the solution set in the objective
space is called the (weakly) nondominated set. Throughout the paper, we
use the Pareto concept of optimality unless stated otherwise. A point y2 ∈
Rp is called dominated by y1 ∈Rp if y1 ≤y2.

Several points in the outcome space serve as auxiliary points when
constructing approximations. Given

yI
k :=min{fk(x) :x ∈X}, k =1, . . . , p,

yAI
k :=max{fk(x) :x ∈X}, k =1, . . . , p,

the ideal point yI , utopia point yU , anti-ideal point yAI , and antiutopia
point yAU are defined as

yI := (yI
1 , . . . , yI

p)T ,

yU :=yI − ε,

yAI := (yAI
1 , . . . , yAI

p )T ,

yAU :=yAI + ε,

where ε ∈ Rp is a vector with small positive components. An attainable
Pareto outcome yIMk having yI

k as its kth component is called an individ-
ual minimum of the kth objective function (note that yIMk is not unique).
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The set of all individual minima is denoted by IM. Furthermore, given

yN
k :=max{fk(x) :x ∈XE}, k =1, . . . , p,

the point yN := (yN
1 , . . . , yN

p )T is called the nadir point. Since its calcula-
tion is not easy, the nadir point is often estimated.

The ideal and the (estimated) nadir points determine bounds [yI , yN ]
of the Pareto set such that yI ≤y ≤yN for all Pareto outcomes y ∈YN . The
projection of YN onto the axis of the kth objective function, k = 1, . . . , p,
is contained in the interval given by

Y k
N :=

[
yI
k , yN

k

]
, k =1, . . . , p.

The finite family of all these intervals is referred to as the range of the
Pareto set, whereas the range of the attainable set is given by the intervals

Y k :=
[
yI
k , yAI

k

]
, k =1, . . . , p.

An aspiration point is a desired point in the outcome space which
helps defining parameters for solution methods such as weights, reference
points, etc.

The convex Pareto hull of a set of point {v1, . . . , vs}⊂ Rp is defined
as {y ∈Rp :y ≥∑s

k=1 λkv
k,

∑s
k=1 λk =1, λk ≥0}. The convex hull of the indi-

vidual minima of the objective functions, abbreviated CHIM, is defined as

CHIM :=
{

y ∈Rp :y =
p∑

k=1

λky
IMk ,

s∑

k=1

λk =1, λk ≥0

}

.

Different weight vectors are used in the reviewed approximation
methods. One particular set of weights is denoted by W and is defined as

W :=
{

w ∈Rp :
p∑

i=1

wi =1,w ≥0

}

.

1.3. Classification of Approximation Approaches. The subject of the
approximation of the solution set of MOPs has been of interest to scien-
tists and engineers for a period of thirty years. To our knowledge, atten-
tion to this subject was given first in the 1970s [see for example Payne
et al. (Ref. 5) or Polak (Ref. 6)]. A large majority of articles deal with the
approximation of the Pareto set and only few articles study the approxi-
mation of the efficient set. In this paper, an approximation A is a set of
points in Rp (or in Rn) considered a surrogate of (a part of) the Pareto
(efficient) set usually of a simpler structure than the approximated set.
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We introduce a classification scheme that helps comparing the approx-
imation approaches. The articles are categorized with the respect to the
number of criterion functions of the MOPs they addres. We distinguish
between approaches for BOPs and approaches for MOPs. Within each of
the two groups, we further classify the approaches according to the struc-
ture of the approximating functions. Table 1 lists the approximation classes
and the related approximating functions.

A subclass of 1st order approximations are the so-called sandwich
approximations. They are composed of a piecewise linear inner approxi-
mation, AI and a piecewise linear outer approximation AO .

Inner means that, for a fixed fi-value, i ∈ {1, . . . , p}, every fj -value,
j �= i, of the approximation is never smaller than the fj -value of any Pa-
reto point with the same fi-value. Outer is defined accordingly. Given
AI and AO the area in between the inner and the outer approxima-
tion includes all the theoretically possible Pareto sets having the gener-
ated Pareto points as elements; i.e., the Pareto set satisfies the following
property:

YN ⊂ ((AI + (−R
p
≥))∩ (AO +R

p
≥)).

2. Biobjective Approaches

2.1. Approximations of 0th Order. As indicated above, pointwise or
discrete approximations are called approximations of the 0th order. Dis-
crete approximations are among the simplest structures one can think of
(which does not diminish their effectiveness). Pareto outcomes are gener-
ated by a solution method and serve directly as approximating points. No
further structure is computed.

Jahn and Merkel (Ref. 7) and Helbig (Ref. 8) propose methods for
continuous BOPs. Jahn and Merkel (Ref. 7) use the ε-constraint method
solved with a tunneling technique to obtain Pareto solutions. The interval

Table 1. Approximation classes.

Approximation class Approximating functions and sets

0th order Points
1st order (Piecewise) linear functions
2nd order (Piecewise) quadratic functions
3rd order (Piecewise) cubic functions
Other Other functions and sets
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on the f1-axis defined by the individual minima is discretized. The result-
ing points are used as the right-hand-side parameters in the ε-constraint
method. An interactive algorithm is proposed to find a preferred solution.

In Helbig (Ref. 8), the CHIM is discretized and, for each discretizing
point, the max-ordering method with a feasible reference point is used to
obtain Pareto outcomes. An interactive algorithm for finding a preferred
solution is also proposed.

Schandl et al. (Ref. 9) propose an approach for discrete BOPs. A
combination of the lexicographic direction method and a norm method
yields the Pareto outcomes. Since the method applies to other problems as
well, more details are given in Subsection 2.2.

2.2. Approximations of 1st Order. For piecewise linear approxima-
tions, Pareto points are obtained first with a solution method and then
connected with line segments (the convex hull of two adjacent outcomes).

Inner Approximations. Piecewise linear inner approximations are pro-
posed by Das (Ref. 10) and Schandl et al. (Ref. 9). Although each method
yields a piecewise linear curve connecting adjacent Pareto points found as
the approximating structure, the methods are based on different concepts.

The initial approximation in Das (Ref. 10) is provided by yIM1 , yIM2 ,
and the Pareto point having the maximum l2-distance from the CHIM.
This point and subsequent Pareto points are found with a modified nor-
mal-boundary intersection approach. This approach is applied iteratively
to the convex hull of each pair of adjacent points that do not meet a
prescribed value of the l2-distance from the Pareto set. In each iteration,
under convexity assumptions, an additional Pareto point with maximum
l2-distance to the Pareto set is found.

The approximation proposed by Schandl et al. (Ref. 9) is part of
the unit ball of an oblique norm. The initial approximation is given by
two Pareto points, each of which is obtained with a modified direction
approach. Consecutive points are found with the norm method in which
the norm of the currently approximating unit ball is maximized. Similarly
to Das (Ref. 10), under convexity assumptions, the point of worst approx-
imation is added to the approximation in each step of the procedure. The
quality is measured by the approximating norm itself. The approximation
is scaling independent and allows us to explore regions of interest in more
detail.

Sandwich Approximations. Two types of sandwich approximations
have been proposed. One of them uses exclusively piecewise linear curves
to construct the inner and outer approximations for convex problems. In
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the other type, piecewise linear curves result in rectangular approximating
sets for general problems.

Cohon et al. (Ref. 11), Fruhwirth et al. (Ref. 12), and Yang and Goh
(Ref. 13) propose similar sandwich approaches belonging to the first type.
Adjacent Pareto points are used to construct an approximation. An inner
approximation comes from the convex hull of these points, while an outer
approximation is provided by the concatenation of line segments that sup-
port the Pareto set at the generated Pareto points.

In each of the three algorithms, the initial approximation is given
by the CHIM. The initial sandwich approximation is given by a triangle
spanned between yIM1 , yIM2 and the ideal point [Cohon et al. (Ref. 11)]
or by yIM1 , yIM2 and the intersection point of the hyperplanes support-
ing the Pareto set at yIM1 and yIM2 [Fruhwirth et al. (Ref. 12)], or by a
trapezoid determined by yIM1 , yIM2 and a generated Pareto point [Yang
and Goh (Ref. 13)]. To generate Pareto points, Cohon et al. (Ref. 11) and
Yang and Goh (Ref. 13) use the weighted-sum method with weights whose
ratio is equal to the negative slope of the current inner approximation,
while Fruhwirth et al. (Ref. 12) use the hybrid method and offer different
choices for the weights. The process of calculating new Pareto outcomes
and updating the approximation is repeated until a distance between the
inner and outer approximation is satisfactory.

Solanki and Cohon (Ref. 14) refine the outer approximation of
Cohon et al. (Ref. 11) using a multiparametric decomposition, while still
using the same inner approximation and stopping criterion. The approach
results in a more accurate outer approximation, thus reducing the compu-
tational effort for meeting a prescribed accuracy level.

Ruhe and Fruhwirth (Ref. 15) modify the algorithm proposed by
Fruhwirth et al. (Ref. 12) in order to compute an ε-approximation of
the Pareto set additionally to the sandwich approximation proposed in
Fruhwirth et al. (Ref. 12). This ε-approximation is a piecewise linear inner
approximation with the property that every Pareto point becomes domi-
nated by some approximating point when contracting the approximation
by the factor 1/(1+ ε).

Payne and Polak (Ref. 16), Solanki (Ref. 17), and Payne (Ref. 18) pro-
pose sandwich approximations of the second type. In the first two papers,
nested rectangles are constructed, while in the latter a chain of rectangles
is built to approximate the Pareto set. The Polak-Payne method is used to
find Pareto points in Payne and Polak (Ref. 16) and Payne (Ref. 18).

In the first step of the method in Payne and Polak (Ref. 16), a rect-
angle enclosing the Pareto set in computed. New Pareto points are then
found to define new rectangles contained in the initial rectangle. The DM
chooses interactively one of the rectangles as the rectangle of interest. The
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approximation of the part of the Pareto set that is contained in the rectan-
gle of interest is refined. New Pareto points are determined and the rect-
angle of interest is cut down into smaller rectangles. This step of finding
new points and decomposing big-rectangles into smaller ones is repeated
until the approximation is accurate enough.

A similar scheme takes place in the approach by Solanki (Ref. 17)
for mixed-integer linear BOPs. The initial rectangle is spanned between
yIMk , k = 1,2. The augmented weighted Chebyshev method yield a new
Pareto outcome within the rectangle. This outcome is used to construct
two new rectangles, each spanned between a point yIMk and the out-
come itself. In every iteration, the solution method is employed within the
rectangle with the biggest approximation error that is calculated as the
maximum height or width of all the rectangles constructed so far. The
algorithm produces an approximation of the Pareto set of a desired accu-
racy with as few Pareto outcomes as possible.

In Payne (Ref. 18), the rectangles are constructed sequentially starting
at yIM1 and working toward yIM2 . Each rectangle in the chain has a pre-
scribed area. An upper bound for the number of rectangles of a desired
area can be computed.

2.3. Approximations of the 2nd Order. Wiecek et al. (Ref. 19) pro-
pose a piecewise quadratic approximation for nonconvex BOPs. They
use the lexicographic weighted Chebyshev method and the ε-constraint
method to find Pareto outcomes. Based on the Lagrangian dual prob-
lem associated with the weighted Chebyshev problem, a quadratic approx-
imating function is derived and is available immediately as a closed-form
description of the approximation. If the maximum distance between the
known Pareto points and the approximation is not satisfactory, the inter-
val of interest is shortened and the procedure is started again. Approxi-
mation of the entire Pareto set may be achieved by concatenation of local
approximating curves.

2.4. Approximations of 3rd Order. Payne et al. (Ref. 5) and Polak
(Ref. 6) use cubic functions to interpolate Pareto points that are found
with the ε-constraint method. The quality of the approximation is mea-
sured by the interpolation error. If the desired quality is not yet obtained,
additional Pareto points are computed.

2.5. Other Approximations. Some authors have proposed approxima-
tions of unspecified orders or orders higher than three.
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The sandwich algorithms of Fruhwirth et al. (Ref. 12) and Yang and
Goh (Ref. 13) are used by Liu et al. (Ref. 20) to approximate a nonconvex
Pareto curve after it has been convexified by an r th power transformation.

The southwest quarter of a hyperellipse is used in Li et al. (Ref. 21)
and Fadel and Li (Ref. 22) to approximate the Pareto set for con-
vex BOPs. Since three points can determine uniquely a hyperellipse, the
IM is supplemented by one additional Pareto outcome found with the
weighted-sum method. Knowing three different points, a root finding
problem has to be solved to compute the power of the hyperellipse passing
through these three points. While the closed-form formula of the approx-
imating hyperellipse is found quickly and almost effortlessly, information
about the approximation error or quality is not available.

In Li et al. (Ref. 21), an interactive optimization step is added after
an approximating hyperellipse has been found informing the DM about
the overall shape of the Pareto set. The DM can look for specific Pareto
points by specifying a preferred value for one or each objective function.
For the former, the ε-constraint method is applied to find the Pareto point
with the desired value in one objective. For the latter, goal programming
delivers a Pareto point with minimum deviation from the selected approx-
imating outcome.

3. Multiobjective Approaches

In contrast to methods for BOPs, only three types of approximating
structures are used to approximate the Pareto set of MOPs. This is prob-
ably due to the fact that it is often difficult to deal with objects in more
than two dimensions. Therefore, methods for MOPs are divided into only
three subgroups: approximations of the 0th order using discrete points,
approximations of the 1st order using polyhedral sets, and approximations
using other sets.

3.1. Approximations of 0th Order. Among all the articles we have
reviewed, only two deal with the pointwise approximations of the efficient
set. Therefore, approximations of the 0th order are divided into approaches
dealing with the efficient set and the Pareto set.

Approximations of the Efficient Set. Approaches to find a pointwise
approximation of the efficient set of a desired quality are given by Popov
(Ref. 23) and Nefëdov (Ref. 24). Both authors assume that the data about
the MOP are incomplete, i.e., the feasible set X and the objective func-
tions fk, k =1, . . . , p, are not available. Instead, the given data include the
set Xτ and functions f ε

k (x), k =1, . . . , p, such that the Hausdorff distance
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between X and Xτ is bounded by τ and

|f ε
k (x)−fk(x)| ≤ ε, for some τ, ε ≥0.

In Popov (Ref. 23), a two-stage weighted max-ordering method is
used to find efficient points. Under regularity conditions and given the ini-
tial parameters τ and ε ≥0 as well as some other parameters, it is shown
how to construct a grid Wδ on the set of weights W so that the efficient
points obtained with the max-ordering method result in an approximation
of the efficient set of a desired accuracy.

Nefëdov (Ref. 24) builds upon previous results of Nefëdov (Ref. 25).
The approximation process goes through two stages. In the first stage, a
set approximating the Pareto set is constructed from which in the sec-
ond stage an inverse is separated in the set Xτ . Two general approaches
for stage one are discussed: a set approximating the Pareto set can be
found using points from the set Xτ or by means of methods approximat-
ing the Pareto set and available in the literature [e.g. Nefëdov (Ref. 25)].
The author proposes a measure of the approximation error that, under
suitable conditions, implies the measure based on the Hausdorff distance
between the efficient set and the approximating set. For both stage-one
approaches, he derives results on how to choose approximation parame-
ters in order to construct a pointwise approximation of the efficient set so
that (i) the maximum distance between the image of the approximating set
and the Pareto set tends to zero as the approximation parameters go to
zero and (ii) the maximum distance between the image of the approximat-
ing set and the Pareto set is bounded by a desired quantity.

Approximations of the Pareto Set. A single-point approximation is
proposed by Das (Ref. 26) who advocates that, due to the high compu-
tational costs of solving nonlinear MOPs, the Pareto point with the maxi-
mum l2-distance to the CHIM is a good approximation of the Pareto set.
That point is found with modified normal-boundary intersection method
and is referred to as the maximum bulge of the Pareto set.

Approaches for linear MOPs have been proposed by Steuer and
Harris (Ref. 27), Reuter (Ref. 28), and Sayın (Ref. 29). Steuer and Harris
(Ref. 27) assume the Pareto set to be known prior to the procedure. For
each Pareto face, approximating points in the interior of the face are gen-
erated using convex combinations of the extreme points defining this face.
The approximating points having a small, unsatisfactory lp-distance from
each other are removed temporarily from consideration. The DM then
chooses a first preferred outcome and approximating points being in the
lp-neighborhood of this points are presented to the DM. Among these, the
DM chooses a final preferred outcome.
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In Reuter (Ref. 28), a concept of ε-approximation is introduced which
differs from the one used by Ruhe and Fruhwirth (Ref. 15). The range
of the attainable set is determined first. Depending on a parameter ε ≥ 0,
the range is divided into several intervals of equal length. Pareto points
are found using the hybrid method with the right-hand side parameters
provided by the intervals bounds. The obtained Pareto points form an
ε-approximation in the sense that the translation of the discrete approx-
imation by the vector −ε makes all the Pareto points dominated by the
approximating points; in other words, the Pareto set is contained in the
union of the Pareto cones attached to the translated approximating points.

Like in Steuer and Harris (Ref. 27), Sayın (Ref. 29) assumes that the
Pareto set of the linear MOP is known already and the main goal of
her approach is to compute a discrete approximation of a certain quality.
While the former suggest to first generate and then delete approximating
points to achieve a quality approximation, Sayın (Ref. 29) generates only
points which improve the current level of quality. Given an initial Pareto
outcome, other Pareto points in the same Pareto face are found iteratively
by solving a single-objective program whose numerical complexity depends
on the norm used in this program. For the case of the l∞-norm, it is
shown that the problem becomes a mixed linear-integer program. In each
iteration, a point of worst approximation is added to the representation of
the face.

Smirnov (Ref. 30) deals with convex and linear MOPs. A subset Wδ

of the set W is chosen such that, for each wi ∈Wδ, there is a wj ∈Wδ such
that ‖wi −wj‖∞ ≤δ, where δ is a chosen scalar. A weighted max-ordering
method is applied for each weight vector in Wδ. The resulting approxi-
mation forms an ε1-grid on YN , where ε1 depends on δ and some other
parameters. In the convex case, the approximation is also ε2-optimal in the
sense of Reuter (Ref. 28), where again ε2 depends on δ and some other
parameters. For the linear case, it is additionally shown how unnecessary
computations can be avoided.

Two approximation approaches based on two different versions of
the Chebyshev problem are investigated numerically in Buchanan and
Gardiner (Ref. 31) and applied to approximating the Pareto set of an
n-dimensional unit hypersphere and linear MOPs. The hyperrectangle
defined by the ideal points and nadir points is discretized by evenly dis-
tributed points serving as aspiration points, that in turn are used to
define weights with which both Chebyshev methods are solved. The Pareto
points obtained with each formulation of the Chebyshev method form two
approximations. The authors observe that one method produces less uni-
formly distributed approximating points having larger gaps near the coor-
dinate axes than the other.
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A 0th order approximation is constructed in Fliege and Heseler
(Ref. 32) for problems with convex quadratic objective functions and
polyhedral feasible sets. Approximating points are generated by solving
weighted-sum problems with an interior-point method. The weight vec-
tors of these problems are changed sufficiently small to apply a warm-start
strategy to the interior-point method: the weight vector is altered system-
atically so that a point found by solving a previous weighted-sum problem
can be used as a starting point for solving the current weighted-sum prob-
lem. The approximating points are generated iteratively until all the com-
ponents of the weight vectors have covered the range between 0 and 1.

Das and Dennis (Ref. 33) propose an approach for convex MOPs. A
set of equidistant reference points on the CHIM is generated and, for each
of them, a Pareto point is found using the normal-boundary intersection
method. While the solution method may overlook a portion of the Pareto
set for p >2, it is expected to produce a set of equidistant approximating
points.

MOPs with convex objective functions are also addressed in Churkina
(Ref. 34). First, it is algebraically shown that an infinite set of reference
points, together with the Chebyshev method applied to this set, character-
ize the set of weak Pareto points. The Chebyshev method is then applied
to a finite subset of this set of reference points to produce an approxima-
tion. Since the resulting outcomes may not be Pareto, the weighted-sum
method is applied to discard the weak Pareto solutions from the approxi-
mating points found. While an approximation algorithm is not given, it is
proved that there exists a finite number of reference points such that the
Chebyshev distance from any Pareto point to some approximating point is
satisfactory.

The approximation method in Helbig (Ref. 35) applies to MOPs
whose outcome set is C-convex, where C is a convex cone subsuming
the Pareto cone with respect to which nondominated points are sought.
The use of a nonPareto cone yields two benefits: (i) a subset of the
Pareto set can be potentially reached and (ii) perturbation of the origi-
nal cone allows for the exploration of Pareto points located within a small
region of interest. Each point of the approximation is generated with the
Pascoletti-Serafini method, which is a direction method using a general
convex cone. The algorithm requires a parameter for cone perturbation, a
direction, and a set of reference points for each of which a Pareto point
is found with the solution method. If the resulting set of Pareto points
is satisfactory, they comprise the final approximation. Otherwise, the set
of reference points and/or the perturbation parameter is changed and the
process continues. Theoretical results on the relationships between weakly
nondominated solutions with respect to a perturbed cone and on the
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relationships between nondominated solutions with respect to the original
one are included.

Approximation methods for general MOPs have been developed by
many authors. In Nefëdov (Ref. 25) and Abramova (Ref. 36), it is
assumed that data about the MOP is incomplete in the sense of Popov
(Ref. 23) and Nefëdov (Ref. 24). In Nefëdov (Ref. 25), two approxima-
tion approaches using a variation of the weighted max-ordering method
are presented; in Abramova (Ref. 36), the weighted-norm scalarization is
applied to find Pareto points. In these articles, the approximation results
are similar but based on different solution methods. The quality of the
approximation is understood in the sense of Popov (Ref. 23) and Reuter
(Ref. 28). Given the initial parameters τ and ε ≥ 0 as well as some other
parameters, it is shown how to construct a grid Wδ on the set of weights
W so that the points obtained with the employed solution methods result
in an approximation of the Pareto set of a desired accuracy measured
with the Hausdorff metric. The approximating set has several proper-
ties. The distance between this set and the Pareto set is measured by
the Hausdorff metric and is bounded. The bound is calculated based on
the parameters τ, ε ≥ 0 and other parameters used in the derivation of
the bounds. It is shown that, if the parameters tend to zero, the mea-
sured Hausdorff distance also goes to zero. Additionally, for every Pareto
outcome, there exists a point in the approximating set within a desired
distance. In Nefëdov (Ref. 25), a method of filtering (contracting) the
approximating set is also included.

The approach of Armann (Ref. 37) produces a discrete approximation
of the Pareto set in which a desired number of Pareto points is contained.
The payoff table is found first yielding p Pareto points and initial bounds
on the objective functions. An auxiliary single-objective integer program is
solved to find the number of Pareto points that need to be found for each
objective function so that the total number of generated Pareto outcomes
is equal to the desired number. Pareto points are generated with two vari-
ations of the hybrid method enabling us to find these points with respect
to maximally dispersed bounds on each axis in the objective space.

Kostreva et al. (Ref. 38) address very general problems: the objective
functions may be discontinuous and the feasible set may be disconnected.
A suitable utopia point as well as a finite set of weight vectors are chosen
prior to the procedure. For each weight vector, the weighted Chebyshev
method is solved using the utopia point as a reference point. The resulting
approximating points may be connected with simplices, which will serve as
the final approximating structure.

A global shooting procedure is proposed by Benson and Sayın
(Ref. 39). The anti-ideal point yAI is used to construct a simplex S
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containing the outcome set. The constructing of the simplex requires the
solution of the weighted-sum problem with equal weights. Directions in
the subsimplex S0 ⊂S defined by the extreme points of S \{yAI } are deter-
mined and used to run the direction method, which produces points on
the boundary of the outcome set. The Benson method examines whether
these boundary points are Pareto or not, in which case new Pareto points
are obtained.

Karaskal and Köksalan (Ref. 40) propose an approach for general
MOPs but emphasize its effectiveness for convex problems. They estimate
first the nadir point and compute initial Pareto points using a constrained
Chebyshev method. A weighted Lp-hypersurface is then fitted through the
Pareto points around the nadir point so that the sum of the squared devi-
ations between the hypersurface and the Pareto points is minimized. Once
equidistant points on the hypersurface are determined, they are projected
on the Pareto set using the achievement scalarizing function method. The
resulting Pareto points form a discrete approximation.

The articles reviewed below originate from the engineering commu-
nity. While the proposed approaches are not mathematically justified, in a
rigorous way, they are motivated by real-life applications and offer insight
in and valuable information about the state of the art of engineering
perspective.

Wilson et al. (Ref. 41) propose a method of surrogate approximations
for MOPs that are not available in a closed form, which is quite com-
mon in engineering applications. The feasible set is sampled first using an
experimental design technique and a surrogate approximation of the out-
come set is constructed based on a surrogate model of choice (e.g., sec-
ond-order polynomial surfaces, kriging models). If the approximation is
not satisfactory, additional sample points may be taken to improve the
accuracy. Otherwise, points of the Pareto set of the approximation are gen-
erated with a Pareto fitness function.

Physical programming is used in Messac and Mattson (Ref. 42) as a
basis for approximation. After the range of the Pareto set has been deter-
mined; a set of equidistant parameters covering that range is found. For
each of these parameters, a Pareto outcome is generated with the scalar-
ization method of physical programming.

Similarly to Das and Dennis (Ref. 33), Ismail-Yahaya and Messac
(Ref. 43) determine equidistant reference points on the CHIM expecting
that they will yield equidistant approximating points. The normal-constraint
method is used for each of the reference points to get approximating points
that are not guaranteed to be Pareto. Within the set of produced candidates,
dominated points are filtered and deleted, while the remaining points, being
Pareto with respect to one another, form an approximating set.
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Mattson et al. (Ref. 44) build upon the ideas of Ismail-Yahaya and
Messac (Ref. 43) and Steuer and Harris (Ref. 27) and refine the filtering
process. Not only dominated points are deleted from the candidate set,
but also points that are too close to each other. In contrast to Steuer
and Harris (Ref. 27), Mattson et al. (Ref. 44) do not use an lp-metric,
but a cross-shaped region to measure the closeness of the approximating
points.

3.2. Approximations of 1st Order. Similar to the biobjective case,
approximations of the 1st order are classified according to their structure
and location with respect to the Pareto set.

Inner Approximations. Piecewise linear inner approximations are pro-
posed by Chernykh (Ref. 45) and Schandl et al. (Ref. 46). Chernykh
(Ref. 45) deals with a special class of convex MOPs whose outcome set is
convex. He approximates the Pareto hull of the outcome set from inside
by the intersection of linear halfspaces. First, a weak Pareto outcome is
found by minimizing one of the objective functions. The Pareto hull of
this outcome is constructed and given in the form of a system of inequal-
ities. For each newly created inequality, the weighted-sum method with
weights coming from the coefficients of these inequalities is applied to
determine other weak Pareto outcomes. Among the weak Pareto outcomes
found, the one with the biggest orthogonal projective distance from the
hyperplane defined by the inequality producing this outcome is identified
as a candidate to be added to the set of approximating points. If this
projective distance is satisfactory, the approximation is considered good
enough and the algorithm stops. Otherwise, the approximation is updated
by calculating the convex hull of the current approximation and the can-
didate point.

In Schandl et al. (Ref. 46), a polyhedral inner approximation is pre-
sented for convex, nonconvex, and discrete MOPs. Gauges [see Minkowski
(Ref. 47)] measuring the distance between a feasible reference point and
the Pareto outcomes are used and the polyhedral structure of their unit
ball is exploited heavily in the proposed algorithm. For convex problems,
the approximating structure is the unit ball of a gauge, while for non-
convex problems the constructed polyhedral set is nonconvex and may be
viewed as the level curve of another function. The gauge method deliv-
ers a set of candidate approximating points and, at the same time, the
distances between the candidate points and the current approximation. If
the maximum of these distances is not satisfactory, the candidate point
of worst approximation is added to the set of approximating points and
the next iteration is started (for the convex case, the added point is of
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globally worst approximation). Otherwise, the iterative step ends and the
final approximation is obtained. For nonconvex and discrete MOPs, the
lexicographic weighted Chebyshev method is used to generate candidate
points in a cone. The final set of approximating points may include non-
Pareto points that should be removed.

Outer Approximations. In this category, there are two approaches
designed for linear MOPs. Similar to Wiecek et al. (Ref. 19), Voinalovich
(Ref. 48) uses the notion of duality to derive an approximating structure.
A dual linear program to a single objective formulation of the Chebyshev
problem is found and solved for optimal dual variables with which a sys-
tem of linear inequalities is set up. The resulting outer polyhedral approx-
imation is algebraically given by the inequalities that hold with equality at
the weak Pareto outcomes.

The other approach is proposed by Benson (Ref. 49). A polyhedron,
referred to as an efficiency-equivalent polyhedron (EEP) and having the
same Pareto set as the original problem, is approximated by means of an
approximating polyhedron (AP). Upon the initialization, a reference point
in the interior of the EEP is found and a polyhedral set, being the first
AP and containing the EEP, is constructed. The algorithm stops if the AP
equals the EEP. If not, a point of the AP is found that is not contained in
the EEP. This point and the reference point determine the direction used
in the direction method to find a Pareto point. A Pareto face that contains
this Pareto point is then computed. The AP is updated by intersecting the
halfspace defined by this face with the current AP. The algorithm termi-
nates after a finite number of steps and constructs the Pareto set exactly.

The only approach for nonconvex MOPs is drafted by Kaliszewski
(Ref. 50). Using the augmented or modified weighted-Chebyshev method,
a finite set of Pareto outcomes is generated. At every outcome, the cone
determined by the level set associated with the Chebyshev norm level curve
generating and passing through that point is constructed. The intersection
of the complements of all the cones provides an approximation of the set
of outcomes and implicitly an approximation of the Pareto set.

Sandwich Approximations. Solanki et al. (Ref. 51) and Klamroth et al.
(Ref. 52) propose sandwich approximations that combine inner and outer
approximations into an approximating structure.

The work of Solanki et al. (Ref. 51) is an extension of the bicriteria
approach for linear MOPs. As in the bicriteria case, a polyhedral inner
and a polyhedral outer approximations are constructed, which is a more
complex task due to multiple dimensions. Initially, the hyperplanes sup-
porting YN at yIM

k , for all k = 1, . . . , p, and the CHIM define the outer
and inner approximation, respectively. For each face of the inner approx-
imation, the weighted-sum problem is solved with the weights defined
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by the hyperplane including this face. If the projective distance from the
newly-generated points to the corresponding faces is satisfactory, the algo-
rithm stops. Otherwise, a point with the biggest distance is added to the
set of approximating points and the inner approximation is updated by
computing the convex hull of all the approximating points that have been
found so far. The outer approximation is updated by computing the inter-
section of the previous outer approximation and the halfspace defined
by the hyperplane passing through the newly found approximating point.
Unlike the biobjective case, several difficulties can arise such as generation
of dominated approximating points or nonconvexity of the approximation.
Methods for tasking care of these difficulties are proposed.

We observe that the inner approximation in Chernykh (Ref. 45) and
the inner approximation in the sandwich algorithm of Solanki et al.
(Ref. 51) both require the computation of the convex hull of points found
by the weighted-sum method. We note also that the outer approximation
of Benson (Ref. 49) and the sandwich algorithm of Solanki et al. (Ref. 51)
are updated in the same fashion: First, a hyperplane is generated using
the weighted-sum method and the direction method, respectively. Then,
the approximation is updated by intersecting it with a suitable halfspace
defined by the hyperplane.

Klamroth et al. (Ref. 52) build upon and improve significantly the
approach of Schandl et al. (Ref. 46) in the sense that all the generated
points are weak Pareto and, for all types of MOPs and in each itera-
tion, the point of (globally) worst approximation is added. Inner and outer
approximation algorithms for convex and nonconvex MOPs are devel-
oped. All the four algorithms produce an approximating set based on
gauges and their unit balls. Similar to Schandl et al. (Ref. 46), the algo-
rithms use an initial attainable reference point becoming the origin of the
unit ball of a gauge. In the inner approach, facets of the cones with the
apex at an initial attainable reference point determine the approximation.
In each cone, a modified gauge problem is solved to generate (globally)
weak Pareto candidate outcomes. The outer approach can be considered
the dual to the inner approach. The approximation is determined by the
intersection of hyperplanes that generate halfspaces containing an attain-
able reference point and are identified by solving the direction problem
with the directions provided by the extreme points of the fundamental vec-
tors of the currently constructed unit ball of a gauge.

3.3. Other Approximations. The Pareto set of general MOPs is
approximated in Mateos and Rios-Insua (Ref. 53) and in Mateos et al.
(Ref. 54) by means of a vector-valued utility function specified by the DM.



JOTA: VOL. 126, NO. 3, SEPTEMBER 2005 491

The utility function can be modified with a cone (subsuming the Pareto
cone) also specified by the DM, which reduces the subset of the Pareto
set being approximated. The Pareto points needed for an initial approx-
imation are found with the lexicographic method. The initial approxima-
tion is constructed as the intersection of the outcome set with the level sets
of a utility function (of unspecified order) passing through these points.
The convergence property of the approximation is proved; i.e., a sequence
of nested cones converging to a halfspace (while the sequence of the dual
cones converges to a ray) results in a sequence of nested approximating
sets each of which includes the same Pareto point.

4. Quality Aspects and Measures

Measures of an approximation error or quality have not gained much
attention although almost every approach with an iterative step uses
implicitly an error or quality measure. Papers authored by Popov (Ref. 23),
Nefëdov (Ref. 25), Nefëdov (Ref. 24), and Abramova (Ref. 36) seem to
be the first ones to focus closely on these issues in the context of their
own approximation approaches. They are the only authors to consider the
Hausdorff distance between the solution set and the approximating set and
they obtained results on how to choose approximation parameters to con-
trol this distance.

Independently of the literature mentioned above and more recently,
Benson and Sayın (Ref. 39) have recognized the need for comprehensive
measures of approximation quality. Sayın (Refs. 55 and 29) continues on
the earlier ideas and proposes three measures of approximation quality:
the cardinality of the approximating set, the maximum distance between
two approximating points (uniformity), and the distance of the worst rep-
resented element to its closest approximating point (coverage). The work
of Benson and Sayın is universal, since it has established tools for mea-
suring the quality independently of a specific approximation approach.
Those tools are employed by Karaskal and Köksalan in their computa-
tional study.

We classify quality measures into two groups: the first group deals
only with the approximating structure, whereas the second group uses the
approximating structure and the solution set.

4.1. Measures of Approximation. (i) The cardinality (C) is defined
as the number of approximating points generated for the approximation
and used to control the size of the approximation. The approaches by
Armann (Ref. 37), Solanki (Ref. 17), Jahn and Merkel (Ref. 7), Helbig
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(Ref. 8), Das (Ref. 26), Schandl et al. (Ref. 9), Schandl et al. (Ref. 46), and
Klamroth et al. (Ref. 52) are capable of either controlling directly the
number or at least an upper bound on the number of generated approxi-
mating points.

(ii) The dispersion (Di) measures the scattering or distribution of the
approximating points. The concept is used to avoid clusters of approximat-
ing points, i.e., overrepresented regions of the solution set, and to achieve
an even, possibly equidistant spread of approximating points over this set.
Dispersion is achieved and measured by different means. Sayın (Ref. 29)
maximizes an lp-distance between the approximating points. Mattson et al.
(Ref. 44) and Steuer and Harris (Ref. 27) delete points that are too close
to each other. While the former uses a cross-shaped region for measur-
ing distance, thus reducing the cardinality of the approximating set, the
latter employs lp-metrics for the same purpose. Helbig (Ref. 8), Das and
Dennis (Ref. 33), and Ismail-Yahaya and Messac (Ref. 43) determine equi-
distant points on the CHIM, whereas Karaskal and Köksalan (Ref. 40)
determine equidistant points on an lp-hypersurface. Various projections of
these points deliver approximating points. Armann (Ref. 37) and Reuter
(Ref. 28) compute maximally dispersed reference points on the axes in
the outcome space, which are used as parameters for the hybrid method.
Messac and Mattson (Ref. 42) use equidistant points in the range of the
Pareto set as bounding parameters for a solution method. Buchanan and
Gardiner (Ref. 31) discretize the bounds of the Pareto set with equidistant
aspiration points. The algorithms in Steuer and Harris (Ref. 27), Mattson
et al. (Ref. 44), and Sayın (Ref. 29) control dispersion directly, while in
all other approaches the resulting approximating points are expected to be
dispersed similarly to the set of auxiliary points.

(iii) The spread (S) informs about the bounds of the Pareto set. In all
sandwich approaches, an initial area subsuming the Pareto set or a part
of the Pareto set to be approximated is determined. In each iteration, this
area is made smaller in order to obtain sharper bounds. The approaches
by Fruhwirth et al. (Ref. 12) and Yang and Goh (Ref. 13) measure the
Hausdorff distance between AI and AO , while Payne and Polak (Ref. 16),
Solanki (Ref. 17), and Payne (Ref. 18) use the size of the approximat-
ing rectangles to evaluate the quality. However, in some other sandwich
approaches [e.g. Solanki et al. (Ref. 51)], information about YN is gathered
to update the approximating structure.

4.2. Measures of Approximation and Solution Set. (i) The error (E)
of the approximation is commonly measured by some notion of dis-
tance between the solution set and the approximation. The length of the
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maximum orthogonal line segment from the approximation to YN is used
by Cohon et al. (Ref. 11), Solanki and Cohon (Ref. 14), Solanki et al.
(Ref. 51), Chernykh (Ref. 45), and Das (Ref. 10). Additionally gener-
ated points and their distance to the approximation, like in Wiecek et al.
(Ref. 19), or upper bounds on the maximum distance between the approx-
imation and YN , like in Payne et al. (Ref. 5), are other means to serve
the same purpose. Schandl et al. (Ref. 9), Schandl et al. (Ref. 46), and
Klamroth et al. (Ref. 52) use their approximations property of being a
gauge to measure the distance from the approximation to YN and change
their distance measure when updating the approximation. In their work,
the approximation itself is used to measure the quality and there is no
need to introduce an external, user-dependent measure of quality. Sayın
(Ref. 29) assumes YN to be known and formulates an algorithm that, in
each step, reduces the error and at the same time informs the DM about
the cardinality and the dispersion of the approximating points.

(ii) The dominance (Do) is used in two different concepts, both being
called ε-approximations. Reuter (Ref. 28) calls an approximation A an
ε-approximation if YN + ε, ε ∈ Rp and ε1 = · · · = εp, is dominated by
A. An approximation is called ε-approximation in the sense of Ruhe
and Fruhwirth (Ref. 15) if (1 + ε)YN is dominated by A, with ε ∈ R.
The concept of ε-approximation in the sense of Reuter (Ref. 28) was
used implicitly by Nefëdov (Ref. 25), Abramova (Ref. 36), and Smirnov
(Ref. 30).

5. Summary

This survey contains an overview of the research that has been done
since 1975 in the area of the solution set approximation for continuous
multiobjective programs.

Due to intended brevity, conciseness, and legibility, the articles are
presented in a facilitated version with (important) technical details hidden.
Certain aspects of the approaches, such as the solution methods and qual-
ity measures, have been selected subjectively by the authors as significant
components of the approximation methodology.

The survey is not complete, since the authors are aware of addi-
tional publications that, due to publication language other than English
or nonavailability of a paper, are not covered in this review. However,
they shall be listed in alphabetical order: Beauzamy (Ref. 56), Karyakin
(Ref. 57), Lotov et al. (Ref. 58), Polishchuk (Ref. 59), Popov (Ref. 60),
Popovici (Ref. 61), Postolica and Scarelli (Ref. 62), Smirnov (Ref. 63), and
Yannakakis (Ref. 64).
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The approaches covered in this review are listed in alphabetical
order in Table 2 together with a brief description of the MOPs which
they address (problem description), the solution methods used to obtain
approximating points (solution methods), the geometric structure form-
ing the final approximation (structure), and the quality measure employed
(quality).

Table 2. Approximation approaches.

Reference Problem description Solution methods Structure Quality

Abramova
(Ref. 36)

M|C0, nonnegative,
bounded|.

Weighted-norm
method

0th order Do, E

Armann (Ref. 37) M|nonconvex|noncon-
vex

Hybrid method 0th order C, Di

Benson (Ref. 49) M|linear|polyhedral Direction method 1st order
Benson and Sayin
(Ref. 39)

M|nonconvex|. Weighted-sum
method

0th order

Direction method
Benson method

Buchanan and
Gardiner (Ref. 31)

M|convex|. Chebyshev method 0th order Di

Chernykh
(Ref. 45)

M|.|. Weighted-sum
method

1st order E

Churkina (Ref. 34) M|C0, convex|. Chebyshev method 0th order
Weighted-sum
method

Cohon et al.
(Ref. 11)

2|linear|convex Weighted-sum
method

1st order E, S

Das and Dennis
(Ref. 33)

M|.|. NBI method 0th order Di

Das (Ref. 10) 2(M)|convex|convex NBI method 1st order E
Das (Ref. 26) M|.|. NBI method 0th order C
Fadel and Li 2|(non)convex|. ε-constraint method other
(Ref. 22) Lexicographic

method
Weighted-sum
method

Fliege and Heseler
(Ref. 32)

M|convex,
quadratic|polyhedral

Weighted-sum
method

0th order

Fruhwirth et al.
(Ref. 12)

2|linear|convex Hybrid method 1st order E, S

Helbig (Ref. 35) 2|convex|convex Direction method 0th order
Helbig (Ref. 8) 2|quasiconvex|convex Max-ordering

method
0th order C, Di
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Table 2. (Continued).

Reference Problem description Solution methods Structure Quality

Ismail–Yahaya and
Messac (Ref. 43)

M|.|. Normal constraint
method

0th order Di

Jahn and Merkel
(Ref. 7)

2|C0|. ε-constraint method 0th order C

Kaliszewski
(Ref. 50)

M|nonconvex|noncon-
vex

Modified Chebyshev
method

1st order

Augmented
Chebyshev method

Karaskal and
Köksalan (Ref. 40):

M|.|. Constrained
Chebyshev method

0th order Di

Achievement scalar-
izing fcts.

Klamroth et al.
(Ref. 52)

M|convex|convex Modified direction
method

1st order C, E

Gauge method
Multidirection
method

Kostreva et al.
(Ref. 38)

M|.|. Chebyshev method 0th order

Li et al. (Ref. 21) 2|C1|convex ε-constraint method other
Lexicographic
method
Weighted-sum
method

Liu et al. (Ref. 20) 2|nonconvex|. Weighted-sum
method

other S

Mateos and
Rios-Insua (Ref. 53)

M|.|. Lexicographic
method

other

Mateos et al.
(Ref. 54)

M|.|. Lexicographic
method

other

Mattson et al.
(Ref. 44)

M|.|. Normal-constraint
method

0th order Di

Messac and
Mattson (Ref. 42)

M|nonconvex|
nonconvex

Physical program-
ming

0th order Di

Nefëdov (Ref. 25) M|C0, nonnegative,
bounded|.

Max-ordering
method

0th order Di, Do, E

Nefëdov (Ref. 24) M|C0, nonnegative,
bounded|.

Max-ordering
method

0th order C, E

Payne (Ref. 5) 2|C0|C1 ε-constraint method 3rd order E
Payne and Polak
(Ref. 16)

2|C0|. Polak-Payne method 1st order S, C

Payne (Ref. 18) 2|C0|. Polak-Payne method 1st order S
Polak (Ref. 6) 2|C5|C5 ε-constraint method 3rd order E



496 JOTA: VOL. 126, NO. 3, SEPTEMBER 2005

Table 2. (Continued).

Reference Problem description Solution methods Structure Quality

Popov (Ref. 23) M|C0|. Max-ordering
method

0th order E

Reuter (Ref. 28) M|linear|polyhedral Hybrid method 0th order Di, Do
Ruhe and
Fruhwirth (Ref. 15)

2|linear|convex Hybrid method 1st order Do, S

Sayin (Ref. 55) M|linear|polyhedral – 0th order C, Di, E
Sayin (Ref. 29) M|linear|polyhedral – 0th order C, Di, E
Schandl et al. 2| · |several Direction method 1st order C, E
(Ref. 9) Chebyshev method
Schandl et al. M|convex|convex Direction method 1st order C, E
(Ref. 46) Gauge method
Smirnov (Ref. 30) M|linear|polyhedral/

convex
Max-ordering
method

0th order Do, E

Steuer and Harris
(Ref. 27)

M|linear|polyhedral – 0th order Di

Solanki and
Cohon (Ref. 14)

2|linear|polyhedral Weighted-sum
method

1st order E

Solanki (Ref. 17) 2|linear|polyhedral
(integer)

Chebyshev method 1st order C, S

Solanki et al.
(Ref. 51)

M|linear|polyhedral Weighted-sum
method

1st order E, S

Voinalovich
(Ref. 48)

M|linear|polyhedral Chebyshev method 1st order

Wiecek et al. 2|C1|. Chebyshev method 2nd order E
(Ref. 19) ε-constraint method
Wilson et al.
(Ref. 41)

M|.|. Pareto fitness func-
tions

0th order

Yang and Goh
(Ref. 13)

2|linear|convex Weighted-sum
method

1st order E, S

A scheme of the form A|B|C is used for the problem description. The
first position A shows whether the approach addresses BOPs or MOPs.
The second position B specifies requirements on the objective functions,
while the third position C states requirements on the constraint functions.
For example, 2|linear|linear means that the article deals with BOPs with
linear criteria and the feasible set is a polyhedron; M|convex|C1 stands for
an MOP with more than two convex criteria and continuously differentia-
ble constraint functions. A dot indicates that no restrictions are made.
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