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Credibility of Incentive Equilibrium Strategies
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Abstract. We characterize in this paper the credibility of incentive
equilibrium strategies for the class of linear-state differential games.
We derive a general condition for credibility and illustrate its use on
two differential games taken from the literature of environmental eco-
nomics and knowledge accumulation. We show that the proposed lin-
ear incentive strategies are not always credible. Further, we provide
alternative nonlinear credible strategies which suggest that we should
not stick only to linear incentive strategies, even in a simple class of
differential games such as the linear-state one.
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1. Introduction

A major issue in cooperative differential games is the sustainability
over time of an agreement reached at the starting date of the game. Sche-
matically, the difficulty stems from the fact that the initial sharing rule
agreed upon may become individually irrational in the course of the game
(Ref. 1). The literature has attempted to ensure sustainability following
two alternative approaches:

(i) Equilibrium Approach. The idea here is to embody the cooper-
ative solution with an equilibrium property so that, by definition, each
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player will find it individually rational to stick to her part in the coor-
dinated solution. If it happens that the efficient solution is in itself
an equilibrium, as in some differential games of special structure (see
e.g. Refs. 2–4), then the problem is solved. In the absence of such
rare coincidence, one may build a cooperative equilibrium using trig-
ger strategies. These are strategies based on the past actions in the
game and they include a threat to punish, credibly and effectively, any
player who cheats on the agreement; (see e.g. Refs. 5–6). In two-player
differential games, another option is to support the cooperative solu-
tion by incentive strategies; see e.g. Refs. 7–11. Informally, incentive
strategies are functions which depend on the possible deviation of the
other player with respect to the coordinated solution. If this deviation
is null, then the incentive strategy will prescribe to the player to also
choose the cooperative control. By this, we mean that each player will
indeed implement her incentive strategy, and not the coordinated solu-
tion, if she observes that the other one has deviated from the coordi-
nated solution. The credibility of incentive strategies is the topic of this
paper.

(ii) Time Consistency. A coordinated solution is time-consistent if no
player finds it optimal to switch to her noncooperative control at any
intermediate instant of time. The test here consists in comparing the coor-
dinated and noncooperative payoffs-to-go along, importantly, the cooper-
ative state trajectory; see e.g. Refs. 12–16. The implicit assumption is that
each player is confident that, if the coordinated solution is time-consistent,
then her partners will stick to it. A stronger concept in this category is
agreeability. The main difference with time-consistency is that the compar-
ison condition must hold along any state trajectory and not only along the
cooperative one; see e.g. Refs. 17–20.

The objective of this paper is the characterization of credible incentive
strategies for the class of linear-state differential games; see Ref. 21 for an
analysis of this class of games. More specifically, we provide a condition
to check the credibility of such strategies and further illustrate its use on
two examples taken from the economic literature. We show that, in both
cases, the proposed linear incentive strategies may lack credibility and pro-
vide nonlinear ones which are always credible. The message from this last
result is that we should not confine ourselves to linear incentive strategies,
even for simple game structures such as the linear-state one.

The rest of the paper is organized as follows. In Section 2, we recall
the ingredients of linear-state differential games and derive the coordinated
solution. In Section 3, we define incentive equilibrium strategies and pro-
vide a characterization formula for assessing their credibility. In Section 4,
we discuss two economic applications; in Section 5, we conclude.
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2. Linear-State Differential Game

Consider a two-player differential game played on the time interval
[0,∞). The state equation is

ẋ(t)=g(u1(t), u2(t))+ δx(t), x(0)=x0, (1)

where x(t)∈X⊆ R denotes the state, ui(t)∈ R the control of player i =
1,2, δ is a constant, and X is the state space.

The payoff functional to be maximized by player i is

Wi =
∫ ∞

0
[fi(u1(t), u2(t))+mix(t)]e−ρtdt, (2)

where ρ, 0 < ρ, ρ �= δ, is the discount rate and mi a parameter.
By (1)–(2), we have defined a linear-state differential game with one

state variable and where each player has a scalar control. The extension
to a multidimensional setting is straightforward.

Linear-state differential games have the feature that Markov perfect
equilibrium strategies are degenerate in the sense that they are constant
with respect to the state variable4. This property follows from the fact that
value functions are linear in the state.

In what follows, we shall confine our interest to stationary Markov
perfect equilibria, which is standard in autonomous dynamic games played
on an infinite horizon. Due to stationarity, equilibrium strategies and
value functions do not depend explicitly on t .

2.1. Cooperative Solution. Assume that the players agree to play a
cooperative game in which they maximize jointly the aggregate payoff

2∑
i=1

Wi =
2∑
i=1

∫ ∞

0
[fi(u1(t), u2(t))+mix(t)]e−ρtdt.

The next proposition characterizes the solution of the cooperative problem
that we wish to sustain by incentive equilibrium strategies.

Proposition 2.1. Denote by (uc1, u
c
2) the cooperative solution. Assum-

ing interior solutions, the following system5 defines implicitly uci , i = 1,2

4General classes of games with degenerate Markovian strategies were considered in Refs.
22–23.

5From now on, the time argument is omitted when no confusion can arise.
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which are constant with respect to the state variable x,

2∑
j=1

∂fj

∂ui
(u1, u2)+

[
(m1 +m2)

(ρ− δ)
]
∂g

∂ui
(u1, u2)=0, i=1,2. (3)

The optimal state trajectory is

xc(t)= (
x0 +g(uc1, uc2)/δ

)
eδt −g(uc1, uc2)/δ. (4)

Proof. We define the current-value Hamiltonian,

Hc(x, u1, u2, λ
c)=

2∑
j=1

[fj (u1, u2)+mjx]+λc[g(u1, u2)+ δx],

where λc is the costate variable associated with the state variable x.
Assuming an interior solution, the sufficient conditions for optimality

derived from the Pontryagin maximum principle include the relations

∂Hc

∂ui
(x, u1, u2, λ

c)=
2∑
j=1

∂fj

∂ui
(u1, u2)+λc ∂g

∂ui
(u1, u2)=0, i=1,2, (5a)

ẋ=g(u1, u2)+ δx, x(0)=x0, (5b)

λ̇c=ρλc− ∂Hc

∂x
(x, u1, u2, λ

c)

= (ρ− δ)λc− (m1 +m2), (5c)

lim
t→∞ e

−ρtλc(t)=0. (5d)

It is easy to verify that the costate differential equation satisfying the
transversality condition has as the solution

λc= (m1 +m2)/(ρ− δ).

The costate variable is constant over time and independent of the state
and control variables. This implies that the optimally conditions in (5) are
independent of the state. Therefore, the system of equations in (3) defines
implicitly the constant uci , i=1,2.

Inserting the constant optimal controls in the state equation and solv-
ing leads to the optimal state trajectory in (4). �
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Once the optimal cooperative solution is known, we can compute the
part corresponding to each player of the total cooperative payoff.

Corollary 2.1. Player i’s optimal payoff under the cooperative strat-
egy is given by

Wi(u
c
1, u

c
2)=

(ρ− δ)fi(uc1, uc2)+mi(ρx0 +g(uc1, uc2))
(ρ− δ)ρ , (6)

where the difference ρ− δ is assumed to be positive.

Proof. Substitute in each player objective functional the controls by
uci , i= 1,2, which are constant, and the state variable by its optimal tra-
jectory given in (4),

Wi(u
c
1, u

c
2)=

∫ ∞

0
[fi(uc1, u

c
2)+mixc(t)]e−ρtdt

=
∫ ∞

0

[
fi(u

c
1, u

c
2)+mi

{(
x0 +g(uc1, uc2)/δ

)
eδt −g(uc1, uc2)/δ

}]

×e−ρtdt.

An easy integration with respect to time leads to

fi(u
c
1, u

c
2)/ρ+mi

[(
x0 +g(uc1, uc2)/δ

)
[1/(ρ− δ)]−g(uc1, uc2)/δρ

]
,

where the assumption ρ − δ > 0 is needed to guarantee a convergent
improper integral. Arranging terms, the expression in (6) results.

We state the following remark to be used later on.

Remark 2.1. If (û1, û2) is any pair of constant controls, which do not
depend on the state variable x, the associated state trajectory is

x̂(t)= (
x0 +g(û1, û2)/δ

)
eδt −g(û1, û2)/δ,

and player i’s payoff is given by

Wi(û1, û2)= [(ρ− δ)fi(û1, û2)+mi(ρx0 +g(û1, û2))]/[(ρ− δ)ρ].
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3. Incentive Equilibria

In general, the cooperative solution is not an equilibrium. As men-
tioned in the introduction, one way of substaining this coordinated
solution in time is to support it by incentive equilibrium strategies. This sec-
tion recalls some definitions and characterizes the credibility of the incentive
strategies.

Let (uc1, u
c
2)∈ R × R denote the desired cooperative solution. Denote

by

�1 ={ψ1|ψ1 : R−→R}, �2 ={ψ2|ψ2 : R−→R}
the sets of admissible incentive strategies.

Definition 3.1. A strategy pair (ψ1 ∈ �1,ψ2 ∈ �2) is an incentive
equilibrium at (uc1, u

c
2) if

W1(u
c
1, u

c
2)≥W1(u

c
1,ψ2(u1)), ∀u1 ∈R,

W2(u
c
1, u

c
2)≥W2(ψ1(u2), u

c
2), ∀u2 ∈R,

ψ1(u
c
2)=uc1, ψ2(u

c
1)= (uc2).

To characterize an incentive equilibrium, we need to solve the follow-
ing pair of optimal control problems where each player assumes that the
other is using the incentive strategy:

max
ui

Wi =
∫ ∞

0
[fi(u1, u2)+mix]e−ρt , (7a)

s.t. ẋ=g(u1, u2)+ δx, x(0)=x0, ρ >0, ρ �= δ, (7b)

uj =ψj (ui), i, j =1,2, i �= j. (7c)

The next proposition characterizes the solutions of these optimal
control problems.

Proposition 3.1. An interior solution u∗
i , i=1,2, of the optimal con-

trol problem in (7) satisfies the following equation:

∂fi

∂ui
(ui,ψj (ui))+

[
mi

(ρ− δ)
]
∂g

∂ui
(ui,ψj (ui))

+ψ ′
j (ui)

[
∂fi

∂uj
(ui,ψj (ui))+ [mi/(ρ− δ)] ∂g

∂uj
(ui,ψj (ui))

]
=0,

i, j =1,2, i �= j. (8)
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Proof. Introduce the current-value Hamiltonian associated with the
optimal control problem for player i in (7),

Hi(x, ui, λ
i)=fi(ui,ψj (ui))+mix+λi [g(ui,ψj (ui))+ δx],

where λi is the costate variable.
Assuming an interior solution, the sufficient conditions for optimality

derived from the Pontryagin maximum include

∂H i

∂ui
(x, ui, λ

i)= ∂fi

∂ui
(ui,ψj (ui))+ ∂fi

∂uj
(ui,ψj (ui))ψ

′
j (ui)

+λi
[
∂g

∂ui
(ui,ψj (ui))+ ∂g

∂uj
(ui,ψj (ui))ψ

′
j (ui)

]
=0, (9a)

ẋ=g(ui,ψj (ui))+ δx, x(0)=x0, (9b)

λ̇i =ρλi − ∂H i

∂x
(x, ui, λ

i)= (ρ− δ)λi −mi, (9c)

lim
t→∞ e

−ρtλi(t)=0, i=1,2. (9d)

It is easy to verify that the costate differential equation satisfying the
transversality condition has as the solution

λi =mi/(ρ− δ).
The costate variable is constant over time and independent of the state
and control variables. This implies that the optimality conditions in (9) are
independent of the state. Therefore, the equation in (8) defines implicitly
the constant u∗

i .

To determine an incentive equilibrium, we need to impose

u∗
i =uci , i=1,2.

Therefore, uci must satisfy equation (8) which characterizes u∗
i . Using this

fact and equations (3), which define the cooperative solution, the following
proposition establishes the necessary conditions which must be satisfied by
the incentive equilibrium strategies.

Proposition 3.2. To be an incentive equilibrium at (uc1, u
c
2), a strategy

pair (ψ1 ∈�1,ψ2 ∈�2) must satisfy the following conditions:

ψ ′
1(u

c
2)ψ

′
2(u

c
1)=1, (10)
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and

ψ ′
1(u

c
2)=−

∂f2

∂u2

(
uc1, u

c
2

)+ [m2/(ρ− δ)] ∂g
∂u2

(
uc1, u

c
2

)
∂f2

∂u1

(
uc1, u

c
2

)+ [m2/(ρ− δ)] ∂g
∂u1

(
uc1, u

c
2

) , (11)

or

ψ ′
2

(
uc1

)=−
∂f1

∂u1

(
uc1, u

c
2

)+ [m1/(ρ− δ)] ∂g
∂u1

(
uc1, u

c
2

)
∂f1

∂u2

(
uc1, u

c
2

)+ [m1/(ρ− δ)] ∂g
∂u2

(
uc1, u

c
2

) , (12)

where

∂fi

∂uj

(
uc1, u

c
2

)+ [mi/(ρ− δ)] ∂g
∂uj

(
uc1, u

c
2

)
, i, j =1,2, i �= j,

are assumed to be nonnull.

Proof. Since uci must satisfy equations (8), which characterize u∗
i ,

and taking into account that ψi(ucj )=uci , i, j =1,2, i �= j , then the follow-
ing equations can be derived:

∂fi

∂ui

(
uc1, u

c
2

)+ [mi/(ρ− δ)] ∂g
∂ui

(
uc1, u

c
2

)

+ψ ′
j

(
uci

) [
∂fi

∂uj

(
uc1, u

c
2

)+ [mi/(ρ− δ)] ∂g
∂uj

(
uc1, u

c
2

)]=0,

i, j =1,2, i �= j. (13)

From equations (3), which characterize the cooperative solution, one has

∂fi

∂ui
(uc1, u

c
2)+ [mi/(ρ− δ)] ∂g

∂ui
(uc1, u

c
2)

=−∂fj
∂ui

(uc1, u
c
2)−

[
mj/(ρ− δ)] ∂g

∂ui
(uc1, u

c
2), i, j =1,2, i �= j.

Replacing these two expressions in the equation (13) for i=2, j=1, we get

∂f1

∂u2
(uc1, u

c
2)+ [m1/(ρ− δ)] ∂g

∂u2
(uc1, u

c
2)

+ψ ′
1(u

c
2)

[
∂f1

∂u1
(uc1, u

c
2)+ [m1/(ρ− δ)] ∂g

∂u1
(uc1, u

c
2)

]
=0. (14)
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From the equation (13), for i=1 and j =2, we obtain

∂f1

∂u1
(uc1, u

c
2)+ [m1/(ρ− δ)] ∂g

∂u1
(uc1, u

c
2)

=−ψ ′
2(u

c
1)

[
∂f1

∂u2
(uc1, u

c
2)+ [m1/(ρ− δ)] ∂g

∂u2
(uc1, u

c
2)

]
. (15)

Substituting the right-hand side of the last equation in (14) and arranging
terms, we have[

∂f1

∂u2
(uc1, u

c
2)+ [m1/(ρ− δ)] ∂g

∂u2
(uc1, u

c
2)

]
[1−ψ ′

1(u
c
2)ψ

′
2(u

c
1)]=0.

Since

∂f1

∂u2
(uc1, u

c
2)+ [m1/(ρ− δ)] ∂g

∂u2
(uc1, u

c
2)

is assumed to be different from zero, the last equation leads to (10). More-
over, (15) can be rewritten as (12). Finally, assuming

∂f2

∂u1
(uc1, u

c
2)+ [m2/(ρ− δ)] ∂g

∂u1
(uc1, u

c
2)

nonnull, from equation (13) for i = 2, j = 1, the expression (11) can be
derived.

Corollary 3.1. If there exist i, j ∈{1,2}, i �= j , such that

∂fi

∂uj
(uc1, u

c
2)+ [mi/(ρ− δ)] ∂g

∂uj
(uc1, u

c
2)=0,

then (uc1, u
c
2) is a Nash equilibrium of the noncooperative game.

Proof. Let assume that

∂f1

∂u2
(uc1, u

c
2)+ [m1/(ρ− δ)] ∂g

∂u2
(uc1, u

c
2)=0.

Under this assumption, the equation (3), which has to be satisfied by the
cooperative solution, for i=2 reads as

∂f2

∂u2
(uc1, u

c
2)+ [m2/(ρ− δ)] ∂g

∂u2
(uc1, u

c
2)=0. (16)

The equation (13) for i=1 and j =2 simplifies as follows:

∂f1

∂u1
(uc1, u

c
2)+ [m1/(ρ− δ)] ∂g

∂u1
(uc1, u

c
2)=0. (17)
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It is easy to show that, if (ǔ1, ǔ2) is a Nash equilibrium of the differ-
ential game defined by (1)–(2), then it is characterized completely by the
following pair of equations:

∂fi

∂ui
(ǔ1, ǔ2)+ [mi/(ρ− δ)] ∂g

∂ui
(ǔ1, ǔ2)=0, i=1,2.

Therefore, equations (16) and (17) establish that the cooperative solution
(uc1, u

c
2) is a Nash equilibrium of the noncooperative game.

In the rare event where the condition in the above corollary holds true
(i.e., the cooperative solution is a Nash equilibrium), the use of the incentive
strategies would not be needed anymore to sustain the cooperative solution.

3.1. Credibility of Incentive Strategies. We turn now to the focal
issue of the paper, the credibility of incentive strategies. For an incentive
equilibrium to be credible, it must be in the best interest of each player to
implement her incentive strategy if the other player deviates from the coor-
dinated solution rather than to play her part of the cooperative solution.
A formal definition follows.

Definition 3.2. The incentive equilibrium strategy pair (ψ1 ∈�1,ψ2 ∈
�2) at (uc1, u

c
2) is credible in U1 ×U2 ⊆R2 if the following inequalities are

satisfied:

W1(ψ1(u2), u2)≥W1(u
c
1, u2), ∀u2 ∈U2, (18)

W2(u1,ψ2(u1))≥W2(u1, u
c
2), ∀u1 ∈U1. (19)

Note that the above definition characterizes the credibility of the equi-
librium strategies for any possible deviation in the set U1 ×U2. The next
proposition states the credibility conditions for a linear-state differential
game.

Proposition 3.3. Consider the differential game defined by (1)–(2)
and denote by (uc1, u

c
2) its cooperative solution. The incentive equilibrium

strategy pair (ψ1 ∈�1,ψ2 ∈�2) at (uc1, u
c
2) is credible in U1 ×U2 ⊆R2 if the

following conditions hold:

(ρ− δ)[f1(u
c
1, u2)−f1(ψ1(u2), u2)]

+m1[g(uc1, u2)−g1(ψ1(u2), u2)]≤ 0, ∀u2 ∈U2,

(ρ− δ)[f2(u1, u
c
2)−f2(u1,ψ2(u1))]

+m2[g(u1, u
c
2)−g1(u1,ψ2(u1))]≤0, ∀u1 ∈U1.
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Proof. It suffices to compute the expressions of the different payoffs
appearing in the inequalities (18) and (19) taking into account the expres-
sions of player i’s payoff along a given pair of constant established in
Remark 2.1. Straightforward computations lead to the inequalities in the
proposition.

The two inequalities provide conditions which could be tested easily
once the forms of the involved functions are at hand. The following two
corollaries provide sufficient conditions which are easier to check. Actu-
ally, the later ensures the existence of neighborhoods in which the incen-
tive strategies are credible.

Corollary 3.2. If

(ρ− δ) ∂fi
∂ui

(uc1, u
c
2)+mi

∂g

∂ui
(uc1, u

c
2)≤0, i=1,2, (20)

then there exists a neighborhood N ⊆R2 of (uc1, u
c
2) such that the incentive

equilibrium strategies (ψ1 ∈�1,ψ2 ∈�2) at (uc1, u
c
2) are credible in N .

Proof. Let us define functions hi(uj ), i, j =1,2, i �= j , such that

hi(uj )= (ρ− δ)[fi(uci , uj )−fi(ψi(uj ), uj )]
+mi [g(uci , uj )−gi(ψi(uj ), uj )].

The credibility conditions in Proposition 3.3 can be rewritten as

hi(uj )≤0, i, j =1,2, i �= j, ∀uj ∈Uj . (21)

It is straightforward to deduce that

hi(u
c
j )=0, i, j =1,2, i �= j,

taking into account that

ψi(u
c
j )=uci , i, j =1,2, i �= j.

Taking the derivative, we have that, for i, j =1,2, i �= j,

h′
i (uj )= (ρ− δ)

[
∂fi

∂uj
(uci , uj )−

∂fi

∂ui
(ψi(uj ), uj )ψ

′
i (uj )−

∂fi

∂uj
(ψi(uj ), uj )

]

+mi
[
∂g

∂uj
(uci , uj )−

∂g

∂ui
(ψi(uj ), uj )ψ

′
i (uj )−

∂g

∂uj
(ψi(uj ), uj )

]
.
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Moreover,

h′
i (u

c
j )=−ψ ′

i (u
c
j )

[
(ρ− δ) ∂fi

∂ui
(uc1, u

c
2)+mi

∂g

∂ui
(uc1, u

c
2)

]
, i, j =1,2, i �= j.

Replacing the expression of ψ ′
i (u

c
j ), i, j = 1,2, i �= j , given in (10) or (11),

the derivative of the functions hi(ucj ) can be rewritten as

h′
i (u

c
j )= (ρ− δ) ∂fj

∂uj
(uc1, u

c
2)+mj

∂g

∂uj
(uc1, u

c
2), i, j =1,2, i �= j.

The assumptions in (20) imply that

h′
i (u

c
j )≤0, i, j =1,2, i �= j.

Together with hi(u
c
j )= 0, i, j = 1,2, i �= j, we can deduce by continuity

arguments that

hi(uj )≤0, i, j =1,2, i �= j, ∀uj ∈Nj ,

where Nj denotes a neighborhood of ucj . Therefore, the credibility condi-
tions in (21) are satisfied in N = N1 × N2 and the incentive equilibrium
strategies are credible in this neighborhood.

Corollary 3.3. If

uci −ψi(uj )≥0 [resp. ≤0],

(ρ− δ) ∂fi
∂ui

(uci , uj )+mi
∂g

∂ui
(uci , uj )≤ 0 [resp. ≥0],

for i, j = 1,2, i �= j , for all uj in a neighborhood Mj of ucj , then the
incentive equilibrium strategies (ψ1 ∈�1,ψ2 ∈�2) at (uc1, u

c
2) are credible

in M1 ×M2.

Proof. Using a first-order approximation, we can write

fi(u
c
i , uj )−fi(ψi(uj ), uj )≈ [uci −ψi(uj )]

∂fi

∂ui
(uci , uj ),

g(uci , uj )−g(ψi(uj ), uj )≈ [uci −ψi(uj )]
∂g

∂ui
(uci , uj ).

These approximations remain valid for all uj which belong to a neighbor-
hood Mj of ucj .
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Substituting these approximations in the credibility conditions in (21),
these conditions simplify as follows:

(
uci −ψi(uj )

)[
(ρ− δ) ∂fi

∂ui
(uci , uj )+mi

∂g

∂ui
(uci , uj )

]
≤0,

i, j =1,2, i �= j, ∀uj ∈Mj . �

4. Applications

In this section, we apply the conditions for the credibility of the
incentive equilibrium strategies to two differential games, one in environ-
mental economics and the other in knowledge accumulation.

4.1. Pollution Control Problem. Consider two players (countries,
regions, etc.) who wish to coordinate their pollution strategies in order to
maximize their joint payoff. As in Refs. 10 and 19, we assume that the
emissions resulting from production are proportional to production.6 This
assumption allows us to express the revenue from production as a function
of the emissions.

Denote by Ei(t) the emissions of country i at time t and by S(t) the
stock of pollution. The evolution of the latter is described by the differen-
tial equation

Ṡ(t)=E1(t)+E2(t)− δS(t), S(0)=S0, (22)

where δ > 0 represents the natural absorption rate of pollution and S0 is
the initial stock of pollution. The revenue function is concave increasing
and the damage cost linear, specified as follows:

R(Ei)= log(Ei), Di(S)=ϕiS, ϕi >0.

Player i’s payoff is given by

Wi =
∫ ∞

0
[log(Ei)−ϕiS]e−ρtdt,

where ρ is a positive discount rate.

6For the sake of completeness, we present the model in this subsection, but it corresponds to
a particular case of that presented in Ref. 19 and shares a lot of features with that studied
in Ref. 10.
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The cooperative solution (Ec1,E
c
2) is obtained as the result of the joint

optimization problem

max
E1,E2

(W1 +W2)=
∫ ∞

0
[log(E1)+ log(E2)− (ϕ1 +ϕ2) S]e−ρtdt,

subject to (22).
Applying the same optimality conditions as in Proposition 2.1, it is

straightforward to obtain

Eci = (δ+ρ)/(ϕ1 +ϕ2), i=1,2.

After an appropriate change of notation, the expression (6) gives player i’s
cooperative payoff,

Wi(E
c
1,E

c
2)=

(ϕ1+ϕ2)(ρ+δ) log [(ρ+δ)/(ϕ1+ϕ2)]−ϕi [ρ(ϕ1+ϕ2)S0+2(ρ+δ)]
(ϕ1 +ϕ2)(ρ+ δ)ρ .

The cooperative solution (Ec1,E
c
2) is not an equilibrium; therefore, we use

the incentive strategies to achieve the cooperative emission levels as an
incentive equilibrium.

In this example, the sets of admissible incentive strategies are

�1 ={ψ1|ψ1 : R+ −→R+}, �2 ={ψ2|ψ2 : R+ −→R+}.
A strategy pair (ψ1 ∈�1,ψ2 ∈�2) is an incentive equilibrium at (Ec1,E

c
2)

if

W1(E
c
1,E

c
2)≥W1(E

c
1,ψ2(E1)), ∀E1 ∈R+,

W2(E
c
1,E

c
2)≥W2(ψ1(E2),E

c
2), ∀E2 ∈R+,

ψ1(E
c
2)=Ec1, ψ2(E

c
1)=Ec2.

The solution E∗
i , i= 1,2, of the optimal control problems (7) characteriz-

ing the incentive strategies satisfies

1/Ei − [ϕi/(p+ δ)] [1+ψ ′
j (Ei)]=0, i, j =1,2, i �= j.

Imposing E∗
i =Eci , i=1,2, we get

ψ ′
i (E

c
j )=ϕi/ϕj , i, j =1,2, i �= j.

Therefore, any strategy pair (ψ1 ∈�1,ψ2 ∈�2) is an incentive equilibrium
at (Ec1,E

c
2) if

ψi(E
c
j )=Ecj , ψ ′

i (E
c
j )=ϕi/ϕj , i, j =1,2, i �= j. (23)
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We now check for the credibility of the above incentive strategies. The
inequalities in Proposition 3.3 characterizing the credible incentive strate-
gies in E =E1 ×E2 now read as follows:

(ρ+ δ) log
(
Eci /ψi(Ej )

)−ϕi(Eci −ψi(Ej ))≤0, i, j =1,2, i �= j, ∀Ej ∈Ej.
Define the following functions:

hi(Ej )= (ρ+ δ) log
(
Eci /ψi(Ej )

)−ϕi(Eci −ψi(Ej )), i, j =1,2, i �= j.
The credibility conditions are

hi(Ej )≤0, i, j =1,2, i �= j, ∀Ej ∈Ej .
Note that

hi(E
c
j )=0, i, j =1,2, i �= j.

Moreover,

h′
i (Ej )=ψ ′

i (Ej )
[
ϕi − (ρ+ δ)/ψi(Ej )

]
, i, j =1,2, i �= j, (24)

h′
i (E

c
j )=−ϕi <0, i, j =1,2, i �= j. (25)

It can be shown easily that the Nash equilibrium of this pollution con-
trol differential game is given by [(δ+ρ)/ϕ1, (δ+ρ)/ϕ2]. It is an established
result in this class of models that the cooperative emission levels are lower
than their noncooperative counterparts. Thus, if a player deviates, then she
will choose an emission level greater than the cooperative one. Therefore,
we try to establish conditions for which

h′
i (Ej )≤0, i, j =1,2, i �= j,

since in this case the credibility conditions

hi(Ej )≤0, i, j =1,2, i �= j,
are satisfied for

Ei ≥Eci , i=1,2.

Inequalities (25) guarantee that there exist neighborhoods of Eci , i = 1,2,
where

h′
i (Ej )≤0, i, j =1,2, i �= j,

and the credibility conditions are fulfilled.
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Since

ψ ′
i (E

c
j )=ϕi/ϕj >0, i, j =1,2, i �= j,

we assume that

ψ ′
i (Ej )>0,∀Ej ≥0, i, j =1,2, i �= j.

Under this assumption, from (24) to have

h′
i (Ej )≤0, i, j =1,2, i �= j,

we need to impose

ψi(Ej )≤ (ρ+ δ)/ϕi, i, j =1,2, i �= j,∀Ej ∈Ej . (26)

Then, all functions ψi(Ej ), i, j = 1,2, i �= j , satisfying conditions (23) and
(26) lead to credible incentive strategies in E =E1 ×E2.

Let us note that, if the incentive strategies are linear, then the condi-
tion in (26) cannot be satisfied for all Ej ≥0. It can be shown that linear
incentive strategies are credible if and only if Ej ≤ Ẽj , where

(Ẽj )=
[
(ρ+ δ)/(ϕi +ϕj )

] [
1+ϕ2

j /ϕ
2
i

]
.

Recalling that the coordinated emission level is given by

Eci = (δ+ρ)/(ϕ1 +ϕ2), i=1,2,

then the linear incentive strategies are credible if the deviation from the
cooperative solution is at most the quantity

[
(ρ+ δ)/(ϕi +ϕj )

]
ϕ2
j /ϕ

2
i .

An example of nonlinear functions ψj (Ei), i, j = 1,2, i �= j , which
lead to credible incentive strategies in R+ ×R+ [they satisfy all the require-
ments in conditions (23) and (26)] are given by

ψi(Ej )=Ai −Bi/(Ej −Ci),
where

Ai = (ρ+ δ)/ϕi,
Bi =

[
(ρ+ δ)/(ϕi +ϕj )

]2 (
ϕj/ϕi

)3
,

Ci = (ρ+ δ)(ϕi −ϕj )/ϕ2
i .

This function has an horizontal asymptote in Ai and a vertical asymptote
in Ci . It can be proved easily that Ci ≤Eci . The constant Ci is positive if
and only if ϕi >ϕj .
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Fig. 1. Environmental economics game: Linear and nonlinear incentive strategies.

Figure 1 shows linear and nonlinear incentive strategies when the val-
ues of the parameters are as follows:

ρ=0.1, δ=0.2, ϕ1 =0.1, ϕ2 =0.2.

In this case, the cooperative emissions levels are Ec1 =Ec2 = 1. Conditions
(23) and (26) impose

ψ1(1)=1, ψ2(1)=1, ψ ′
1(1)=0.5, ψ ′

2(1)=2, ψ1(E2)≤3, ψ2(E1)≤1.5.

This figure shows the function ψ1(E2) as an example of a nonlinear cred-
ible incentive strategies (continuous line), as well as the linear incentive
strategies (discontinuous line) which are credible only for emission levels
lower than Ẽ2 =5.

4.2. Knowledge Accumulation Game. We analyze now a knowledge
accumulation game which corresponds to a variation of the model used
in Refs. 24–25. The linear-state statement of the game is borrowed from
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Ref. 21, Example 7.1. In this example, knowledge is modeled as a pure
public good and there are two individuals who invest in a single stock of
knowledge.

Denote by x(t) the stock of knowledge at time t and by ui(t) the
investment level of player i at this time. The evolution of this stock is
governed by the following differential equation:

ẋ(t)=a1u1(t)+a2u2(t)−αx(t), x(0)=x0, (27)

where α > 0 represents a constant rate of depreciation and x0 is a given
initial stock of knowledge.

Player i chooses her investment level so as to maximize the following
objective functional:

max
ui

Wi =
∫ ∞

0
[mix−βiui − (1/2)γiu2

i ] e
−ρtdt,

subject to (27). The first term in the objective represents the linear utility
that player i derives from the stock of knowledge. The other two terms
correspond to the cost of investment, which is assumed to be quadratic.

The cooperative (joint maximization) solution is given by (uc1, u
c
2)

where

uci = [(m1 +m2)ai −βi(ρ+α)] /[(ρ+α)γi ].

To have positive investments, it is assumed that

(m1 +m2)ai −βi(ρ+α)>0, i=1,2.

It can be shown easily that the Nash equilibrium (û1, û2) of this accu-
mulation game is given by

ûi = [miai −βi(ρ+α)] /(ρ+α)γi, i=1,2,

where

miai −βi(ρ+α), for i=1,2,

is supposed to be positive.
The noncooperative Nash equilibrium leads to lower investments than

those corresponding to the coordinated solution. Therefore, the cooperative
solution is not a Nash equilibrium and incentive strategies are implemented
to sustain the cooperative investment levels as an incentive equilibrium.
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Using the same notation and following the same steps as in the pre-
vious example, we derive that any strategy pair (ψ1 ∈�1,ψ2 ∈�2) is an
incentive equilibrium at (uc1, u

c
2) if

ψi(u
c
j )=uci , ψ ′

i (u
c
j )= (mi/mj )aj /ai, i, j =1,2, i �= j. (28)

From all these incentive equilibrium strategies, we want to select those
which are credible.

The inequalities in Proposition 3.3 characterizing the credible incen-
tive strategies in U =U1 ×U2 now read as follows:

(uci −ψi(uj ))[miai − (ρ+α)(βi + (1/2)γi(uci +ψi(uj )))]≤0,

i, j =1,2, i �= j, ∀uj ∈Uj .
Since it has been proved that the investment levels corresponding to

the Nash equilibrium are lower than those of the cooperative solution,
then it can be assumed that, if one player deviates from the agreed solu-
tion, she is going to underinvest in the public good. That is, we assume
that

uci −ψi(uj )>0, i, j =1,2, i �= j,∀uj .
Under this assumption, the previous inequalities simplify as follows:

miai− (ρ+α)(βi + (1/2)γi(uci +ψi(uj )))≤0, i, j =1,2, i �= j, ∀uj∈Uj .
Replacing the expression of the cooperative investment levels, the last
inequalities can be rewritten as

ψi(uj )≥ [1/γi(ρ+α)] [(mi −mj)ai −βi(ρ+α)],
i, j =1,2, i �= j, ∀uj ∈Uj . (29)

It is straightforward to show that the right-hand side of the last inequality
is always lower than uci .

All the functions satisfying the conditions (28) and (29) lead to cred-
ible incentive strategies in U =U1 ×U2.

There are some conditions which simplify the characterization of the
credible incentive strategies. First, if

(mi −mj)ai −βi(ρ+α)<0, i, j =1,2, i �= j, (30)

then the lower bounds in (29) are negative. Therefore, under conditions
(30), all functions ψi(uj ), i, j = 1,2, i �= j , satisfying conditions (28) lead
to credible incentive strategies in R+ × R+. Note that, if m1 =m2, then
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both inequalities in (30) are satisfied. Second, at least for player i with the
lowest value of parameter mi , the corresponding inequality in (30) always
holds and all functions ψi ∈ �i fulfilling the conditions in (28) lead to
credible incentive strategies in Uj .

Let us note that, if the incentive strategies are linear, then condition
(29) cannot be satisfied for all uj > 0. Indeed, it can shown that linear
incentive strategies are credible if and only if uj ≥ ũj , where

ũj =
{
miajγi [(m1 +m2)aj −βj (ρ+α)]−2m2

j a
2
i γj

}
/[(ρ+α)miajγiγj ].

If

miajγi [(m1 +m2)aj −βj (ρ+α)]−2m2
j a

2
i γj <0, i, j =1,2, i �= j,

then ũj <0, j=1,2, and the linear incentive strategies are credible in R+ ×
R+.

An example of nonlinear functions ψj (ui), i, j=1,2, i �=j , which lead
to credible incentive strategies in R+ ×R+ [they satisfy all the requirements
in conditions (28) and (29)] is given by

ψi(uj )=Ai +Biuj +Ciu2
j ,

where

Ai = [1/γi(ρ+α)] [(mi −mj)ai −βi(ρ+α)],

Bi =
4m2

j a
2
i γj −miajγi [(m1 +m2)aj −βj (ρ+α)]
mjaiγi [(m1 +m2)aj −βj (ρ+α)] ,

Ci =
(ρ+α)γj {miajγi [(m1 +m2)aj −βj (ρ+α)]−2m2

j a
2
i γj }

γimjai [(m1 +m2)aj −βj (ρ+α)]2 .

This function corresponds to a parabola with a maximum at −Bi/2Ci <0
if Bi and Ci are positive. The constants Bi,Ci are positive if and only if

2m2
j a

2
i γj <miajγi [(m1 +m2)aj −βj (ρ+α)]<4m2

j a
2
i γj .

Under this assumption, since the minimum of function ψi(uj ) is attained
at a negative value of uj , for all uj >0, this function takes values greater
than Ai and condition (29) is fulfilled.

Figure 2 shows linear (discontinuous line) and nonlinear (continuous
line) incentive strategies for this differential game where the values of the
parameters are

ρ=0.1, α=0.2, a1 =a2 =1, m1 =1.2,

m2 =1, β1 =β2 =0.5, γ1 =γ2 =1.
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For these values, both players choose the same cooperative investment
level

uc1 =uc2 =6.8333.

Inequality (30) applies for the second player; therefore, any function ψ2 ∈
�2 satisfying

ψ2(u
c
1)=uc2, ψ ′

2(u
c
1)=0.8333,

fulfills the credibility conditions. As far as the other player is concerned,
any function ψ1 ∈ �1 to be credible in U2 must fulfill the following
requirements:

ψ1(u
c
2)=uc1, ψ ′

1

(
uc2

)=1.2, ψ1(u2)≥0.1667, ∀u2 ∈U2.

Figure 2 shows nonlinear incentive strategies credible for all u2 > 0
and linear-strategies which are only credible for investment levels greater
than ũ2 =1.2778.
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Fig. 2. Knowledge accumulation game: Linear and nonlinear incentive strategies.
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5. Concluding Remarks

Incentive strategies could be an interesting device for sustaining cooper-
ation over time of a cooperative agreement, if they happen to be credible. We
provided in this paper conditions for testing the credibility of such strategies
in the class of linear-state differential games. The two illustrative economic
examples allowed us to do two things; first, to show that these conditions
are rather simple to use; second, to point out that nonlinear incentive strat-
egies may be required to obtain credibility. An interesting future research
project would be to attempt to derive similar conditions for other classes of
differential games, with as first candidate the well studied linear-quadratic
class.
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