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Abstract. We investigate dynamic R&D for process innovation in an
oligopoly where firms invest in cost-reducing activities. We focus on
the relationship between R&D intensity and market structure, prov-
ing that the industry R&D investment increases monotonically with
the number of firms. This Arrowian result contradicts the established
wisdom acquired from static games on the same topic.
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1. Introduction

We propose a dynamic analysis of the relationship between mar-
ket power and R&D efforts, in order to reassess a well-known issue in
the theory of industrial organization, that can be traced back to the
debate between Schumpeter (Ref. 1) and Arrow (Ref. 2). The so-called
Schumpeterian hypothesis maintains that there exists an inverse relation-
ship between the intensity of competition and the pace of technical pro-
gress. That is, according to Schumpeter, monopoly is the market structure
that should ensure the fastest and largest technical progress. This relies
upon the idea that monopoly ensures the highest profit level and there-
fore the larger internal sources for funding R&D activities. Exactly the
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opposite view is expressed by Arrow, since he focuses upon the replace-
ment effect, according to which a monopolist is induced to rest on his lau-
rels, while a firm operating in a competitive environment strives for new
technologies or new products, in order to throw its rivals out of busi-
ness. This debate generated a large body of literature, both theoretical
and applied, seeking to discriminate between the Schumpeterian and the
Arrowian views. As it could be expected from the outset, this contest has
not yet found its ultimate winner.4

In order to assess this issue, we take a differential game perspective,
proposing a dynamic version of a model first introduced in a static frame-
work by d’Aspremont and Jacquemin (Ref. 6). We consider an oligop-
oly where n firms sell a homogeneous product and compete in quantities.
Moreover, they invest also at each point in time in R&D for process inno-
vation, i.e., reducing the marginal cost of production of the final good.
The R&D activity is characterized by positive externalities, entailing that
each firm receives a positive spillover from the investments carried out by
all other firms in the industry.

Our model has the desirable property of being state-redundant or
perfect, so that the open-loop solution is a Markovian equilibrium. We
proceed in two steps. First, we characterize the individually optimal path
of R&D investment for a given level of marginal production cost. Sec-
ond, we obtain the steady-state levels of investment and marginal cost.
With respect to both the optimal path and the steady-state level of R&D
investment, the following conclusions hold. The individual effort is always
decreasing in the number of firms, while the opposite holds for the aggre-
gate R&D investments. This result has an Arrowian flavor, since as the
degree of competition becomes tougher, the aggregate investment becomes
larger. This is in sharp contrast with the conclusions drawn from the static
version of the same model (Hinloopen, Ref. 7) where a nonmonotone rela-
tionship exists between aggregate R&D investment and market structure.
Under this perspective, our model highlights the value added of a prop-
erly dynamic analysis over the static approach based upon a multistage
game.

The remainder of the paper is structured as follows. Section 2 illus-
trates the basic setup. The solution of the open-loop game is investigated
in Section 3, while the industry R&D performance is assessed in Section
4. Section 5 contains concluding remarks.

4For an exhaustive overview of the related literature, see Tirole (Ref. 3), Reinganum (Ref. 4),
and Martin (Ref. 5).
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2. Setup

We consider an oligopoly with n firms selling homogeneous goods
over a continuous time t ∈ [0,∞). At every instant, the market demand
function is written as follows:

p(t)=A−qi(t)−Q−i (t), (1)

where

Q−i (t)≡
∑

j �=i

qj (t)

is the output supplied by all firms other than i. Each firm supplies the
market through a technology characterized by a constant marginal cost ci .
Accordingly, its instantaneous cost function for the production of the final
good is

Ci(ci(t), qi(t))= ci(t)qi(t).

The marginal cost borne by firm i evolves over time according to the
following equation:

dci(t)/dt ≡ ċi (t)= ci(t)[−ki(t)−βK−i (t)+ δ], (2)

where ki(t) is the R&D effort exerted by firm i at time t , while

K−i (t)≡
∑

j �=i

kj (t)

is the aggregate R&D effort of all other firms and the parameter β ∈ [0,1]
measures the positive technological spillover that firm i receives from the
R&D activity of the rivals. The parameter δ ∈ [0,1] is a constant deprecia-
tion rate measuring the instantaneous decrease in productive efficiency due
to the aging of technology. Equation (2) is indeed a dynamic version of the
linear R&D technology employed by d’Aspremont and Jacquemin (Ref. 6).5

The instantaneous cost of running R&D activity is

�(ki(t))=b[ki(t)]2, (3)

where b is a positive parameter. Throughout the game, the firms discount
future profits at the common and constant discount rate ρ >0.

The firms adopt a strictly noncooperative behavior in choosing both
the output levels and the R&D efforts, each firm operating its own R&D

5This paper has generated a large body of literature. See Kamien et al. (Ref. 8), Suzumura
(Ref. 9), and Amir (Ref. 10) inter alia.
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division.6 Define by k(t), q(t), c(t) the vectors of controls and states. Then,
the objective of firm i consists in maximizing the discounted profits

πi(ki(t),q(t),ci(t))≡
∫ ∞

0

{
[A−qi(t)−Q−i (t)−ci(t)]qi(t)−b[ki(t)]2

}
e−ρtdt,

(4)

subject to the set of dynamic constraints (2), initial conditions c(0)={c0i}
and the appropriate transversality conditions, which are specified below.
The corresponding Hamiltonian function is

Hi (k(t), q(t), c(t))= e−ρt




[A−qi(t)−Q−i (t)− ci(t)]qi(t)

−b[ki(t)]2 −λii(t)ci(t)[ki(t)+βK−i (t)− δ]

−
∑

j �=i

λij (t)cj (t)



kj (t)+β



ki(t)+
∑

l �=i,j

kl(t)



−δ








,

(5)

where

λij (t)=µij (t)e
ρt

is the costate variable (evaluated at time t) associated with the state vari-
able cj (t).

3. Open-Loop Solution

Here, we characterize the Nash equilibrium under the open-loop
information structure. As a first step, we prove the following result.

Lemma 3.1. The open-loop Nash equilibrium of the game is
subgame (or Markov) perfect.

Proof. We are going to show that the present setup is a perfect game
in the sense of Leitmann and Schmitendorf (Ref. 12) and Feichtinger (Ref.
13). In summary, a differential game is perfect whenever the closed-loop
equilibrium collapses into the open-loop one, the latter being thus strongly

6For a discussion of R&D cooperation in the same model, see Cellini and Lambertini
(Ref. 11).
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time consistent, i.e., subgame perfect.7 In building the proof, we use the
same procedure as in Mehlmann (Ref. 17, Chapter 4), while the method
adopted by Leitmann and Schmitendorf (Ref. 12) consists in verifying that
the optimal control, of each player obtained from the first-order condi-
tions, is indeed independent of the rival states. Consider the closed-loop
information structure. The relevant first-order conditions (FOCs) are8

∂Hi/∂qi =A−2qi −Q−i − ci =0, (6)

∂Hi/∂ki =−2bki −λiici −β
∑

j �=i

λij cj =0. (7)

As a first step, observe that (6) contains only the state variable of firm i;
hence, in choosing the optimal output at any time during the game, firm i

may disregard the current efficiency of the rival. That is, there is no feed-
back effect in the output choice. Conversely, at first sight, there seems to
be a feedback between the R&D decisions, as (7) indeed contains all the
state variables, at least for any positive spillover effect.9 The core of the
proof consists in showing that no feedback effect is actually present, even
for positive spillover levels.

Taking the above considerations into account, the adjoint or costate
equations are

−∂Hi/∂ci −
∑

j �=i

(∂Hi/∂kj ) · (∂k∗
j /∂ci)= ∂λii/∂t −ρλii

⇔ ∂λii/∂t =qi +λii [ki +βK−i +ρ − δ] (8)

−(β/2b)
∑

j �=i

λji



βλiici +λij cj +β
∑

l �=i,j

λilcl



 , (9)

7The label “perfect game” is due to Fershtman (Ref. 14), where one can find a general
technique to identify any such games. Other classes of games where open-loop equilib-
ria are subgame perfect are investigated in Clemhout and Wan (Ref. 15) and Reinganum
(Ref. 16). For further details, see Mehlmann (Ref. 17, Chapter 4) and Dockner et al. (Ref.
18, Chapter 7).

8Henceforth, we omit for brevity the indication of time and exponential discounting, except
for the transversality conditions (14).

9Intuitively, if β =0, then the investment plans are completely independent; therefore, it is
apparent that no feedback effect operates.
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−∂Hi/∂cj − (∂Hi/∂ki) · (∂k∗
i /∂cj )

−
∑

l �=i,j

(∂Hi/∂kl) · (∂k∗
l /∂cj )= ∂λij /∂t −ρλij

⇔ ∂λij /∂t =λij



kj +βki +β
∑

l �=i,j

kl +ρ − δ

−(β/2b)



2bki +λiici +β
∑

j �=i

λij cj







 , (10)

−(β/2b)
∑

l �=i,j

λlj



βλiici +λilcl +β
∑

j �=i,l

λij cj



 , (11)

where each term

(∂Hi/∂kj ) · (∂k∗
j /∂ci) (12)

captures the feedback effect from j to i and the partial derivatives ∂k∗
j /∂ci

are calculated using the optimal values of the investments as from the
FOC (7),

k∗
j =−(λjj cj +βλjici)/2b. (13)

These conditions must be evaluated along with the initial conditions
c(0)={c0i} and the transversality conditions

lim
t→∞ e−ρtλij · cj =0, ∀i, j. (14)

Note that, on the basis of ex ante symmetry across firms,

λij =λij , for all l.

Accordingly, from (11), we have

∂λij /∂t =0

in λij = 0. Then, using this piece of information, we may rewrite the
expression for the optimal investment of firm i as follows:

k∗
i =−λiici/2b, (15)

which entails that

∂k∗
i /∂cj =0, for all j �= i;
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i.e., feedback effects (cross effects) are nil along the equilibrium path.
Accordingly, the open-loop equilibrium is strongly time consistent, or
equivalently, subgame perfect. It is also worth observing that this proce-
dure shows that the FOCs are indeed unaffected by the initial conditions
as well. The property whereby the FOCs on the controls are independent
of the states and initial conditions after replacing the optimal values of the
costate variables is known as state-redundancy and the game itself as state
redundant or perfect.

On the basis of Lemma 3.1, we can proceed with the characterization
of the open-loop solution. The FOCs on the controls as well as the trans-
versality conditions are the same as above, while the costate equations sim-
plify as follows:

−∂Hi/∂ci = ∂λii/∂t −ρλii

⇔ ∂λii/∂t =qi +λii [ki +βK−i +ρ − δ], (16)

−∂Hi/∂cj = ∂λij /∂t −ρλij

⇔ ∂λij /∂t =λij [kj +βK−j +ρ − δ]. (17)

From the FOCs (6)–(7), we have, respectively,

q∗
i = (A−Q−i − ci)/2, (18)

ki =−λiici/2b, (19)

since

λij =0, for all j �= i, at any t ∈ [0,∞).

While (18) has the usual appearance of a standard Cournot best reply
function, the optimal R&D effort in (19) depends upon the ith
costate variable. Such expression can be differentiated w.r.t. time to get the
dynamic equation of ki ,

dki/dt ≡ k̇i =−(1/2b)
[
ci λ̇ii +λii ċi

]
, (20)

with λ̇ii resulting from (9). Then, (20) can be further simplified by using

λii =−2bki/ci, (21)

which results from (7). This yields

k̇i =−(1/2b)[ciqi −2bki ]. (22)
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The next step consists in imposing the symmetry conditions

cj = ci, kj =ki, qj =qi, for all j,

and solve the system of the best reply functions (18), yielding the Cour-
not-Nash output level of each firm,

qN = (A− c)/(n+1), (23)

which can be inserted into (22). Accordingly, we may simplify the dynam-
ics of the R&D effort of any single firm as follows:

k̇ =−(1/2b) [c(A− c)/(n+1)−2bρk] . (24)

Imposing the stationarity condition k̇ =0, we obtain

kN = c[A− c]/2bρ(n+1)≥0, for all c∈ [0,A], (25)

where the superscript N stands for Nash equilibrium.
The steady-state level of the marginal cost c(t) can be found by solv-

ing:

ċ=−c
[
kN(1+β(n−1))− δc

]
=0, (26)

which yields c=0 and

c= A(1+β(n−1))±
√

(1+β(n−1))[A2(1+β(n−1))−8bδρ(n+1)]
2(1+β(n−1))

.

(27)

All solutions in (27) are real if and only if

δρ ≤A2(1+β(n−1))/[8b(n+1)].

If so, they satisfy also the requirement c∈ [0,A]. By checking the stability
conditions, we can prove the following proposition.

Proposition 3.1. Provided that δρ ≤ A2(1 + β(n − 1))/[8b(n + 1)], the
steady-state point

css = A(1+β(n−1))−
√

(1+β(n−1))[A2(1+β(n−1))−8bδρ(n+1)]
2(1+β(n−1))

,

kss = δ/[1+β(n−1)],

is the unique saddle-point equilibrium.
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Proof. Under symmetry, the dynamics of the control and state vari-
ables is written as in (24) and (26). Accordingly, the relevant Jacobian
matrix is

J =
[

∂ċ/∂c ∂ċ/∂k

∂k̇/∂c ∂k̇/∂k

]
, (28)

whose trace and determinant are

Tr(J )= δ +ρ −k�, (29)

	(J )=ρ(δ −k�)− c(A−2c)�/2b(n+1), (30)

where

�≡1+β(n−1),


≡A2�−8bδρ(n+1).

Then, it can be checked easily that the pair

c=
[
A�−

√
�


]/
2�, k = δ/�

is the only solution yielding 	(J ) < 0 always, while the other two steady
state points are both unstable.

4. Comparative Statics

Now, we focus on the interplay between the market structure (as mea-
sured by the number of firms) and the industry incentive to invest in pro-
cess R&D. To this aim, we examine the effect of a change in n on the
individual and aggregate R&D efforts, both along the equilibrium path
[expression (25)] and in steady state.

This discussion revisits the debate between Schumpeter (Ref. 1) and
Arrow (Ref. 2). Their respective views can be summarized as follows.
According to the Schumpeterian hypothesis, R&D investments and tech-
nical progress are positively related to the flow of profits; therefore, we
should expect to observe higher R&D efforts and a faster innovation
process under monopoly than under any other market form. Conversely,
Arrow claims that the incentive to generate technical progress is negatively
affected by the market power, being then maximized under perfect compe-
tition. The Arrowian position relies upon the idea that innovation is more
attractive for a competitive firm than for a monopolist who, by definition,
cannot improve his market power.
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In order to assess this issue in the present model, we proceed as fol-
lows. The aggregate R&D investments along the equilibrium path and in
steady state are respectively

KN = c[A− c]n/2bρ(n+1),

Kss = δn/[1+β(n−1)]. (31)

It is immediate to verify that

∂KN/∂n=2bρc[A− c]/4[bρ(n+1)]2 >0, (32a)

∂Kss/∂n= δ(1−β)/[1+β(n−1)]2 ≥0. (32b)

The above properties prove the main result of our model.

Proposition 4.1. The optimal R&D investment of the whole industry
is monotonically increasing in the number of firms. This holds both along
the equilibrium path and in steady state.

This entails that the behavior of the industry is clearly Arrowian. If
instead we examine the individual investment, we obtain

∂kN(t)/∂n<0, ∂kss/∂n<0, everywhere.

This entails that any increase in the number of firms brings about a
decrease in individual R&D effort. This is caused by two facts: on the one
hand, tougher market competition reduces profits and therefore the funds
available to any given firm for conducting R&D activity; on the other
hand, a larger population of firms means a larger amount of positive
externality that any firm receives from the rivals. On the aggregate, the
scale effect prevails, so that the overall expenditure of the industry is
monotonically increasing in n.10

Hinloopen (Ref. 7) has solved the oligopoly equilibrium with n firms
in the static case, finding that both aggregate and individual R&D efforts
are nonmonotone (first increasing and then decreasing) w.r.t. n. Under this
scenario, the static approach proves to fall short of appropriately account-
ing for the inherently dynamic nature of research and development, which
is not captured by multistage game modeling.

10For a similar result concerning the incentives toward R&D for product innovation, see
Cellini and Lambertini (Refs. 19–20).
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5. Concluding Remarks

We have analyzed dynamic R&D investments for cost-reducing inno-
vation in a Cournot oligopoly in order to evaluate the influence of the
market structure on R&D incentives.

The set up employed in the present paper is a dynamic version of
a well-known static game examined in d’Aspremont and Jacquemin (Ref.
6), which has generated many follow-ups. Two features of our analysis are
worth stressing. First, the game is perfect or state redundant, so that the
open-loop solution is Markovian or subgame perfect. Second, a clearcut
Arrowian conclusion obtains, since the aggregate R&D effort is every-
where increasing in the number of firms, this being true along the equi-
librium path as well as in steady state. The drastic difference between our
results and the ambiguous conclusions drawn from the static model relies
upon smoothing the investment efforts over a long time horizon, a per-
spective which is ruled out by definition in a static setting.
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