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Characterizing Nonemptiness and Compactness of the
Solution Set of a Convex Vector Optimization

Problem with Cone Constraints and Applications1
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Abstract. In this paper, we characterize the nonemptiness and com-
pactness of the set of weakly efficient solutions of a convex vec-
tor optimization problem with cone constraints in terms of the
level-boundedness of the component functions of the objective on the
perturbed sets of the original constraint set. This characterization is
then applied to carry out the asymptotic analysis of a class of penal-
ization methods. More specifically, under the assumption of nonemp-
tiness and compactness of the weakly efficient solution set, we prove
the existence of a path of weakly efficient solutions to the penalty
problem and its convergence to a weakly efficient solution of the
original problem. Furthermore, for any efficient point of the original
problem, there exists a path of efficient solutions to the penalty prob-
lem whose function values (with respect to the objective function of
the original problem) converge to this efficient point.
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1. Introduction and Preliminaries

Let Rl be the objective space ordered by the nonnegative orthorant
Rl+; namely, for any z1, z2 ∈ Rl, z1 ≤ Rl+ z2 if and only if z2 − z1 ∈ Rl+.
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Denote by intRl+ the interior of Rl+. Let Y be a normed space ordered by
a nonempty, closed and convex cone K; i.e., for any y1, y2 ∈Y, y1 ≤ ky2 if
and only if y2 −y1 ∈K. Let Y ∗ be the dual space of Y endowed with norm
topology. Define

K∗ ={µ∈Y ∗ : µ(v)≥0,∀v ∈K},
K0 ={µ∈K∗ : ‖µ‖≤1}.
First, we give the definition of a convex function in an ordered vector

space.

Definition 1.1. Let (U,�) be an ordered vector space. Let X⊂Rn be
a convex set and let h :X→U be a vector-valued function. h is said to be
convex on X if

h(αx1 + (1−α)x2)�αh(x1)+ (1−α)h(x2), ∀x1, x2 ∈X, α ∈ [0,1].

In this paper, we consider the following vector optimization problem:

(P) min f (x),

s.t. x ∈X,

g(x)∈−K,

where X ⊂Rn is nonempty closed convex, f : X →Rl is convex with each
component fi being lower semicontinuous (lsc) on X,g : X →Y is convex
with µ(g) being lsc for each µ∈K∗.

Denote by X0 the feasible set of (P), i.e.,

X0 ={x ∈X :g(x)∈−K}.
Throughout the paper, we assume that X0 
= ∅. Now, we give some defi-
nitions of solution concepts associated with vector optimization; see e.g.
Ref. 1 for details.

Definition 1.2. A point x∗ ∈X0 is called a weakly efficient solution of
(P) if f (x) − f (x∗) /∈ −intRl+,∀x ∈ X0; it is called an efficient solution if
f (x)−f (x∗) /∈−Rl+\{0}.

The set of all the weakly efficient solutions of (P) is denoted by WE;
the set of all the efficient solutions is denoted by E. The objective value
of a (weakly) efficient solution is called a (weakly) efficient point.

The following concept of level-boundedness on a set will be used fre-
quently in the sequel.
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Definition 1.3. Let X1 ⊂Rn be nonempty and let u :X→R1 be a real-
valued function. u is said to be level bounded on X1 if, for any sequence
{xk}⊂X1 satisfying ‖xk‖→+∞, we have u(xk)→+∞.

Now, we make some remarks about the model problem (P).

(i) If X =Rn and K =Y, then (P) is an unconstrained convex vec-
tor program. Further, assume that l = 1; then, (P) becomes an
unconstrained convex scalar optimization problem.

(ii) If Y = Rm and K = Rm+, then (P) is a convex vector optimi-
zation problem with a finite number of inequality constraints.
Further, assume that l = 1; then, (P) becomes a convex optimi-
zation problem with several inequality constraints.

(iii) Let Y = Sm and K = Sm+ , where Sm and Sm+ are the spaces of
symmetric m×m matrices and set of positive-semidefinite sym-
metric m×m matrices, respectively. Y is equipped with the norm

‖A‖=
√

trace(A2)

for any A ∈ Sm. Then, (P) is a convex vector semidefinite pro-
gram, which may arise in multiobjective feedback control prob-
lems. Further, suppose that l = 1. Then, (P) becomes a convex
semidefinite program.

(iv) Let Y be the space of real-valued continuous functions defined
on the compact infinite index set T . Y is endowed with the
usual norm,

‖h‖=max{|h(t)| : t ∈T }.

Let

K ={h∈Y : h(t)≥0,∀t ∈T }.

For each x ∈X, let

g(x)=g(x, t)∈Y.

Then, (P) becomes a convex vector semi-infinite program. Fur-
thermore, if l =1, then (P) reduces to a convex scalar semi-infi-
nite program.

The property of nonemptiness and compactness of the optimal set
of a constrained optimization problem is very important for the study of
penalty type methods (see Refs. 2–5).



394 JOTA: VOL. 123, NO. 2, NOVEMBER 2004

This property guarantees the existence of a path of optimal solu-
tions to the penalty problem and its convergence to an optimal solution
of the original constrained problem. Characterization of the nonemptiness
and compactness of the optimal set of an unconstrained scalar optimiza-
tion problem was expressed in the form of level-boundedness of the objec-
tive function; see e.g. Refs. 6–7. This level-boundedness property of the
objective function is in turn equivalent to the coercivity property of the
objective function. For a convex vector optimization problem (P), with-
out the cone constraint g(x)∈−K, Deng (Ref. 8) gave several characteriza-
tions of the nonemptiness and compactness of the weakly efficient solution
set. In Ref. 9, for a convex vector optimization problem (P), with explicit
inequality constraint g(x)∈−Rm+, the nonemptiness and compactness of its
weakly efficient solution set was characterized by the level-boundedness of
each composite function max{fi, g1(x), . . . , gm(x)}, i = 1, . . . , l, on the set
X. This property was applied subsequently to carry out the asymptotic
analysis of a class of nonlinear penalty methods.

In this paper, we characterize the nonemptiness and compactness of the
weakly efficient solution set of the more general problem (P). This charac-
terization is expressed as the level-boundedness of each component fi, i =
1, . . . , l, on the perturbed sets of the feasible set of (P). Finally, we apply this
characterization to carry out the asymptotic analysis of a class of penalty
methods for (P). In particular, when this result specializes to convex scalar
semidefinite programming or convex scalar semi-infinite programming, we
obtain the convergence analysis of a class of penalty methods for convex semi-
definite programming or convex semi-infinite programming.

2. Characterization of Nonemptiness and Compactness of a Weakly
Efficient Solution Set

In this section, we present a new characterization of the nonemptiness
and compactness of the set of the weakly efficient solutions of (P).

Consider the following vector optimization problem:

(P′) min f (x),

s.t. x ∈X,

g1(x)=: sup
µ∈K0

µ(g(x))≤0.

It is routine to verify that g1(x) is a real-valued lsc convex function because
each µ(g(x)) is lsc convex and K0 is bounded. Thus, (P′) is a convex vector
optimization problem with only one explicit inequality constraint.
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The following proposition establishes an equivalence between the two
vector optimization problems (P) and (P′). The proof is routine by apply-
ing the well-known separation for convex sets; see e.g. Ref. 10.

Proposition 2.1. The two problems (P) and (P′) have the same sets of
(weakly) efficient solutions (points).

The next result follows directly from Theorem 3.1 of Ref. 9 and Prop-
osition 2.1.

Proposition 2.2. Consider problem (P). Then, the set WE of weakly
efficient solutions of (P) is nonempty and compact if and only if each

θi(x)=max{fi(x), g1(x)}, i =1, . . . , l, (1)

is level-bounded on X, where g1 is as in problem (P′).

Consider also the following scalar optimization problems:

(Pi ) min fi(x),

s.t. x ∈X,

g1(x)≤0,

where i =1, . . . , l and g1 is as in problem (P′).
Denote by Si the set of optimal solutions of (Pi). The next proposi-

tion follows from Lemma 3.1 of Ref. 9.

Proposition 2.3. Let i ∈{1, . . . , l} and let θi(x) be given by (1). Then,
Si is nonempty and compact if and only if θi is level-bounded on X.

The following proposition gives a characterization of the nonempti-
ness and compactness of Si in terms of the level-boundedness of fi on any
positive perturbation of the constraint set.

Proposition 2.4. Let i ∈{1, . . . , l}. Then, Si is nonempty and compact
if and only if, for any v∈K,fi(x) is level-bounded on the set Xv ={x ∈X :
g(x)∈v −K}.

Proof. Sufficiency. Let x ∈X0. Then, g(x)∈−K. It follows that

g(x)∈v −K, for any v ∈K.
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Therefore, X0 ⊂ Xv. As fi is level-bounded on Xv, we see that fi is
level-bounded on X0. Combined with the fact that X0 
=∅, this yields that
Si is nonempty and compact.

Necessity. Suppose to the contrary that there exists v0 ∈K such that
fi is not level-bounded on Xv0. Without loss of generality, we assume that
there exist M ∈R1 and {xk}⊂Xv0 satisfying ‖xk‖→+∞ such that

fi(xk)≤M. (2)

By {xk}⊂Xv0, we deduce that

g(xk)∈v0 −K.

Thus,

µ(g(xk))≤µ(v0), ∀µ∈K0.

As a result,

g1(xk)= sup
λ∈K0

λ(g(xk))

≤ sup
λ∈K0

λ(v0)=β. (3)

The combination of (2) and (3) yields

θi(xk)=max{fi(xk), g1(xk)}
≤ max{M,β},

contradicting the conclusion of Proposition 2.3.

Remark 2.1. Note that X0 ⊂ Xv,∀v ∈ K. Thus, if there exists v0 ∈ K

such that fi is level-bounded on Xv0, then fi is level-bounded on X0.
Hence, Si is nonempty compact. Together with Proposition 2.3, this
implies that Si is nonempty compact if and only if there exists v0 ∈K such
that fi is level-bounded on Xv0.

Now, we present the following characterization of the nonemptiness
and compactness of WE, which follows immediately from Propositions 2.2
to 2.4.

Theorem 2.1. Consider problem (P). Assume that X0 
=∅. Then, WE
is nonempty and compact if and only if, for each i ∈{1, . . . , l} and any v∈
K,fi is level-bounded on Xv.
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3. Applications to Penalty Type Methods

In this section, we apply the characterizations given in Theorem 2.1
to carry out the asymptotic analysis of a class of penalty-type methods for
(P). Specifically, we show that, under the assumption of nonemptiness and
compactness of the weakly efficient solution set of (P), the existence of a
path of weakly efficient solutions to the penalty problem and its conver-
gence to a weakly efficient solution of the original problem. Furthermore,
for any efficient point of (P), there exists a path of efficient solutions to
the penalty problem whose function values (with respect to the objective
function f ) converges to this efficient point.

Let

e= (1, . . . ,1)∈Rl;
all its components are 1′s. Consider the following class of penalty func-
tions:

pγ (x, r)=f (x)+ rd
γ

−K(g(x))e, x ∈X, r >0,

where γ >0 is a constant and dz(z) denotes the distance from the element
z to the set Z, i.e.,

dZ(z)= inf
{
d(z′, z) : z′ ∈Z

}
.

The corresponding penalty problems are given by

(PFPγ
r ) min{pγ (x, r) : x ∈X}.

Remark 3.1.

(i) Suppose that l = 1, Y = Rm, and K = R
m1+ × {0m−m1}, where

m1 ≤m and 0m−m1 is the origin of the space Rm−m1 . Then:

(a) If Y is endowed with the standard norm

‖y‖=

 m∑

j=1

y2
i




1/2

, ∀y ∈Rm,

and γ =2, then the penalty function

p2(x, r)=f (x)+ r


 m1∑

j=1

(g+
j (x))2 +

m∑
j=m1+1

g2
j (x)


 ,
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where

g+
j (x)=max

{
gj (x),0

}
,

is the classical l2 penalty function.

(b) Let Y be normed by

‖y‖=
m∑

i=1

|yi |, ∀y ∈Rm.

If γ =1, then

p1(x, r)=f (x)+ r


 m1∑

j=1

g+
j (x)+

m∑
j=m1+1

|gj (x)|



is the classical l1 penalty function. If 0<γ <1, then

pγ (x, r)=f (x)+ r


 m1∑

j=1

g+
j (x)+

m∑
j=m1+1

|gj (x)|



γ

,

which is the lower-order penalty function used in Ref. 11.

(c) Let Y be endowed with the norm

‖y‖= max
1≤j≤m

{|yj |}, ∀y ∈Rm.

Then,

pγ (x, r)=f (x)+ r
[
max

{
g+

1 (x), . . . , g+
m1

(x),

|gm1+1(x)|, . . . , |gm(x)|}]γ ,

which is the class of penalty function considered in Ref.
12. In particular, when γ =1, it becomes a classical penalty
function; see e.g. Ref. 13.

(ii) If l > 1, Y =Rm and K =R
m1+ × {0m−m1} and Y is endowed with

the norm

‖y ‖=
m∑

j=1

|yj |, ∀y ∈Rm,
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and γ =1, then

p1(x, r)=f (x)+ r


 m1∑

j=1

g+
j (x)+

m∑
j=m1+1

|gj (x)|

 e

is the l1 penalty function for the multiobjective programming
considered in Refs. 14–15. When 0 <γ < 1, Pγ (x, r) can be seen
as a lower-order penalty function for multiobjective optimization.

(iii) Let Y =Sm and K =Sm+ , where Sm and Sm+ are as in item (iii) of
Section 1. It can be checked that

d−K(g(x))=
[

trace
(

g(x)+|g(x)|
2

)2
]1/2

=1/2
√

trace(g(x)+|g(x)|)2,

where |A| is defined as the unique positive-semidefinite square
root matrix of A2 for any A∈Sm. As a result,

pγ (x, r)=f (x)+ r/2
[
trace(A+|A|)2

]γ /2
e,

which can be seen as a class of penalty functions for the vector
semidefinite program (P). When l = 1 and γ = 2, it is essentially
the quadratic penalty function studied in Ref. 16. When l =1 and
0<γ ≤1, it is the lower-order penalty function considered in Ref.
17.

(iv) Let l = 1. Let Y and K be as in item (iv) of Section 1. Then, it
can be verified that

d−K(g(x))=max
t∈T

g+(x, t).

Thus, the penalty function becomes

pγ (x, r)=f (x)+ r

[
max
t∈T

g+(x, t)

]γ

.

A special case where γ =1 was considered in Ref. 18.

We have the following result concerning the existence of weakly effi-
cient solutions to the penalty problem (PFPγ

r ) when r is large and any
selection of these solutions as r → +∞ is bounded. Moreover, any limit
point of these solutions as r → +∞ is a weakly efficient solution of (P).
Furthermore, for any efficient point of (P), there exists a path of efficient
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solutions to the penalty problem whose function values (with respect to
the objective function f ) converges to this efficient point.

Denote by WEr and Er the sets of the weakly efficient solutions and
efficient solutions of (PFPγ

r ), respectively.
First, we have the following result which does not need any convexity

assumption.

Theorem 3.1. Suppose that intK 
= ∅ and let k0 ∈ intK. Consider (P)
without convexity assumption and (PFPγ

r ). Assume that ∃r̄ > 0 and m0 ∈
R1 such that

f (x)+ r̄d
γ

−K(g(x))e−m0e∈Rl
+, ∀x ∈X. (4)

Further assume that, for each i ∈{1, . . . , l}, fi is level-bounded on the set
Xk0 ={x ∈X :g(x)∈k0 −K∗}. Then:

(i) The weakly efficient solution set WE of (P) is nonempty and
compact; the efficient solution set E of (P) is nonempty and
bounded.

(ii) There exists r̄ ′ >0 such that WEr is nonempty and compact; Er

is nonempty and bounded whenever r ≥ r̄ ′.
(iii) Let r̄ ′ <rk →+∞. Then, for each selection x∗

k ∈ WErk , we have
that {x∗

k } is bounded and every limit point of {x∗
k } belongs to

WE.
(iv) Let x∗ ∈ E. Then, there exists x∗

r ∈ Er such that f (x∗) =
limr→+∞f (x∗

r ).

Proof.
(i) Since each fi is level-bounded on Xk0 ⊃X0, we see that E is non-

empty and WE is bounded. As a result, WE is nonempty and compact as
E⊂ WE and WE is bounded and closed. By virtue of the boundedness of
WE and the fact that E ⊂ WE, we know that E is bounded. So E is non-
empty and bounded.

(ii) Let x0 ∈X0. First, we show that there exists r̄ ′′ >0 such that

B(x0, r)={x ∈X :f (x)+ rd
γ

−K(g(x))e≤Rl+
f (x0)}⊂Xk0 , r ≥ r̄

′′
. (5)

Otherwise, there exist 0<rk ↑+∞ and xk ∈X such that

f (xk)+ rkd
γ

−K(g(xk))e≤Rl+
f (x0) (6)

and

xk /∈Xk0 . (7)
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From (6), we have

f (xk)+ r̄d
γ

−K(g(xk))e+ (rk − r̄)d
γ

−K(g(xk))e≤Rl+
f (x0).

Together with (4), this gives us

(rk − r̄)d
γ

−K(g(xk))≤fi(x0)−m0, i =1, . . . , l.

Consequently,

lim
k→+∞

d−K(g(xk))=0.

Thus, there exists vk ∈−K such that

lim
k→+∞

‖g(xk)−vk ‖=0. (8)

On the other hand, from (7), we have

g(xk) /∈k0 −K. (9)

By (8) and the fact that k0 ∈ intK, we deduce that

k0 − (g(xk)−vk)∈K.

When k is sufficiently large. This implies that

g(xk)−vk ∈k0 −K.

It follows that g(xk)∈ k0 −K, since vk ∈−K, contradicting (9). Hence, (5)
holds. As fi is level-bounded on Xk0 , so fi + rdσ

−K(g) is level-bounded
on B(x0, r) when r ≥ r̄ ′′. Consequently, both Er and WEr are nonempty
whenever r ≥ r̄ ′′.

Now, we show that there exists r̄ ′ ≥ r̄ ′′ such that WEr is bounded
whenever r ≥ r̄ ′. Suppose to the contrary that there exists 0 < rk ↑ +∞
such that WErk is unbounded. Then, we can choose xk ∈ WErk such that
‖xk ‖→+∞. Let x0 ∈X0. By xk ∈ WErk , we have

f (x0)−f (xk)− rkd
γ

−K(g(xk))e /∈−Rl
+\{0}, ∀k. (10)

That is,

f (x0)−f (xk)− r̄d
γ

−K(g(xk))e− (rk − r̄)d
γ

−K(g(xk))e /∈−Rl
+\{0}, ∀k.

Combined with (4), this implies

f (x0)−m0e− (rk − r̄)d
γ

−K(g(xk))e /∈−Rl
+\{0}, ∀k.
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It follows that

max
1≤i≤l

fi(x0)−m0 ≥ (rk − r̄)d
γ

−K(g(xk)), ∀k.

Consequently, we can show as above that xk ∈Xk0 when k is large enough.
Moreover, from (10), we have

f (x0)−f (xk) /∈−Rl
+\{0}, ∀k,

contradicting the fact that each fi is level-bounded on Xk0 and that ‖
xk ‖→ +∞ as k → +∞. As Er ⊂ WEr , so we know that Er is bounded
whenever r ≥ r̄ ′.

(iii) Suppose to the contrary that there exist 0 < rk ↑ +∞ and
x∗
k ∈ WErk such that {x∗

k } is unbounded. Without loss of generality, assume
that ‖x∗

k ‖→+∞. Then, as shown in the proof of (ii), a contradiction will
arise. So, {x∗

k } should be bounded. Let x∗ be a limit point of {x∗
k }. Without

loss of generality, assume that x∗
k →x∗ as k→+∞. Then, from x∗

k ∈ WErk ,
we deduce that, for any x0 ∈X0, there holds that

f (x0)−f
(
x∗
k

)− rkd
γ

−K

(
g
(
x∗
k

))
e /∈−Rl

+\{0},
implying

f (x0)−f
(
x∗
k

)
/∈−intRl

+.

Thus, without loss of generality, we can assume that there exists i∗ ∈
{1, . . . , l} such that

fi∗(x0)≥fi∗(x
∗
k ), ∀k.

Taking the lower limit as k →+∞, we get

fi∗(x0)≥ lim inf
k→+∞

fi∗(x
∗
k )≥fi∗(x

∗
k ).

Therefore,

f (x0)−f (x∗) /∈−intRl
+.

Hence, x∗ ∈ WE by the arbitrariness of x0 ∈X0.

(iv) Let x∗ ∈E. Consider the set

B(x∗, r)={x ∈X :f (x)+ rd
γ

−K(g(x))e≤Rl+
f (x∗)}.

Clearly, B(x∗, r) 
= ∅. We can show also as in the proof of (i) that
B(x∗, r) ⊂ Xk0 when r is sufficiently large. Thus, each fi + rd

γ

−K(g), i =
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1, . . . , l, is level-bounded on B(x∗, r). So, there exists x∗
r ∈Er ∩B(x∗, r)⊂

WEr when r is large enough. By (iii), {x∗
r } is bounded. Suppose that x̄∗ is

a limit point of {x∗
r }. From x∗

r ∈B(x∗, r), we see that

f
(
x∗
r

)+ rd
γ

−K

(
g
(
x∗
r

))
e≤Rl+

f (x∗).

It follows that

f
(
x∗
r

)≤Rl+
f (x∗).

That is,

fi

(
x∗
r

)≤fi(x
∗), i =1, . . . , l. (11)

Passing to the lower limit as r →+∞, we obtain

fi(x̄
∗)≤ lim inf

r→+∞ fi

(
x∗
r

)≤fi(x
∗), i =1, . . . , l. (12)

Since x∗ ∈ E, we must have

f (x̄∗)=f (x∗). (13)

Taking the upper limit in (11) as r →+∞, we have

lim sup
r→+∞

fi

(
x∗
r

)≤fi(x
∗), i =1, . . . , l.

Combined with (12) and (13), this yields

lim
r→+∞f

(
x∗
r

)=f (x∗).

Applying Theorem 3.1 to the convex case [i.e., (P) is a convex pro-
gram], we obtain the next theorem.

Theorem 3.2. Consider the convex program (P) and the penalty
problem (PFPγ

r ). Assume that intK 
= ∅ and k0 ∈ intK. Suppose that the
weakly efficient solution set WE of (P) is nonempty and compact. Further,
assume that there exist r̄ >0 and m0 ∈R1 such that (4) holds. Then:

(i) The efficient solution set E of (P) is nonempty and bounded.
(ii) There exists r̄ ′ >0 such that WEr is nonempty and compact; Er

is nonempty and compact when r ≥ r̄ ′.
(iii) Let r̄ ′ <rk →+∞; then, for each selection x∗

k ∈WErk , we have that
{x∗

k } is bounded and every limit point of {x∗
k } belongs to WE.

(iv) Let x∗ ∈ E; then, there exists x∗
r ∈ Er such that f (x∗) =

limr→+∞ f (x∗
r ).
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Proof. As WE is nonempty and compact, by Theorem 2.1, each fi

is level-bounded on the set

Xk0 ={x ∈X :g(x)∈k0 −K∗}.

The conclusion follows immediately from Theorem 3.1.

Remark 3.2. If we specify the results of Theorem 3.2 to either case
(iii) with l =1 or case (iv) in Remark 3.1, we obtain the asymptotic anal-
ysis of a class of penalty methods for convex scalar semidefinite pro-
gramming or convex semi-infinite programming. Specifically, we obtain the
following result.

Assume that the solution set of (P) is nonempty and compact and
that there exists r̄ >0 and m0 ∈R1 such that

f (x)+ r̄d
γ

−K(g(x))≥m0, ∀x ∈X.

Then:

(a) There exists r̄ ′ >0 such that the solution set of the penalty prob-
lem, considered in (iii) or (iv) of Remark 3.1, is nonempty and
compact.

(b) Let 0 < rk ↑ +∞; suppose that x∗
k is an optimal solution to

the penalty problem with penalty parameter rk; then, {x∗
k } is

bounded and each of its limit points is an optimal solution of
(P).

In what follows, we assume that Y is a Hilbert space, intK 
=∅, and
(P) is a convex program. Applying Lemma 2.1 (v) in Ref. 19, we see that
d−K(g(x)) is a convex function on X. As a result, d

γ

−K(g(X)) is convex on
X when γ ≥1. Hence, the penalty problem (PFPγ

r ) is convex if γ ≥1.
The next result shows that the nonemptiness and compactness of WE
together with the well-known Slater constraint qualification: ∃x0 ∈X such
that g(x0)∈−intK implies condition (4). We mention here that the Slater
constraint qualification was assumed in Refs. 2 and 5 to prove results sim-
ilar to those of Theorem 3.2 for a class of penalty methods for convex
scalar optimization problems with finitely many inequality constraints.

Proposition 3.1. Let γ ≥ 1. Assume that Y is a Hilbert space, int
K 
=∅. Consider the convex program (P) and its convex penalty problem
(PFPγ

r ). Suppose that WE is nonempty compact and that ∃x0 ∈ X such
that g(x0)∈−intK. Then, (4) holds.
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Proof. Suppose to the contrary that there exist i∗ ∈ {1, . . . , l},0 <

rk →+∞, xk ∈X such that

fi∗(xk)+ rkd
γ
−k(g(xk))→−∞. (14)

It follows from (14) that there exists vk ∈−K such that

fi∗(xk)+ rk‖g(xk)−vk‖γ →−∞. (15)

Since WE is nonempty and compact, by Theorem 2.1, the following con-
vex scalar optimization problem has a solution x̄:

min fi∗(x),

s.t. x ∈X,

g(x)∈−K.

Together with the Slater constraint qualification, this fact implies that
there exists µ∈K∗ such that

fi∗(x̄)≤fi∗(x)+µ(g(x)), ∀x ∈X. (16)

As a direct consequence of (16), we have

fi∗(x̄)≤fi∗(xk)+µ(vk)+‖µ‖‖g(xk)−vk‖. (17)

As vk ∈−K and µ∈K∗, we have µ(vk)≤0. Combined with (17), this yields

fi∗(x̄)≤fi∗(xk)+‖µ‖‖g(xk)−vk‖. (18)

The combination of (15) and (18) gives

fi∗(x̄)−‖µ‖‖g(xk)−vk‖+ rk‖g(xk)−vk‖γ →−∞. (19)

It is obvious from (19) that

‖g(xk)−vk‖≥1, when k is sufficiently large.

It follows that

‖g(xk)−vk‖γ ≥‖g(xk)−vk‖,
when k is large enough. Together with (19), this fact implies

fi∗(x̄)+ (rk −‖µ‖)‖g(xk)−vk‖→−∞,

which is impossible. Hence, (4) must hold.
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The following corollary follows immediately from Theorem 3.2 and
Proposition 3.1.

Corollary 3.1. Let γ ≥1. Assume that Y is a Hilbert space, intK 
=∅.
Consider the convex program (P) and its convex penalty problem ( PFPγ

r ).
Suppose that WE is nonempty, compact and that ∃x0 ∈X such that g(x0)∈
− intK. Then:

(i) The efficient solution set E of (P) is nonempty and bounded.
(ii) There exists r̄ ′ >0 such that WEr is nonempty and compact; Er

is nonempty and compact when r ≥ r̄ ′.
(iii) Let r̄ ′ < rk → +∞; then, for each selection x∗

k ∈ WErk , we have
that {x∗

k } is bounded and every limit point of {x∗
k } belongs to

WE.
(iv) Let x∗ ∈ E; then, there exists x∗

r ∈ Er such that f (x∗) =
limr→+∞f (x∗

r ).
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