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Controllability of Some Nonlinear Systems
in Hilbert Spaces

J. P. Dauer1 and N. I. Mahmudov2

Communicated by F. E. Udwadia

Abstract. In this paper, several abstract results concerning the con-
trollability of semilinear evolution systems are obtained. First, approx-
imate controllability conditions for semilinear systems are obtained
by means of a fixed-point theorem of the Rothe type; in this case,
the compactness of the linear operator is assumed. Next, the exact
controllability of semilinear systems with nonlinearities having small
Lipschitz constants is derived by means of the Banach fixed-point
theorem; in this case, the compactness of the operators is not
assumed. In both cases, it is proven that the controllability of the lin-
ear system implies the controllability of the associated semilinear sys-
tem. Finally, these abstract results are applied to the controllability of
the semilinear wave and heat equations.
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1. Introduction

The problems of controllability of infinite-dimensional nonlinear sys-
tems have been studied by many authors; see Refs. 1–9 and the refer-
ences therein. The approximate controllability of nonlinear systems when
the semigroup S(t), t > 0, generated by A is compact has been studied
also by many authors. The results of Zhou (Ref. 1) and Naito (Ref. 2)
give sufficient conditions on B with finite-dimensional range or necessary
and sufficient conditions based on more strict assumptions on B. Li and
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Yong (Ref. 3) studied the same problem assuming the approximate con-
trollability of the associated linear system under arbitrary perturbation
in L∞(I,L(X)). Bian (Ref. 4) investigated the approximate controllability
for a class of semilinear systems. For abstract nonlinear systems, Carmi-
chael and Quinn (Ref. 5) used the Banach fixed-point theorem to obtain
a local exact controllability in the case of nonlinearities with small Lips-
chitz constants. Zhang (Ref. 6) studied the local exact controllability of
semilinear evolution systems. Naito (Ref. 2) and Seidman (Ref. 7) used the
Schauder fixed-point theorem to prove the invariance of the reachable set
under nonlinear perturbations. Other related abstract results were given by
Lasiecka and Triggiani (Ref. 8). Balachandran and Sakthivel (Ref. 9) stud-
ied the controllability of semilinear integrodifferential systems in Banach
spaces by using the Schaefer fixed-point theorem.

Consider an abstract semilinear equation,

y =y0 +Lv +L1F(y, v), (1)

and define the following sets:

R(F)={y ∈Y : there exists v ∈Y such that y =y0 +Lv +L1F(y, v)},
QR(F)={Qy : y ∈R(F)}, QR(0)={Qz : z∈R(0)}.

Here Y,X,V are Hilbert spaces, L ∈ L(V,Y ), L1 ∈ L(Y,Y ), Q ∈ L(Y,X),
F : Y ×V →Y ×V is nonlinear operator, y0 ∈Y , v ∈V . The set QR(F) is
the set of points Qy, where y is a solution of (1), attainable from the point
y0. The set QR(0) is the set of points Qz, where z is a solution of

z=y0 +Lv, (2)

reachable from y0. One can see that, for each h∈X, α >0, the control

vα = (QL)∗(αI +QL(QL)∗)−1(h−Qy0) (3)

transfers the equation (2) from y0 to

Qzα =h−α(αI +QL(QL)∗)−1(h−Qy0),

where

zα =y0 +Lvα.

It is known that QR(0)=X if and only if

α(α +QL(QL)∗)−1 →0
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in the strong operator topology as α → 0+; see Ref. 10. Thus, the con-
trol (3) transfers the system (2) from y0 ∈ Y to a small neighborhood of
an arbitrary point h∈X if and only if QR(0)=X.

The same idea is used now to investigate the controllability of the
semilinear system (1). To do so, for each α ≥0 and h∈X, consider a non-
linear operator T α from Y ×V to Y ×V defined by

T α(y, v)= (z,w), (4)

where

z=y0 +Lw +L1F(y, v),

w = (QL)∗(αI +QL(QL)∗)−1(h−Qy0 −QL1F(y, v)).

One can see that, if the operator T α has a fixed point (yα∗ , vα∗ ), then the
control vα∗ steers the control system (1) from y0 to

Qyα
∗ =h−α(αI +QL(QL)∗)−1(h−Qy0 −QL1F(yα

∗ , vα
∗ )),

if α > 0, it steers the control system (1) from y0 to Qyα∗ =h, if α = 0. We
prove that this point is close to h provided that α(α + QL(QL)∗)−1 →
0 in the strong operator topology as α → 0+. Therefore, to prove the
controllability of (1) for each α ≥0 (we consider the cases α >0 and α =0
separately) and h ∈ X, we have to look for a solution of the following
equations:

yα =y0 +Lvα +L1F(yα, vα), (5a)

vα = (QL)∗(αI +QL(QL)∗)−1(h−Qy0 −QL1F(yα, vα)). (5b)

It is clear that the fixed points of the nonlinear operator T α are the
solutions of the nonlinear control system (5) and vice versa.

The purpose of this paper is to show the exact and approximate
controllability of semilinear systems in Hilbert spaces under simple and
fundamental assumptions on the system operators; in particular, to show
that the corresponding linear system is appropriately controllable. This
is consistent with the classical finite-dimensional theory. Note that the
approximate controllability of (1) is derived under the compactness
assumptions of the linear operators involved. We prove that the approx-
imate controllability of the linear system (2) implies the approximate con-
trollability of the semilinear system (1). On the other hand, it is known
that, if the operator L is compact, then ImQL �=X; that is, the linear sys-
tem (2) is not exactly controllable. This is why the analogue of the above
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result is not true for exact controllability and we study the exact control-
lability of (1) for noncompact operators L and L1.

In Section 2, several abstract results concerning the controllability of
semilinear system (1) are obtained. First, conditions for the approximate
controllability of (1) are derived by means of a fixed-point theorem the
Rothe type; in this case, the compactness of the linear operators is
assumed. Next, conditions for the exact controllability of (1) with non-
linearities having small Lipschitz constants are derived using the Banach
fixed-point theorem; in this, the compactness is not assumed. In both
cases, it is proven that controllability of (2) implies the controllability
of (1). Finally, these abstract results are applied to the controllability
of the semilinear integrodifferential equations. These equations serve as
an abstract formulation of the partial integrodifferential equations arising
in various applications such as viscoelasticity, heat equations, and many
other physical phenomena (see Sections 3 and 4).

2. Controllability of Semilinear Systems

Let us impose the following assumptions:

(A1) F : Y × V → Y is continuous and there exists C > 0 such that
‖F(y, v)‖≤C for all (y, v)∈Y ×V .

(A1)′ F : Y × V → Y is continuous and there exists C > 0 such that
‖F(y, v)‖≤C(1+‖(y, v)‖) for all (y, v)∈Y ×V .

(A2) L :V →Y and L1 :Y →Y are compact.

(A3) There exists l > 0 such that

‖F(y1, v1)−F(y2, v2)‖≤ l(‖y1 −y2‖+‖v1 −v2‖).

(A4) α(αI + QLL∗Q∗)−1 converges to zero in the strong operator
topology as α →0+.

Remark 2.1. Condition (A4) holds if and only if Im(QL)=QR(0)=
X; see Ref. 10.

Definition 2.1. The system (1) is approximately [exactly] controllable
if

QR(F)=X [QR(F)=X].
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Theorem 2.1. Assume that (A1), (A2) hold. Then, the approximate
controllability of the linear system (2) implies the approximate controlla-
bility of the semilinear system (1).

Proof.
Step 1. We show that the operator T α has a fixed point in Y ×V for

all α>0. By the compactness and continuity of the operators involved, we
see that T α is a compact continuous operator. Since QL(QL)∗ ≥ 0, αI +
QL(QL)∗ has an inverse bounded by 1/α. On the other hand, there exists
R(α)>0 such that, for ‖(y, v)‖=R(α), we have

‖w‖≤ (1/α)‖QL‖(‖h‖+‖Q‖‖y0‖+‖Q‖‖L1F(y, v)‖)
= (1/α)‖Q‖‖L‖ [R(α)/‖(y, v)‖]

×(‖h‖+‖Q‖‖y0‖+‖Q‖‖L1‖‖F(y, v)‖)
<R(α)/2,

‖z‖≤‖y0‖+‖L‖‖w‖+‖L1‖‖F(y, v)‖
≤ [R(α)/‖(y, v)‖] (‖y0‖+‖L‖‖w‖+‖L1‖‖F(y, v)‖)
<R(α)/2.

Hence, there exists R(α)>0 such that, for ‖(y, v)‖=R(α),

T α(y, v)= (z,w)∈B ={(z,w)∈Y ×V : ‖(z,w)‖≤R(α)}.
Thus, T α maps the sphere

∂B ={(y, v)∈Y ×V : ‖(y, v)‖=R(α)}
into the ball B. By a fixed-point theorem of the Rothe type (see Ref. 12),
for all α >0 T α has a fixed point in the ball B.

Step 2. Assume QR(0) = X. By Step 1, the operator (4) has a fixed
point (yα∗ , vα∗ ). So, (yα∗ , vα∗ ) satisfies (5); moreover, it follows that, for all
h∈X,

Qyα
∗ −h=−α(αI +QL(QL)∗)−1(h−Qy0 −QL1F(yα

∗ , vα
∗ )). (6)

By Assumptions (A1) and (A2), the operator F is bounded and L1 is com-
pact. So, there exists a subsequence, still denoted by {F(yα∗ , vα∗ )}, which
weakly converges to say z ∈ Y and L1F(yα∗ , vα∗ ) → L1z strongly in Y as
α →0+. Then, by (6), the inequality∥∥∥α(αI +QL(QL)∗)−1

∥∥∥≤1



324 JOTA: VOL. 123, NO. 2, NOVEMBER 2004

proved in Step 1, and Remark 2.1, we obtain

‖Qyα
∗ −h‖≤

∥∥∥α(αI +QL(QL)∗)−1(h−Qy0 −QL1z)

∥∥∥
+

∥∥∥α(αI +QL(QL)∗)−1(QL1(z−F(yα
∗ , vα

∗ )))

∥∥∥
≤

∥∥∥α(αI +QL(QL)∗)−1(h−Qy0 −QL1z)

∥∥∥
+‖QL1(z−F(yα

∗ , vα
∗ ))‖→0,

as α →0+. Thus, QR(F)=X. The theorem is proved.

Theorem 2.2. Let Assumptions (A1)′, (A3) hold. If � =QL(QL)∗ ≥
γ I and(∥∥�−1∥∥‖L‖2‖Q‖2 +∥∥�−1∥∥‖L‖‖Q‖2 +1

)
l‖L1‖<1, (7)

then the semilinear system (1) is exactly controllable.

Proof.
Step 1. We show that T 0 has a fixed point, where T 0 is the operator

(4) corresponding to α =0. The proof is based on the Banach fixed-point
theorem. By the definition of the involved operators, T 0 maps Y ×V into
itself.

Now, it is shown that T 0 is a contraction mapping. Let (y1, v1) and
(y2, v2) be arbitrary elements from Y ×V . Then,

‖T 0(y1, v1)−T 0(y2, v2)‖
=‖w1 −w2‖+‖z1 − z2‖
≤‖QL‖∥∥�−1∥∥‖QL1‖‖F(y1, v1)−F(y2, v2)‖

+‖L‖‖w1 −w2‖+‖L1‖‖F(y1, v1)−F(y2, v2)‖
≤

(∥∥�−1∥∥‖L‖‖Q‖2 +1
)

‖L1‖‖F(y1, v1)−F(y2, v2)‖
+∥∥�−1∥∥‖L‖2‖Q‖2‖L1‖‖F(y1, v1)−F(y2, v2)‖

≤
(∥∥�−1∥∥‖L‖2‖Q‖2 +∥∥�−1∥∥‖L‖‖Q‖2 +1

)
×l‖L1‖‖(y1, v1)− (y2, v2)‖.

Consequently, if (7) is satisfied, then the mapping T 0 is a contraction map-
ping and, by the Banach fixed-point theorem, it has a unique fixed point.

Step 2. If (y0, v0) is a fixed point of the operator T 0, then the equal-
ity (6) holds for α =0; that is, for all h∈X, there exists v0 such that

y0 =y0 +Lv0 +L1F(y0, v0) and Qy0 =h.
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Thus,

QR(F)=X.

The theorem is proved.

Obviously, the condition (7) is fulfilled if the Lipschitz constant l is
sufficiently small.

3. Integrodifferential Equations

Consider the following integrodifferential system

x′(t)=Ax(t)+Bu(t)+f

(
t, x(t),

∫ t

0
g(t, s, x(s))ds

)
, (8a)

x(0)=x0, t ∈ I = [0, T ], (8b)

with state space X and control space U . Here, both X and U are Hilbert
spaces, A is the infinitesimal generator of a strongly continuous semigroup
S(t), t ≥0, on X, B is a bounded linear operator from U to X,

�={(t, s) : 0≤ s ≤ t ≤T },
and g : �×X→X, f : I ×X×X→X are continuous bounded functions.

Theorem 3.1. Suppose that S(t), t >0, is compact. Then, the system
(8) is approximately controllable on [0, T ] if the corresponding linear sys-
tem is approximately controllable on [0, T ].

Proof. Let

Y =L2(0, T ;X), V =L2(0, T ;U), y0 =S(·)x0 ∈Y.

Define the linear operators Q,L,L1 and the nonlinear operator F by

Qy =y(T ),

L(v)(t)=
∫ t

0
S(t − s)Bv(s)ds,

L1(y)(t)=
∫ t

0
S(t − s)y(s)ds,

L1F(y)(t)=
∫ t

0
S(t − s)f

(
s, y(s),

∫ s

0
g(s, r, y(r))dr

)
ds,



326 JOTA: VOL. 123, NO. 2, NOVEMBER 2004

for y ∈ Y, v ∈ V . By Remark 2.1, the associated linear system is approxi-
mately controllable if and only if

α(αI +QLL∗Q∗)−1 →0, as α →0+,

in the strong operator topology. Then, it is easy to see that all the condi-
tions of Theorem 2.1 are satisfied and that (8) is approximately controlla-
ble. This completes the proof.

Theorem 3.2. Let the following assumptions hold:

(i) g : � × X → X, f : I × X × X → X are continuous and there
exists C >0 such that

‖g(t, x)‖≤C(1+‖x‖), ‖f (t, x, y)‖≤C(1+‖x‖+‖y‖).

(ii) There exists l >0 such that

‖g(t, x1)−g(t, x2)‖≤ l‖x1 −x2‖,
‖f (t, x1, y1)−f (t, x2, y2)‖≤ l(‖x1 −x2‖+‖y1 −y2‖).

If the linear system associated to (8) is exactly controllable on [0, T ] and
if the inequality (7) is satisfied, then the system (8) is exactly controllable.

Proof. The proof follows from Theorem 2.2

4. Applications

Example 4.1. Consider a partial differential system of the form

xt (t, θ)=xθθ (t, θ)+b(θ)u(t)+f

(
t, x(t, θ),

∫ t

0
g(t, s, x(s, θ)) ds

)
, (9a)

x(t,0)=x(t, π)=0, t >0, (9b)

x(0)=x0, 0<θ <π, 0≤ t ≤T , (9c)

where

u∈L2[0, T ], X =L2[0, π ], b∈X,

and where

f : R ×R →R,g : R ×R ×R →R
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are continuous and uniformly bounded. Let B ∈L(R,X) be defined as

(Bu)(θ)=b(θ)u,

where

0≤ θ ≤π, u∈R, b(θ)∈L2[0, π ],

and let A : X →X be operator defined by Az= z′′ with domain

D(A)={z∈X|z, z′ are absolutely continuous, z′′ ∈X,z(0)= z(π)=0}.
Then,

Az=
∞∑

n=1

(
−n2

)
(z, en)en, z∈D(A),

where

en(θ)=
√

2/π sin(nθ), 0≤x ≤π, n=1,2, . . . .

It is known that A generates a compact semigroup S(t), t >0, in X and is
given by

S(t)z=
∞∑

n=1

e−n2t (z, en)en, z∈X.

Therefore, the associated linear system is not exactly controllable but
approximately controllable (Ref. 11) provided that∫ π

0
b(θ)en(θ)dθ �=0, for n=1,2,3, . . . .

Under the above conditions imposed on f and b, the system (9) will be
approximately controllable on [0, T ] by Theorem 3.1.

Example 4.2. Consider the controlled wave equation with a control
u(t, ·)∈L2[0,1],

ytt (t, θ)=yθθ (t, θ)+χ	(θ)u(t, θ)+f

(
t, y(t, θ),

∫ t

0
g(t, s, y(s, θ)) ds

)
, (10a)

y(t,0)=y(t,1)=0, t >0, (10b)

y(0, θ)=α(θ), yt (0, θ)=β(θ), 0≤ θ ≤1, 0≤ t ≤T , (10c)
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where 	 is a proper open subset of (0,1), α, β ∈ L2[0,1], and where
f : R ×R →R,g : R ×R ×R →R are continuous, Lipschitz continuous in
their state variables with Lipschitz constant l and satisfy a linear growth
condition. Proceeding in a similar way to that in (Ref. 11), the system (10)
can be written in the following abstract form in X =D

(
A

1/2
0

)
⊕L2[0,1],

(d/dt)

[
y

yt

]
=

[
0 I

−A0 0

][
y

yt

]
+

[
0
B1

]
u+

[
0

f
(
t, y(t),

∫ t

0 g(t, s, y(s))ds
)]

,

[
y(0)

yt (0)

]
=

[
α

β

]
,

where

Aoh=−hθθ , B1u=χ	(θ)u(t, θ),

with domain

D(A0)={h∈L2(0,1) :h,hθ are absolutely continuous,

hθθ ∈L2[0,1] and h(0)=0=h(1)}.

It is known that A is the infinitesimal generator of a contraction group
S(t) on X. Therefore, S(t) is not compact. On the other hand, it is known
that the linear system corresponding to (10) is exactly controllable; see
Ref. 11. Thus, by Theorem 3.2, the semilinear system (10) is exactly con-
trollable on [0, T ] if the inequality (7) is satisfied.
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