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Abstract. Let Z and X be Hausdorff real topological vector spaces
and let Lb(X,Z) be the space of continuous linear mappings from X

into Z equipped with the topology of bounded convergence. In this
paper, we define the (S)+ condition for operators from a nonempty
subset of X into Lb(X,Z) and derive some existence results for vector
variational inequalities with operators of the class (S)+. Some appli-
cations to vector complementarity problems are given.
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1. Introduction

Let Z denote a Hausdorff real topological vector space; we fix a
closed convex cone C ⊂ Z such that C �= Z and IntC �= ∅, where IntC is
the interior of C in Z. In this paper, we are interested only in real topo-
logical vector spaces (tvs). For any given tvs X, let L(X,Z) be the set of
all continuous linear mappings from X into Z. If Z is the set R of real
numbers, then L(X,Z) = X∗ is the topological dual space of X. For any
f ∈L(X,Z) and x ∈X, the value of f at x will be denoted by 〈f, x〉.

Let K be a nonempty subset of X and let T : K → L(X,Z) be an
operator. The vector variational inequality VVI(T ,K,C), associated with
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T, K, C is to find x̂ ∈K such that

〈T x̂, x − x̂〉∈ (−IntC)c for all x ∈K,

where (−IntC)c is the complement of −IntC in Z. The vector variational
inequality was introduced first by Giannessi (Ref. 1) in finite-dimensional
Euclidean spaces in 1980; later, it was extended by Chen and Cheng
(Ref. 2) and was studied extensively by Chen and Yang (Ref. 3). Since
then, the vector variational inequality was further generalized and studied
by considering moving cones instead of a fixed cone (Refs. 4–6), multi-
valued mappings instead of single-valued mappings (Refs. 7–10), or both
(Ref. 11–14).

When Z =R and C is the set of nonnegative real numbers, VVI(T ,K,C)

becomes the usual variational inequality VI(T, K) associated with T and K,
that is, to find x̂ ∈K such that

〈T x̂, x − x̂〉≥0, for all x ∈K.

This variational inequality has been studied extensively in both finite and
infinite dimensional spaces; see e.g. Refs. 15–22.

It is well known that there is a very close connection between opti-
mization problems and variational inequalities. It turns out that the vec-
tor variational inequality provides also a very good and useful tool in
dealing with vector optimization problems; see e.g. Refs. 2–4, 23–24, and
references therein. Certainly, it is worth to pay attention to the research
of vector variational inequalities. On the other hand, it is worth observ-
ing that most of the results on vector variational inequalities require the
monotonicity or algebraic pseudomonotonicity (in the sense of Karamar-
dian) assumption on the operator under consideration; see e.g. Refs. 2, 3,
6, 13, 23, and references therein. There are very few results in the liter-
ature without these assumptions. A result due to Guo and Yao (Ref. 25,
Theorem 2.1) in reflexive Banach spaces is an effort in this direction; this
result is stated below as Theorem 1.1.

The motivation of this paper is to derive more existence results
for vector variational inqualities in a Hausdorff tvs without the above
monotonicity assumption. The choice of the Hausdorff tvs setting is for
generality and we introduce the vectorial (S)+ condition for operators
under consideration. In turn, this requires the introduction of the contents
of limit superior and limit inferior of nets, which are not so straightfor-
ward and obvious in a Hausdorff topological vector space. More precisely,
the aim of this paper is to prove an existence result for VVI(T,K,C) which
is a vector version of the Guo and Yao result.
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Theorem 1.1. Let K be a nonempty weakly compact convex subset
of a real reflexive Banach space B and let T :K →B∗ be an operator. Sup-
pose that:

(i) T is of class (S)+;
(ii) T is continuous on finite-dimensional subspaces;
(iii) if xn →x, then {T xn} has a weakly convergent subsequence with

limit Tx .

Then, VI(T ,K) has a solution.

Recall that an operator T : K → B∗ is said to be of class (S)+ if,
for {xn}∞n=1 ⊂ K converging weakly to x and lim sup

n→∞
〈T xn, xn − x〉 ≤ 0,

then xn → x; see Ref. 26. The operator T is called continuous on finite-
dimensional subspaces if T is continuous from the norm topology of
K ∩M to the weak∗ topology of B∗ for every finite-dimensional subspace
M of B with K ∩M �=∅.

We observe that assumption (iii) of Theorem 1.1 implies that the
operator T is demicontinuous; i.e., xn → x (in norm) implies that T xn

converges to Tx weakly. Indeed, suppose that xn → x, but T xn does not
converge to T x weakly. Since B is reflexive, so is B∗; hence, the weak∗
topology and the weak topology coincide. Then, there is a subsequence
T xnk

of T xn such that no subsequence of T xnk
converges to T x weakly;

see e.g. Ref. 27, Proposition 21.23 (i). Now, applying (iii) of Theorem 1.1
with xn being replaced by xnk

, we see that there are no subsequences of
T xnk

converging to T x, and this is a contradiction. Also, it is clear that
the demicontinuity of T implies that T is continuous on finite-dimensional
subspaces. Therefore, Theorem 1.1 can be restated as follows.

Theorem 1.2. Let K be a nonempty weakly compact convex subset
of a real reflexive Banach space B and let T : K →B∗ be an operator. If
T is of class (S)+ and demicontinuous, then the VI(T ,K) has a solution.

We remark that an interesting example in Ref. 28, p. 360 shows that
the result of Theorem 1.1 may not be true without the assumption that T

is of class (S)+. In other word, it is not enough to assure the existence of
solutions to VI(T ,K) by simply assuming the demicontinuity of T when
K is weakly compact.

The rest of the paper is organized as follows. In Section 2, we define
first the limit superior and limit inferior of any net in Z. Then, we state
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the vectorial (S)+ condition. In Section 3, we introduce a topology on X

so that the topology becomes the weak topology on X when Z =R. This
topology is called the L-topology on X and the resulting space is denoted
by XL. By use of this topology, we generalize the notion of weak com-
pactness to the notion of L-compactness.

In Section 4, we recall the definition of topology of bounded conver-
gence on L(X,Z), denote the space by Lb(X,Z), and prove our main exis-
tence result (Theorem 4.1) for VVI(T ,K,C) with K a nonempty convex,
L-compact subset of a Hausdorff tvs X and an operator T :K →Lb(X,Z)

satisfying conditions corresponding to those given in the Guo and Yao
theorem. To prove the main result, we derive also an existence result (The-
orem 4.3) for VVI(T ,K,C) with K a nonempty compact convex subset of
X and T a continuous operator from K into Lb(X,Z).

In Section 5, we use the main existence result obtained in Section 4
to prove some existence results for VVI(T ,K,C) with K non L-compact.
In Section 6, we state vector complementarity problems and derive some
existence results for the problems by using the results derived in Section 5.

We use the following notation. For any subset A of a topological
space X, let Ac denote the complement of A in X. When X is a tvs, let
co(A) denote the convex hull of A.

2. Vectorial (S)+ Condition

To state the vector version of the (S)+ condition, we have to define
the limit superior and limit inferior of a net in Z. The definition was given
first in Ref. 29 by use of the vectorial superior and vectorial inferior intro-
duced in Ref. 30.

For a subset E of Z, let Ē denote the closure of E in Z. The supe-
rior of E with respect to C is defined by

Sup (E,C)={x ∈ Ē : (x + IntC)∩E =∅};
the inferior of E with respect to C is defined by

Inf (E,C)={x ∈ Ē : (x − IntC)∩E =∅}.
Since C is fixed, we simply write

Sup (E,C)=SupE, Inf (E,C)= InfE.

By a simple verification, one proves that

SupE =Sup Ē, InfE = Inf Ē
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are closed subsets of Z. For a proof, see Ref. 31, Proposition 2.1 and
Proposition 2.3. When Z = R and C is the set of nonnegative real num-
bers, Sup E is either empty of a singleton for any nonempty subset E of
R. If we use sup E to denote the usual supremum of E ⊂R, then Sup E =
{supE} when Sup E is a singleton and supE=∞ if and only if Sup E =∅.
Similarly, if we use infE to denote the usual infimum of E ⊂ R, then
Inf E = {InfE} when Inf E is a singleton and infE = −∞ if and only if
Inf E =∅.

Now, we define the limit superior and limit inferior, with respect to
C, of a net {zα}α∈I in Z. For any α ∈ I , let Sα ={zβ :β α} and let

Limsup zα = Inf
⋃

α∈I

SupSα, Liminf zα =Sup
⋃

α∈I

InfSα.

In the case where Z =R and C is the set of nonnegative real numbers,
Limsup zα and Liminf zα are both either empty or singletons. If Limsup
zα is a singleton, then

Limsup zα ={limsup zα},

where limsup zα is the usual limit superior of {zα} defined in R and

limsup zα =∞, if and only if Limsup zα =∅.

Similarly,

Liminf zα ={liminf zα},

where liminf zα is the usual limit inferior of {zα} and

liminf zα =−∞, if and only if Liminf zα =∅.

It was proved in Ref. 31, Corollary 3.6 that Sup E and Inf E are
nonempty if E is a nonempty compact subset of Z. Thus, one proves eas-
ily that, if a net {zα}α∈I lies in a compact subset of Z, then Limsup zα and
Liminf zα are nonempty.

Now, we are ready to state the vectorial (S)+ condition. Let X be
at tvs. A net {xα} in X is called L-convergent to x ∈ X, denoted by

xα
L→x, if f (xα)→f (x) in Z for all f ∈L(X,Z). We note that the notion

of L-convergence coincides with that of weak convergence when Z = R.
When a net {xα} in X converges to x ∈ X in the original topology of X,
we simply write xα →x.
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Let K be a nonempty subset of X. An operator T : K → L(X,Z) is
called of class (S)+ if it satisfies the (S)+ condition: For any net {xα}⊂K,

xα
L→x and Limsup 〈T xα, xα −x〉⊂ (IntC)c ⇒xα →x.

When Z =R, L(X,Z)=X∗, the topological dual of X. If C is the set
of nonnegative numbers, then an operator T :K →X∗ is said to be of class
(S)+ if, for any net {xα}⊂K,

xα −→x weakly and limsup 〈T xα, xα −x〉≤0⇒xα −→x.

In the proof of our main existence result for vector variational
inequalities, we need the following theorem.

Theorem 2.1. Let {zα}α∈I be a net in Z convergent to z and let
Sα ={zβ :β α} .

(i) If there is an α0 such that, for every α  α0, there exists β  α

with InfSβ �=∅, then z∈Liminf zα.
(ii) If there is an α0 such that, for every α  α0, there exists β  α

with Sup Sβ �=∅, then z∈Limsup zα.

Proof. We prove (i). The assertion (ii) follows by a similar argument.
We have to show that

z∈
⋃

α∈I

InfSα and (z+ IntC)∩
⋃

α∈I

InfSα =
⋃

α∈I

{(z+ IntC)∩ InfSα}=∅.

First, we prove that

(z+ IntC)∩ InfSα =∅, for every α.

Suppose on the contrary that there is an α and there is a v ∈ IntC such
z+v ∈ InfSα. By definition, we have

(z+v − IntC)∩Sα =∅.

Since z+ v − IntC is an open neighborhood of z, there is an α0 α such
that

β α0 �⇒ zβ ∈ z+v − IntC.

This leads to the contradiction that

Sα0 ⊂ (z+v − IntC)∩Sα.
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Next, we prove that every open neighborhood U of z intersects
⋃
α∈I

InfSα,

or equivalently, U intersects some InfSα. This implies that z ∈ ⋃
α∈I

InfSα

and completes the proof.
Since there is an open neighborhood V of z such that V̄ ⊂U (Ref. 32,

Theorem 1.11, p. 10), there exists an αV  α0 such that zβ ∈ V whenever
β αV . This implies that InfSβ ⊂Sβ ⊂V ⊂U whenever β αV . By assump-
tion, there is a β αV such that InfSβ �=∅. Thus,

U ∩ InfSβ = InfSβ �=∅.

Corollary 2.1. Let {zα}α∈I be a net in Z convergent to z. If Z is
locally compact, then

z∈ (Liminf zα)∩ (Limsup zα).

Proof. For every α, let Sα be given above. Choose an open neighbor-
hood U of z with Ū compact. There is an α0 such that zα ∈U whenever
α α0. Thus, Sα ⊂U for α α0 and InfSα, SupSα are nonempty.

3. L-Topology

The main work of this section is to introduce a topology on a tvs X

so that it generalizes the concept of the weak topology on X. We call it
the L-topology on X. With this topology, the notion of weak compactness
is generalized to the notion of L-compactness (cf. Theorem 1.1).

The L-topology on X is the topology having the sets f −1(U) as subb-
asis, where U is open in Z and f ∈L(X,Z). Let XL denote the space X

equipped with the L-topology. To proceed, we need the following termi-
nology. Let E be a subset of X.

(a) E is called L-closed (respectively, L-open) if E is closed (respec-
tively, open) in XL.

(b) The closure of E in XL is denoted by ĒL.
(c) E is called L-compact if it is compact in XL.

Remark 3.1. Let X be a tvs. The following assertions are immediate
consequences of the definition.

(i) Every L-open (L-closed) subset of X is open (closed) in X.
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(ii) A net {xα} converges to x in XL if and only if xα
L−→x. From

this, one proves easily that XL is a tvs.

In the rest of this section, we derive some properties that we need in
the sequel. To employ the technique of Guo and Yao used in the proof of
Theorem 1.1, we recall that a tvs is locally convex if its zero vector has a
local base whose members are convex. We need also the following defini-
tion.

Let X be a tvs and let FX denote the family of finite-dimensional sub-
spaces of X. A subset K of X is called finitely compact if K ∩Y is com-
pact for every Y ∈FX.

In the proof of Theorem 1.1, Guo and Yao have used the following
facts on locally convex Hausdorff tvs X.

(a) X∗ seperates points in X; i.e., for any nonzero x ∈X, there is an
f ∈ X∗ such that f (x) �= 0 (Ref. 32, Corollary of Theorem 3.4,
p. 59). Consequently, the weak topology on X is Hausdorff.

(b) Every weakly compact subset of X is finitely compact.

In general, XL is not necessarily Hausdorff. However, from Ref. 32,
p. 61, we obtain the following theorem.

Theorem 3.1. If X is a locally convex Hausdorff tvs, then L(X,Z) sep-
arates points in X; that is, for any given two distinct points x and x′ of X,
there is an f ∈L(X,Z) such that f (x) �=f (x′). Therefore, XL is Hausdorff.

For the proof of Theorem 3.1, we need an immediate consequence of
Ref. 33, Theorem 8.4.8 , and its proof. For later use, we state it as the fol-
lowing proposition.

Proposition 3.1. If X is a locally convex Hausdorff tvs and if Y is
a finite-dimensional subspace of X, then there is a continuous linear map
�Y :X −→Y such that �Y (y)=y for all y ∈Y .

Proof of Theorem 3.1. It suffices to show that, for any nonzero
x0 ∈X, there is an f ∈L(X,Z) such that f (x0) �=0. Let Y be the subspace
of X generated by x0 and let �Y be given in Proposition 3.1. Note that
any nonzero vector z0 in Z induces a continuous linear map ϕ : Y −→ Z
defined by

ϕ(λx0)=λz0, for λ∈R.

The composition f =ϕ ◦�Y lies in L(X,Z) with f (x0)= z0.
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Corollary 3.1. If X is a finite-dimensional Hausdorff tvs, then X =XL.

Corollary 3.2. If X is a locally convex Hausdorff tvs, then every
L-compact subset of X is finitely compact.

Proof. Let K be any L-compact subset of X and let Y ∈FX be arb-
itrary. Note that Y is closed in both X and XL. The compactness of K in
XL implies that of K ∩Y in YL =Y .

4. Existence Results

In this section, we prove a vector version of Theorem 1.1. To this end,
we need a topology on L(X,Z), where X is a tvs.

Recall that a subset E of X is called bounded if, for any 0-neighbor-
hood U in X, there is a λ>0 such that E ⊂λU . Let BX denote the family
of all bounded subsets of X and let NZ be a neighborhood base of 0 in
Z. For S ∈BX and for V ∈NZ , let

[S,V ]={f ∈L(X,Z) :f (S)⊂V }.

The family {[S,V ] : S ∈ BX and V ∈ NZ } is a 0-neighborhood base in
L(X,Z) for a unique translation-invariant topology, called the topology
of bounded convergence. Let Lb(X,Z) denote the space L(X,Z) equipped
with the topology of bounded convergence. Note that Lb(X,Z) is a tvs;
see Ref. 34, p. 79. For a full discussion on the topology of bounded
convergence, see e.g. Refs. 33 and 34.

Remark 4.1. If X and Z are normed spaces, the norm

u �−→‖u‖= sup{|u(x)| : |x|≤1}

generates the topology of bounded convergence on L(X,Z); see e.g.
Ref. 34, p. 81.

Theorem 4.1. Let X be a locally convex Hausdorff tvs, let K be a
nonempty convex and L-compact subset of X, and let T :K −→Lb(X,Z)

be an operator. Assume that:

(i) T is continuous and of class (S)+;
(ii) for any convergent net {xα} in K and for any x ∈ K, there

is an α0 such that, for every α  α0, there exists β  α with
Sup {〈T xβ ′ , x −xβ ′ 〉 :β ′ β} �=∅.
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Then, VVI(T ,K,C) has a solution.

The following is an immediate consequence of Theorem 4.1 and Cor-
ollary 2.1.

Corollary 4.1. Let X be a locally convex Hausdorff tvs, let K be a
nonempty convex and L-compact subset of X, and let T :K −→Lb(X,Z)

be continuous and of class (S)+. If Z is locally compact, then VVI(T ,K,C)

has a solution.

When Z = R, then L(X,Z) = X∗ and the topology of bounded con-
vergence of X∗ is called the strong topology (denoted by σ ) of X∗. The
following results are consequences of Corollary 4.1.

Corollary 4.2. Let X be a locally convex Hausdorff tvs let K be a non-
empty convex and weakly compact subset of X; and let T :K −→ (X∗, σ ) be
continuous and of class (S)+. Then, VI(T ,K) has a solution.

For the proof of Theorem 4.1, we need an existence result for
VVI(T ,K,C), where K is compact, stated as Theorem 4.3, whose proof
is based on the Ky Fan lemma (Ref. 35). Let E be a nonempty subset of
a tvs X and let 2X denote the family of all nonempty subsets of X. A
set-valued function � :E −→2X is said to be a KKM mapping if, for any
nonempty finite set A⊂E,

co(A)⊂
⋃

x∈A

�(x).

Theorem 4.2. See Ky Fan, Lemma 1, Ref. 35. Let K be a nonempty
convex subset of a Hausdorff tvs X and let � :K −→2X be a KKM map-
ping. If �(x) is closed in X for every x ∈K, and if there is a point x0 ∈K

such that �(x0) is compact, then
⋂

x∈K

�(x) �=∅.

Theorem 4.3. Let X be a Hausdorff tvs and let K be a nonempty
compact and convex subset of X. If T : K −→ Lb(X,Z) is a continuous
operator, then VVI(T ,K,C) has a solution.

Proof. Let � :K −→2X be defined by

�(x)={y ∈K : 〈Ty, x −y〉∈ (−IntC)c}.
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Clearly, �(x) contains x and is nonempty. We complete the proof by use
of Theorem 4.2. We have to show that every �(x) is closed in X and that
� is a KKM mapping.

First, we prove that � is a KKM mapping. Let {x1, . . . , xn} be any
finite subset of K and let λj ≥0,1≤j ≤n, be such that

∑n
j=1 λj =1. Write

x =
n∑

j=1

λjxj .

Suppose that x �∈�(xj ) for all j with 1≤ j ≤n, i.e.,

〈T x, xj −x〉∈−IntC, for all j.

By the convexity of −IntC, we have the following:

0=〈T x, x −x〉=
n∑

j=1

λj 〈T x, xj −x〉∈−IntC,

which is a contradiction, since C �=Z. Therefore, � is a KKM mapping.
Note that every �(x) is closed if the function ϕ :K →Z, defined by

ϕ(y)=〈Ty, x −y〉,
is continuous. This is equivalent to showing that, if {yλ} is a net in K con-
verging to y ∈K, then the net {ϕ(yλ)} converges to ϕ(y).

Note that

ϕ(yλ)−ϕ(y)=〈Tyλ −Ty, x −yλ〉+〈Ty, y −yλ〉.
Since Ty is a continuous linear map on X and since y −yλ −→0, we have

〈Ty, y −yλ〉−→0.

It remains to show that

〈Tyλ −Ty, x −yλ〉−→0.

Let V be any 0-neighborhood in Z. There is a 0-neighborhood U in
Z such that U = −U and U + U ⊂ V (Ref. 32, Theorem 1.10). Note that
K + (−K) is bounded in X (Ref. 34, Chapter I, Theorem 5.1). Consider
the open set [K + (−K),U +U ] in Lb(X,Z). By the continuity of T , there
is a λV such that

λλV �⇒Tyλ −Ty ∈ [K + (−K),U +U ].
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This implies that

〈Tyλ −Ty, x −yλ〉∈U +U ⊂V, for λλV .

The proof is complete.

Proof of Theorem 4.1. Without loss of generality, we may assume
that 0 ∈ K and hence K ∩ Y �= ∅ for any Y ∈ FX. For any subspace Y of
X, the inclusion map PY :Y −→X induces a linear map P ∗

Y :Lb(X,Z)−→
Lb(Y,Z), defined by

P ∗
Y (f )=f ◦PY .

For any Y ∈FX, the map

TY =P ∗
Y T PY :K ∩Y →Lb(Y,Z)

is continuous. It follows from Corollary 3.2 and Theorem 4.3 that there is
an xY ∈Y ∩K such that

〈T xY , x −xY 〉=〈TY xY , x −xY 〉∈ (−IntC)c, for all x ∈K ∩Y.

For any Y ∈FX, consider the following subset of K:

KY ={xV ∈K :Y ⊂V and V ∈FX}.
For V,V ′ ∈FX, let Y ∈FX be such that V ∪V ′ ⊂Y . Then,

K̄L
Y ⊂ K̄L

V ∩ K̄L
V ′ .

This proves that the family {K̄L
Y : Y ∈FX} has the finite intersection prop-

erty. Therefore,
⋂

Y∈FX

K̄L
Y is nonempty since K is L-compact.

Let

x̂ ∈
⋂

Y∈FX

K̄L
Y .

Now, we complete the proof by showing that

〈T x̂, x − x̂〉∈ (−IntC)c, for any x ∈K.

Let Y be the subspace of X generated by x and x̂. Since x̂ ∈ K̄L
Y , there

is a net {xα} in KY such that xα −→ x̂ in XL, or equivalently, xα
L→ x̂; see

Remark 3.1 (i). Note that xα =xVα ∈Vα ∩K for every α, where Y ⊂Vα ∈FX.
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Since

〈T xα, xα − x̂〉∈ (IntC)c, for every α,

we have

Limsup 〈T xα, xα − x̂〉⊂ (IntC)c.

As T is of class (S)+, xα −→ x̂ in X. Then, {T xα} converges to T x̂ in
Lb(X,Z) since T is continuous. We claim that

lim
α

〈T xα, x̂ −xα〉=0. (1)

This implies that

〈T x̂, x − x̂〉= lim
α

〈T xα, x − x̂〉
= lim

α
(〈T xα, x̂ −xα〉+〈T xα, x − x̂〉)

= lim
α

〈T xα, x −xα〉.

Since

〈T xα, x −xα〉∈ (−IntC)c, for all α,

by Theorem 2.1 and (ii), we have that

〈T x̂, x − x̂〉= lim
α

〈T xα, x −xα〉∈Limsup 〈T xα, x −xα〉⊂ (−IntC)c.

It remains to prove equation (1). Since xα −→ x̂ in X, there is a com-
pact subset E of K containing x̂ and all xα. Thus,

x̂ −xα ∈E −E =E0.

Note that E0 is compact in X and is bounded in X. Let W be any 0-neigh-
borhood in Z. There is a 0-neighborhood W0 in Z such that W0 = −W0
and W0 + W0 ⊂ W . Consider the 0-neighborhood [E0,W0] in Lb(X,Z).
There is an αW such that

α βW �⇒T xα −T x̂ ∈ [E0,W0] and 〈T x̂, x̂ −xα〉∈W0

�⇒ (T xα −T x̂)(E0)⊂W0 and 〈T x̂, x̂ −xα〉∈W0.

Now, for α αW , we have

〈T xα, x̂ −xα〉=〈T xα −T x̂, x̂ −xα〉+〈T x̂, x̂ −xα〉∈W0 +W0 ⊂W.

The proof of (1) is complete.
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5. Non L-Compact Case

In this section, we derive some existence results for vector variational
inequalities where the underlying domains may not be L-compact. The
first result of this section is the following.

Theorem 5.1. Let X be a locally convex Hausdorff tvs, let K be a
nonempty convex subset of X, and let T :K −→Lb(X,Z) be an operator.
Assume that the following conditions hold:

(i) T is continuous and of class (S)+.
(ii) For any convergent net {xα} in K and for any x ∈ K, there

is an α0 such that, for every α  α0, there exists β  α with
Sup {〈T xβ ′ , x −xβ ′ 〉 :β ′ β} �=∅.

(iii) There exist a nonempty L-compact set K0 ⊂K and a nonempty
convex and L-compact set K1 ⊂K such that, if x ∈K ∩Kc

0 , then
〈T x, y −x〉∈−IntC for some y ∈K1.

Then, VVI(T ,K,C) has a solution.

Proof. Let � be the family of all nonempty finite subsets of K. For
any E ∈�, let

SE ={x ∈K0 : 〈T x, y −x〉∈ (−IntC)c, for all y ∈ co(K1 ∪E)}.

Since K1 is convex, L-compact, and since E is finite, the set co(K1 ∪E) is
L-compact; see Ref. 33, Section 5.4.4, p. 73. By Theorem 4.1, there exists
xE ∈ co(K1 ∪E) such that

〈T xE, x −xE〉∈ (−IntC)c, for all x ∈ co(K1 ∪E). (2)

If xE ∈ Kc
0 , then xE ∈ K ∩ Kc

0 ; hence, from the assumption, there exists
y ∈K1 such that

〈T xE, y −xE〉∈−IntC,

which is a contradiction to (2). Therefore, xE ∈ K0; consequently, SE �= ∅
for any E ∈�.

Clearly, the family {SE : E ∈ �} has the finite intersection property.
Since K0 is L-compact, we deduce that

⋂

E∈�

S̄L
E �=∅. (3)
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By employing the same argument as in the proof of Theorem 4.1, one
can show that any element in the intersection given in (3) is a solution of
VVI(T ,K,C). The proof is now complete.

Next, we derive some necessary and sufficient conditions for the
existence of solutions to the vector variational inequality. Let X be a
Hausdorff tvs. A subset K of X is called inductive if there is a directed
index set A such that

K =
⋃

α∈A
Kα,

where each Kα is L-compact in X and the sets Kα are increasing in the
sense that Kα ⊂Kβ whenever α �β.

Theorem 5.2. Let X be a Hausdorff tvs let, K = ⋃
α∈A

Kα be a nonempty

L-closed and inductive subset of X, and let T :K −→Lb(X,Z) be an oper-
ator. If the solution set S of VVI(T ,K,C) is nonempty, then the following
condition holds:

(i) There is a net {xα}α∈A in an L-compact subset of K and there
is an α0 ∈ A such that xα lies in the solution set S(α) of
VVI(T ,Kα,C) for every α α0.

Conversely, S �=∅ if condition (i) holds together with the following condi-
tions:

(ii) T is continuous and of class (S)+.
(iii) For any convergent net {xα} in K and for any x ∈ K, there

is an α0 such that, for every α  α0, there exists β  α with
Sup {〈T xβ ′ , x −xβ ′ 〉 :β ′ β} �=∅.

Proof. It is clear that (i) holds if S �=∅. Conversely, assume that the
conditions (i), (ii), and (iii) hold. Let {xα} be a net in an L-compact sub-
set of K with xα ∈S(α) for each αα0. Without loss of generality, we may

assume that xα
L−→ x̂. Since K is L-closed, x̂ ∈K. For each x ∈K, let β ∈A

be such that {x̂, x}⊂Kβ . Then, x ∈Kα for all α β. Since 〈T xα, xα − x̂〉∈
(IntC)c for all α α0 and since α β, we have

Limsup 〈T xα, xα − x̂〉⊂ (IntC)c;
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hence, xα −→ x̂ in X because T is of class (S)+. Now, by employing the
same argument as in proof of Theorem 4.1, we conclude that

〈T x̂, x − x̂〉∈ (−IntC)c.

Hence, x̂ ∈S and S �=∅.

6. Vector Complementarity Problems

Let X be a tvs, let K be a closed convex cone in X, and let T :X−→
L(X,Z) be an operator. The vector complementarity problem, denoted by
VCP(T ,K,C) is to find x̂ ∈K such that

〈T x̂, x̂〉 �∈ IntC and 〈T x̂, x〉 �∈−IntC, for all x ∈K.

The VCP(T ,K,C) was introduced by Chen and Yang in 1990 (Ref. 3).
When Z = R and C is the set of all nonnegative real numbers, the
VCP(T ,K,C) coincides with the generalized complementarity problem
(CP), that is, to find x̂ ∈K such that

〈T x̂, x̂〉=0 and T x̂ ∈K∗,

where

K∗ ={	∈X∗ : 〈	, x〉≥0, for all x ∈K}

is the dual cone of K. Problem (CP) was introduced by Karamardian
(Ref. 36) and has been investigated extensively in the literature; see for
example Refs. 21, Refs. 37–40, and references therein.

In this section, we obtain some existence results for the problem
VCP(T ,K,C) by employing the existence results derived in Section 5.
First, we have the following lemma giving the equivalence relationship
between VVI(T ,K,C) and VCP(T ,K,C). The proof can be found in
Ref. 6, Lemma 4.1.

Lemma 6.1. Let K be a closed convex cone in a tvs X and let T :
K →L(X,Z) be an operator.

(i) If x̂ is a solution to VVI(T ,K,C), then x̂ is a solution to
VCP(T ,K,C).

(ii) If x̂ is a solution to VCP(T ,K,C) and if 〈T x̂, x̂〉∈−C, then x̂ is
a solution to VVI(T ,K,C).
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Combining Theorem 5.1 and Lemma 6.1, we have the following exis-
tence result for VCP(T ,K,C).

Theorem 6.1. Let K be a closed convex cone of a locally convex Haus-
dorff tvs X and let T :K −→Lb(X,Z) be continuous and of class (S)+.
Assume that the following conditions hold:

(i) For any convergent net {xα} in K and for any x ∈ K, there
is an α0 such that, for every α  α0, there exists β  α with
Sup {〈T xβ ′ , x −xβ ′ 〉 :β ′ β} �=∅.

(ii) There exist a nonempty L-compact set K0 ⊂K and a nonempty
convex and L-compact set K1 ⊂K such that, if x ∈K ∩Kc

0 , then
〈T x, y −x〉∈−IntC for some y ∈K1.

Then, VCP(T ,K,C) has a solution.

Finally, we have the following result, which is a consequence of The-
orem 5.2 and Lemma 6.1.

Theorem 6.2. Let X be a Hausdorff tvs and let K be an L-closed
convex cone in X which is also inductive, given by K = ⋃

α∈A
Kα. Let T :

K −→Lb(X,Z) be continuous and of class (S)+. Assume that the follow-
ing conditions hold:

(i) For any convergent net {xα} in K and for any x ∈ K, there
is an α0 such that, for every α  α0, there exists β  α with
Sup {〈T xβ ′ , x −xβ ′ 〉 :β ′ β} �=∅.

(ii) There exists a net {xα}α∈A in an L-compact subset of K and
there is an α1 such that xα lies in the solution set S(α) of
VVI(T ,Kα,C) for every α α1.

Then, VCP(T ,K,C) has a solution.
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