
journal of optimization theory and applications: Vol. 125, No. 1, pp. 157–179, April 2005 (© 2005)
DOI: 10.1007/s10957-004-1716-4

New Generalized Convexity Notion for Set-Valued
Maps and Application to Vector Optimization1

P. H. Sach2

Communicated by H. P. Benson

Abstract. In this paper, we introduce a new generalized convexity
notion for set-valued maps, called ic-cone-convexlikeness, and use it
as the main tool to derive an alternative theorem and necessary con-
ditions for efficient, weakly efficient, and Benson properly efficient
solutions of the problem of minimizing a set-valued map subject to
set-valued constraints. Our results are valid for a class of optimiza-
tion problems broader than that of the problems considered in Refs.
1–6 and generalize the corresponding results of these references.
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1. Introduction

Let Q be an arbitrary set; let D and E be convex cones of locally
convex spaces Y and Z, respectively. Let F (resp. G) be a set-valued map
associating to any point x ∈Q a nonempty set F(x) [resp. G(x)] of Y [resp.
Z]. In this paper, we are interested in weakly efficient solutions, efficient
solutions, and Benson properly efficient solutions of the following vector
optimization problem:

(P) min F(x) (1a)

s.t. x ∈V :={x′ ∈Q :G(x′)∩ (−E) /∈∅}, (1b)

where ∅ is the empty set. Necessary conditions for efficiency, weak
efficiency, proper efficiency and other results related to optimization theory
such as minimax theorems, alternative theorems, etcetera have been devel-
oped in several papers under some generalized convexity assumptions:

1The author thanks the anonymous referees for their remarks.
2Professor, Institute of Mathematics, Hanoi, Vietnam.
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cone-convexlikeness (Refs. 7–9), cone-subconvexlikeness (Refs. 1–2, 8–10),
generalized cone-subconvexlikeness (Refs. 3–4, 11), and near cone-
subconvexlikeness (Refs. 5, 12). Among them, the near cone-subconvex-
likeness is the most general notion and can be applied successfully to
derive necessary conditions for weakly efficient solutions and Benson
properly efficient solutions of (P) in terms of Lagrange multipliers (Ref. 5)
and saddle points (Ref. 12). The definition of near cone-subconvexlikeness
does not require any topological property of the cones D and E. However,
the nonemptiness of the interior of these cones must be satisfied when
proving optimization results (see Refs. 1–5). Observe that this requirement
does not hold in many optimization problems. For example, int E =∅ if E

is the positive cone of the space Lp or �p, with p≥1. Another example is
the case when E is the Cartesian product E′ ×E′′ of a trivial cone E′ ={0}
and a cone E′′ having a nonempty interior. Such a case was considered
in Ref. 6 where necessary conditions were established for weak efficiency
under a near cone-semiconvexlikeness assumption.

In this paper, we introduce a new notion of generalized convexity for
set-valued maps, called ic-cone-convexlikeness, and prove that this notion
can be used as the main tool to obtain an alternative result and neces-
sary conditions for weakly efficient solutions, efficient solutions, and Ben-
son properly efficient solutions for a class of vector optimization problems
which is broader than that of the problems considered in Refs. 1–6.

In this paper, it is assumed that X is an arbitrary set and that Y and
Z are locally convex spaces with topological duals Y ∗ and Z∗, respectively.
The origin of Y is denoted by 0Y . When no confusion can arise, we write
0 instead of 0Y . We use the symbols UY and UZ to denote convex neigh-
borhoods of 0 ∈ Y and 0 ∈ Z, respectively. A set A ⊂ Y is a cone if λA ⊂
A,∀λ>0. A cone A is pointed if a ∈A∩ (−A)⇒a =0. For a cone A⊂Y ,
we set

A+ ={y∗ ∈Y ∗ : 〈y∗, a〉≥0,∀a ∈A},
A+i ={y∗ ∈Y ∗ : 〈y∗, a〉>0,∀a ∈A\{0}},

where 〈., .〉 denotes the canonical bilinear form between Y and Y ∗. For a
set A⊂Y , we write

coneA={λa :λ>0, a ∈A}. (2)

If D is a cone, then it is easy to see that

cone(A+D)= coneA+D. (3)

The closure and interior of a set A are denoted by cl A and int A. A con-
vex subset Ã of a cone A is a base of A if 0 /∈ cl Ã and A\{0}= cone Ã.
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Theorem 1.1. See Ref. 13. Let D and K be cones in Y such that
D ∩ K = {0}. If D has a compact base and K is closed, then there exists
a pointed convex cone D′ such that D\{0}⊂ intD′ and D′ ∩K ={0}.

The following lemma is known in convex analysis.

Lemma 1.1. Let A⊂Y be convex. Then, cl A is convex. In addition,
if int A �=∅, then int A is convex, clA= cl intA, and int A= int clA.

Lemma 1.2. See Refs. 14–15. Let A ⊂ Y be an arbitrary subset and
let D ⊂Y be a convex cone with nonempty interior. Then,

cl(A+D)= cl(A+ intD),

int cl(A+D)=A+ intD.

Remark 1.1. Under the same conditions of Lemma 1.2, we have

int(A+D)=A+ intD.

Indeed, since A+ intD is an open set, we get by Lemma 1.2

A+ intD ⊂ int (A+D)⊂ int cl(A+D)=A+ intD.

This proves the desired equality.

2. ic-Cone-Convexlike Set-Valued Maps

In this section, we introduce the notion of ic-cone-convexlikeness for
set-valued maps and we establish an alternative theorem which generalizes
the corresponding results of Refs. 1–6. We begin by studying the general-
ized convexity for sets. Let Y be a locally convex space and let A⊂Y be
a nonempty subset.

Definition 2.1. The set A is called int-convex (shortly, i-convex) if
int A is convex and if A⊂ cl intA.

Remark 2.1. From the very definition of the i-convexity of A, it is
clear that intA �= ∅, since otherwise the second requirement in Definition
2.1 cannot be satisfied for a nonempty set A.

We now give some characterizations of i-convex sets.
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Proposition 2.1. The set A is i-convex if and only if int A is convex
and

clA= cl intA. (4)

Proof. Obviously, we have

A⊂ cl intA⇔ clA⊂ cl intA⊂ clA⇔ clA= cl intA. �

Proposition 2.2. The following statements are equivalent:

(a) cl A in convex and

int clA= intA �=∅. (5)

(b) int A �=∅ and

α intA+ (1−α)A⊂ intA, ∀α ∈ (0,1).

(c) The set A is i-convex.

Before proving this proposition, let us establish the following lemma.

Lemma 2.1. Let A and B be nonempty sets of Y and let int A �=∅. If
int A+B is convex and if

A+B ⊂ cl(intA+B), (6)

then

intA+B = int(A+B)= int cl(A+B), (7)

cone int(A+B)= int cone(A+B). (8)

Proof. We prove first (7). Obviously,

intA+B ⊂A+B ⊂ cl(A+B).

Observing that int A+B is an open set, we derive that

intA+B ⊂ int(A+B)⊂ int cl(A+B).

So, all we have to prove is that

intA+B = int cl(A+B).
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Indeed, assume to the contrary that there exists a point

y ∈ int cl(A+B), (9)

which does not belong to intA+B. Then, by a separation theorem, there
exists y∗ ∈Y ∗\{0} such that

〈y∗, y〉< 〈y∗, y′〉, ∀y′ ∈ intA+B.

Combining this result with (6) yields

〈y∗, y〉≤〈y∗, y′〉, ∀y′ ∈ cl(A+B).

By (9), there exists a neighborhood UY such that

y +UY ⊂ cl(A+B).

Thus,

〈y∗, y〉≤〈y∗, y′〉, ∀y′ ∈y +UY . (10)

This holds only if y∗ =0, which is impossible. Thus, (7) is established.
Turning to the proof of (8), we observe first from (7) that int (A+B)

is convex and nonempty. So, cone int(A+B) is also convex and nonempty.
Since

int(A+B)⊂ int cone(A+B),

we have

cone int(A+B)⊂ cone [int cone(A+B)]⊂ int[cone(A+B)].

Assume to the contrary that there exists a point

y ∈ int[cone(A+B)] (11)

such that

y /∈ cone int(A+B).

By a separation theorem, there exists y∗ ∈Y ∗\{0} such that

〈y∗, y〉≤0≤〈y∗, y′〉, ∀y′ ∈ int(A+B).

On the other hand, from (6) and (7), we have

A+B ⊂ cl int(A+B).
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Thus,

〈y∗, y〉≤0≤〈y∗, y′〉, ∀y′ ∈ (A+B),

or equivalently,

〈y∗, y〉≤0≤〈y∗, y′〉, ∀y′ ∈ cone(A+B). (12)

By (11), there exists UY such that

y +UY ⊂ cone(A+B).

Together with (12), the last inclusion proves that (10) holds. As we have
seen above, this implies that y∗ =0, which is impossible.

Proof of Proposition 2.2.
(a) ⇒ (c). Let M = clA. Then, by (5), intM �= ∅. In view of Lemma

1.1, intM is convex and

M = clM = cl intM.

Since intM = intA [see (5)], we derive that intA is convex and

A⊂ clA=M = cl intM = cl intA.

This shows that A is i-convex.
(c) ⇒ (a). Since intA is (nonempty and) convex, so is cl(intA) (see

Lemma 1.1). Therefore, by (4), clA is convex. To complete the proof, it
remains to observe that (5) can be obtained from (7) by setting B ={0}.

(b) ⇒ (c). Since intA⊂ A, the statement (b) yields

α intA+ (1−α)intA⊂ intA, ∀α ∈ (0,1),

proving the convexity of intA. It remains to show that A⊂ cl intA; i.e.,

a ∈ cl intA, for any a ∈A.

Take a point a0 ∈ intA. For any neighborhood VY of 0 ∈Y , let us choose
α∈ (0,1) such that α(a0 −a)∈ VY . Since a+α(a0 −a)∈ intA [see statement
(b)], we conclude that (a+VY )∩ intA �=∅. Since this is true for any VY , we
get a ∈ cl intA, as required.

(c) ⇒ (b). Assume to the contrary that, for α ∈ (0,1), a0 ∈ intA, and
a ∈A, we have

ã :=αa0 + (1−α)a /∈ intA.
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By a separation theorem, there exists y∗ ∈ Y ∗\{0} such that 〈y∗, ã〉 <

〈y∗, a′〉 for all a′ ∈ intA. Since a0 ∈ intA and a ∈ cl intA, this implies that

〈y∗, ã〉< 〈y∗, a0〉 and 〈y∗, ã〉≤〈y∗, a〉.

Multiplying the first of these inequalities by α and the second by 1 − α,
and summing up the obtained inequalities we have

〈y∗, ã〉< 〈y∗, ã〉,

which is impossible.

Definition 2.2. The set A is called

(i) nearly convex if there exists α∈ (0,1) such that αA+ (1−α)A⊂ A;
(ii) closely convex if clA is convex.

The near convexity was introduced in Ref. 16. For the close convexity,
see Refs. 14–15. Let us mention some properties of near convexity.

Lemma 2.2. See Ref. 16. Convexity ⇒ near convexity ⇒ close con-
vexity.

Lemma 2.3. See Refs. 17, 6. Let A be a nearly convex set with non-
empty interior. Then,

(i) intA is convex;
(ii) α intA+ (1−α)clA⊂ intA, ∀α ∈ (0,1).

The following result is clear from Proposition 2.2 and Lemmas 2.2 and
2.3.

Proposition 2.3. Let intA �=∅. Consider the following statements:

(a) A is convex.
(b) A is nearly convex.
(c) A is closely convex and int clA= intA.
(d) α intA+ (1−α)A⊂ intA, ∀α ∈ (0,1).
(e) A is i-convex.

Then, (a) ⇒ (b) ⇒ (c) ⇔ (d) ⇔ (e).
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Definition 2.3. The set A is called intcone-convex (shortly, ic-convex)
if cone A is i-convex.

Let D ⊂ Y be a nonempty convex cone.

Definition 2.4. The set A is called ic-D-convex if A+D is ic-convex.

The following proposition is clear.

Proposition 2.4.
(i) The set A is ic-convex if and only if int cone A is convex and

A⊂ cl int coneA.

(ii) The set A is ic-D-convex if and only if int cone(A+D) is convex
and

A+D ⊂ cl int cone(A+D).

Proposition 2.5.

i-convexity ⇒ ic-convexity ⇒ ic-D-convexity. (13)

Proof. We start by the first implication in (13). From the very defi-
nition of i-convexity, it follows that intA is a nonempty convex set. Hence,
cone intA is also a nonempty convex set. Using (8) with B ={0}, we see
that int cone A is nonempty and convex. In addition, from the inclusion
A⊂ cl intA in Definition 2.1, we obtain

A⊂ cl int coneA. (14)

By Proposition 2.4, A is ic-convex.
To prove the second implication in (13), we note from (14) that

coneA+D ⊂ cl int coneA+D ⊂ cl [int coneA+D]. (15)

Observe also from the definition of ic-convexity that int cone A is nonemp-
ty and convex. Therefore, int cone A+D is nonempty and convex. Apply-
ing (7) with cone A instead of A and with D instead of B, we get

int coneA+D = int (coneA+D).

This and (15) prove that int (cone A+D) is a nonempty convex set and
that

coneA+D ⊂ cl int (coneA+D).
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To complete our proof, it remains to observe by (3) that, in the above for-
mulation, the set cone A+D can be replaced by cone (A+D).

Remark 2.2. Examples 2.1 and 2.2 below prove that

i-convexity � ic-convexity � ic-D-convexity.

Example 2.1. Let Y be the real line R and let A={0,1}⊂ R. Then,
A is ic-convex but it is not i-convex.

Example 2.2. Let Y be the plane R2 and let D ={(ξ, η)∈R2 : η ≥ 0}.
Then, the following set A is ic-D-convex, but is not ic-convex:

A=
{
(ξ, η)∈R2 :η≥0

}⋃{
(0, η)∈R2 :η≤0

}
.

Applying Proposition 2.3, we obtain the following result.

Proposition 2.6. Let int cone(A + D) �= ∅. Consider the following
statements:

(a) cone(A+D) is convex.
(b) cone(A+D) is nearly convex.
(c) cone(A+D) is closely convex and

int cl cone(A+D)= int cone(A+D). (16)

(d) α int cone(A+D)+ (1−α) cone(A+D)⊂ int cone(A+D),

∀α ∈ (0,1).

(e) A is ic-D-convex.

Then, (a) ⇒ (b) ⇒ (c) ⇔ (d) ⇔ (e).

Corollary 2.1. If cone(A+D) is closely convex and if int D �=∅, then
(16) holds and A is ic-D-convex.

Proof. By Proposition 2.6, all we have to prove is equality (16). By
virtue of (3), equality (16) means that

int cl[coneA+D]= int[coneA+D].

But the last equality is a direct consequence of Lemma 1.2 and Remark
1.1, with coneA instead of A. Thus, (16) holds, as desired.
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Remark 2.3. If int D �=∅, then statement (c) of Proposition 2.6 holds
(see Corollary 2.1). But there exist sets A for which condition (16) and this
statement hold even though int D =∅.

Example 2.3. Let

A={(0,0), (0,1), (1,0)}⊂ R2 and D ={(0, η)∈R2 :η≥0}.
Then, cl cone(A + D) coincides with the first orthant R2+ of R2 [i.e.,
cone(A+D) is closely convex] and (16) holds.

We now establish an alternative result for ic-D-convex sets.

Theorem 2.1. Let the set A be ic-D-convex. Then,

either (a) 0∈ int cone(A+D), (17)

or (b) ∃y∗ ∈ D+\{0} s.t. inf
a∈A

〈y∗, a〉≥0, (18)

but never both.

Proof. We first prove that [not (a)] ⇒ (b). Indeed, if 0 /∈ int cone(A+
D), then by a separation theorem there exists y∗ ∈Y ∗\{0} such that

〈y∗, y〉>0, ∀y ∈ int cone(A+D),

which implies that

〈y∗, y〉≥0, for all y ∈ cl int cone(A+D).

Since

A+D ⊂ cone(A+D)⊂ cl int cone(A+D),

we have

〈y∗, y〉≥0, for all y ∈ (A+D).

This result and the positive homogeneity of D prove that y∗ ∈ D+. Thus,
statement (b) holds.

To complete our proof, it remains to prove that statements (a) and
(b) of Theorem 2.1 cannot be satisfied simultaneously. Indeed, if (a) holds,
then for some UY we get

UY ⊂ cone(A+D).
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If (b) holds, then from (b) and the fact that 〈y∗, d〉≥ 0 for all d ∈D, we
have

〈y∗, y〉≥0, for all y ∈ cone(A+D).

Thus, if (a) and (b) are satisfied simultaneously, then

〈y∗, y〉≥0, for all y ∈ UY .

This is true only if y∗ = 0, a contradiction to the assumption that y∗ �= 0
in statement (b).

Remark 2.4. The definition of ic-D-convexity of A requires the valid-
ity of two conditions: int cone(A + D) is convex and cone(A + D) ⊂
cl int cone(A+D). Theorem 2.1 is no longer true if at least one of these
conditions is deleted from the definition of ic-D-convexity.

Example 2.4. Let

D ={0}⊂Y =R2

and let A be as in Example 2.2. Then, int cone(A+D) is nonempty and
convex, but

cone(A+D) �⊂ cl int cone(A+D)

and both statements (a) and (b) of Theorem 2.1 fail to hold.

Example 2.5. Let

D ={0}⊂Y =R2 and A=R2
+ ∪

(
−R2

+
)

.

Then,

cone(A+D)= cl int cone(A+D),

but int cone(A + D) is not convex and both statements (a) and (b) of
Theorem 2.1 fail to hold.

Now, for a set-valued map F :X→Y , denote by dom F and im F the
domain and the image of F ,

domF ={x ∈ X :F(x) �=∅},
imF =F(X)=

⋃
x∈X

F(x).
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Definition 2.5. The map F is called i-convexlike [resp. ic-convexlike,
ic-D-convexlike] if im F is i-convex [resp. ic-convex, ic-D-convex].

By Proposition 2.5, we see that

i-convexlikeness ⇒ ic-convexlikeness ⇒ ic-D-convexlikeness;

by Remark 2.2, the converse of each of these implications is not true.
The following result is a direct consequence of Proposition 2.6.

Proposition 2.7. Let int cone(imF + D) �= ∅. Consider the following
statements:

(a) cone(imF +D) is convex.
(b) cone(imF +D) is nearly convex.
(c) cl cone(imF +D) is convex and

int cl cone(imF +D)= int cone(imF +D). (19)

(d) α int cone(imF +D)+(1−α) cone (imF +D)⊂ int cone (imF +
D), ∀α ∈ (0,1).

(e) F is ic-D-convexlike.

Then, (a) ⇒ (b) ⇒ (c) ⇔ (d) ⇔ (e).

Remark 2.5. In Refs. 5 and 12, a map F is called nearly D-subcon-
vexlike if cl cone(imF +D) is convex. Proposition 2.7 proves that the class
of ic-D-convexlike maps consists of nearly D-subconvexlike maps F satis-
fying the additional requirement (19). Observe that (19) holds if int D �=
∅ (see Corollary 2.1), but there exists maps F for which (19) holds even
though int D =∅ (see Remark 2.3).

Now, we can formulate an alternative result for ic-D-convexlike maps
which is obtained from Theorem 2.1 with A= imF .

Theorem 2.2. Let F be ic-D-convexlike. Then,

either (a) 0 ∈ int cone(imF +D),

or (b) ∃y∗ ∈ D+\{0} s.t. inf
y∈im F

〈y∗, y〉≥0,

but never both.
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Corollary 2.2. Let cl cone(imF + D) be convex and let int D �= ∅.
Then,

either (a) imF ∩−intD �=∅,

or (b) ∃y∗ ∈ D+\{0} s.t. inf
y∈im F

〈y∗, y〉≥0,

but never both.

Proof. By Remark 2.5, F is ic-D-convexlike. On the other hand, set-
ting A= imF and making use of Remark 1.1 and equality (3), we see that

A∩−intD �=∅ ⇔ 0∈ coneA+ intD

⇔ 0∈ int(coneA+D)

⇔ 0∈ int cone(A+D).

Therefore, Corollary 2.2 is a direct consequence of Theorem 2.2.

Remark 2.6. Corollary 2.2 is exactly Theorem 4.1 of Ref. 5, which
generalizes alternative results obtained earlier in Lemma 2.2 of Ref. 1,
Lemma 3.3 of Ref. 2, Theorem 3.1 of Ref. 3, Theorem 3.1 of Ref. 4. Thus,
among the alternative results, we just mention that our Theorem 2.2 is the
most general.

Now, let G:X →Z be a set-valued map and let E be a convex cone
of Z. Assume that F and G have the same domain, denoted by Q,

domF =domG=Q.

Let K =D ×E and let (F ×G)(.)=F(.)×G(.).

Corollary 2.3. Let int D �=∅ and let F ×G be ic-K-convexlike. If the
following system is inconsistent (i.e., it has no solution):

x ∈Q, −F(x)∩ intD �=∅, −G(x)∩E �=∅, (20)

then there exists (y∗, z∗) ∈ D+ × E+\{(0,0)} such that 〈y∗, y〉 + 〈z∗, z〉 ≥ 0
for all (y, z)∈ im(F ×G). The converse statement is true if y∗ �=0.

Proof. Assume that system (20) is inconsistent. Then,

(0,0) /∈ int cone[im(F ×G)+D ×E].

Indeed, otherwise there exist UY and UZ such that

UY ×UZ ⊂ cone[im(F ×G)+D ×E].
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Since int D �=∅, we can find d ′ ∈ intD such that −d ′ ∈UY \{0}. Thus, there
exist λ>0, x ∈Q, y ∈F(x), z∈G(x), d ∈D, and e∈E such that

−d ′ =λ(y +d) and 0=λ(z+ e).

Equivalently,

−y = (1/λ)d ′ +d ∈ intD +D ⊂ intD and − z= e∈E.

This proves that x is a solution of system (20), which is impossible. Now,
applying Theorem 2.2 with F ×G instead of F and with K instead of D,
we obtain the desired conclusion of the first part of Corollary 2.3. The
second part of Corollary 2.3 is established in Ref. 6.

Remark 2.7. Corollary 2.3 generalizes Theorem 1 of Ref. 6. Indeed,
this theorem claims that the same conclusions of Corollary 2.3 can be for-
mulated under the following assumptions:

(i) int [im (F ×G)+D ×E] �=∅,
(ii) F ×G is nearly K-semiconvexlike.

We do not recall the definition of near cone-semiconvexlikeness of Ref.
6, but we observe from Proposition 5 of Ref. 6 that (ii) holds if and only if
im(F ×G)+D′ ×E is nearly convex where D′ = intD. On the other hand,
it is easily seen that (i) implies that int [im(F ×G)+D′ ×E] �= ∅. Therefore,
by Proposition 2.3, the set im(F ×G)+D′ ×E is i-convex. By Proposition
2.5, F ×G is ic-K ′-convexlike, where K ′ :=D′ ×E. To obtain Theorem 1 of
Ref. 6, it remains to apply Corollary 2.3 with D′ instead of D.

Examples can be given to illustrate that our Corollary 2.3 is more
general than Theorem 1 of Ref. 6.

Example 2.6. Let

X ={−1,0,+1}⊂R, Y =Z =R, D =R+, E ={0}.
For x ∈X, let us set F(x)={0} and G(x)={x}. It is easily seen that F ×G

is ic-K-convexlike, while the above assumptions of Theorem 1 of Ref. 6 do
not hold.

3. Optimization with ic-Cone-Convexlike Set-Valued Maps

In this section, we investigate necessary conditions for solutions of the
problem (P) (see Section 1) under some ic-cone-convexlikeness assumption.
Let F :X→Y and G:X→Z be set-valued maps with the same domain Q.
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Let D⊂Y and E ⊂Z be convex cones. From now on, we assume that D �=
Y and D �= {0}. Consider the vector optimization problem (P) formulated
in Section 1. We will be interested in weakly efficient solutions, efficient
solutions, and Benson properly efficient solutions of (P). In this section,
we assume that x0 ∈V [see (1)], y0 ∈F(x0), and z0 ∈G(x0)∩−E.

Definition 3.1. A point (x0, y0) is a weakly efficient solution of (P) if

[F(V )−y0]∩−intD =∅.

Definition 3.2. A point (x0, y0) is an efficient solution of (P) if

[F(V )−y0]∩−[D \ {0}}=∅.

Definition 3.3. A point (x0, y0) is a Benson properly efficient solution
of (P) if

[cl cone(F (V )−y0 +D)]∩−[D \ {0}]=∅.

For each β ∈ [0,1), let us consider a set-valued map Hβ : X → Y × Z

whose domain is the set Q,

Hβ(x)= (F (x)−y0)× (G(x)−βz0), x ∈Q. (21)

Let K =D×E. Throughout this section, we make the following assumption.

Assumption (A). There exists β ∈ [0,1) such that Hβ is ic-K-convexlike.

Observe that, in Assumption (A), no topological property is imposed
on D and E. So, this assumption can be used not only in studying the
weak efficiency in problem (P) with int E = ∅, but also in discussing the
efficiency and proper efficiency in (P) without requiring that int D �=∅ and
int E �=∅.

Definition 3.4. We say that condition (CQ) holds if

cl cone[imG+E]=Z. (22)

Observe that, for any β ≥0,

im(G−βz0)+E ⊂ imG+βE +E ⊂ imG+E.

Thus, (22) holds if

cl cone[im(G−βz0)+E]=Z, for some β ≥0.
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Let us give some sufficient conditions for Assumption (A) and condi-
tion (CQ) to hold. We begin by the conditions used in Refs. 1–5.

Proposition 3.1. Let int D �= ∅. Let (F − y0) × G be nearly K-
subconvexlike in the sense of Ref. 5; i.e., let cl cone[im((F −y0)×G)+K]
be convex. Let the generalized Slater condition (imG)∩−intE �=∅ be sat-
isfied. Then, Assumption (A) and condition (CQ) hold, with β =0.

Proof. Since int K = intD × intE �= ∅, we derive from Remark 2.5
that (F − y0) × G is ic-K-convexlike. In other words, Assumption (A) is
satisfied with β =0. We omit the easy proof of the fact that the generalized
Slater condition implies (22).

Remark 3.1. If we are interested in weak efficiency then, by replacing
D by int D if necessary, we may assume that D is an open convex cone.
This assumption is used in the following proposition.

Proposition 3.2. Let D be an open convex cone. Let β ∈ [0,1) be such
that [imHβ +K] is nearly convex and, for some y ∈Y, (y,0Z)∈ int[imHβ +
K]. Then Assumption (A) and condition (CQ) hold.

Proof. From the hypotheses of Proposition 3.2 and Remark 2.7, it is
clear that Assumption (A) is satisfied. To prove (22), let us take UY and
UZ such that

(y,0Z)+UY ×UZ ⊂ imHβ +K.

Therefore, ∀u∈UZ, ∃x ∈Q such that (y, u)∈ (F (x)− y0)× (G(x)−βz0)+
D ×E, which implies that

∀u∈UZ, ∃x ∈Q s.t. u∈G(x)−βz0 +E.

In other words,

UZ ⊂ im(G−βz0)+E;
hence, (22) holds, as desired.

Let L+(E,D) be the set of (single-valued) linear continuous maps T

from Z into Y such that T (E)⊂D. For x ∈Q and L∈L+(E,D), let

L(x,T )=F(x)+T [G(x)] :=
⋃

(y,z)∈F(x)×G(x)

[y +T (z)].
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Theorem 3.1. Let int D �= ∅. Let Assumption (A) be satisfied. Let
(x0, y0) be a weakly efficient solution of Problem (P). Then:

(i) There exists (y∗
0 , z∗

0)∈D+ ×E+ \ {(0,0)} such that

〈y∗
0 , y〉+〈z∗

0, z〉≥〈y∗
0 , y0〉, ∀(y, z)∈ im(F ×G), (23)

〈z∗
0, z

′
0〉=0, ∀z′

0 ∈G(x0)∩ (−clE). (24)

(ii) Under condition (CQ), there exists (y∗
0 , z∗

0)∈D+ ×E+ such that
y∗

0 �=0 and conditions (23)–(24) are fulfilled.
(iii) Under condition (CQ), there exists T0 ∈ L+(E,D) such that

(x0, y0 + T0(z0)) is a weakly efficient solution of the following
problem:

(P)′ min L(x,T0),

s.t. x ∈Q.

In addition,

T0(z
′
0)=0, ∀z′

0 ∈G(x0)∩ (−clE). (25)

Proof. Let

Sβ = imHβ +K ⊂Y ×Z.

We claim that

(0,0) /∈ int coneSβ. (26)

Indeed, otherwise we find convex neighborhoods UY and UZ such that

UY ×UZ ⊂ coneSβ. (27)

Since D is a convex cone with nonempty interior, there exists d ′ ∈ intD
such that −d ′ ∈UY \ {0}. Using (27) and noting that (−d ′,0)∈UY ×UZ, we
can find λ>0, x ∈Q, (y, z)∈F(x)×G(x), and (d, e)∈D ×E such that

−d ′ =λ(y −y0 +d), (28)

0=λ(z−βz0 + e). (29)

Since λ>0, (29) yields

z=βz0 − e∈−E.
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Thus, z∈G(x)∩ (−E) i.e., x ∈V . On the other hand, we see from (28) that

y −y0 =−(1/λ)d ′ −d ∈−intD −D ⊂−intD,

a contradiction to Definition 3.1. Thus, we have shown that (26) holds.
Applying Theorem 2.2, we find (y∗

0 , z∗
0)∈D+ ×E+\{(0,0)} such that

〈y∗
0 , y〉+〈z∗

0, z〉≥〈y∗
0 , y0〉+〈z∗

0, βz0〉, ∀(y, z)∈ im(F ×G). (30)

Setting y =y0 and z= z0 in (30), we have

(1−β)〈z∗
0, z0〉≥0,

which implies that

〈z∗
0, z0〉≥0.

On the other hand,

〈z∗
0, z0〉≤0,

since z0 ∈−E and z∗
0 ∈E+. Thus,

〈z∗
0, z0〉=0

and (30) reduces to (23), as desired.
Observe that y∗

0 �=0 if (22) holds. Indeed, otherwise we see that

(23) ⇒ 〈z∗
0, z〉≥0, ∀z∈ imG,

⇒ 〈z∗
0, z

′〉≥0, ∀z′ ∈ imG+E, (31)

since 〈z∗, e〉≥0 for all e∈E. By the continuity property, we have from (31)

〈z∗
0, z

′〉≥0, ∀z′ ∈ cl cone[imG+E]=Z.

Thus, z∗
0 =0. This is impossible, since (y∗

0 , z∗
0) �= (0,0).

Observe now that condition (24) is derived easily from (23). Indeed,
for y =y0 and z= z′

0 ∈G(x0)∩−clE, condition (23) yields

〈z∗
0, z

′
0〉≥0.

But

〈z∗
0, z

′
0〉≤0,

since z′
0 ∈−clE. Therefore, we get (24).
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To complete the proof, let us observe that the map T0 required in the
third part of Theorem 3.1 can be constructed by a standard approach.
Indeed, let (y∗

0 , z∗
0) be as in the second part of Theorem 3.1. Since y∗

0 ∈
D+ \ {0}, we can find d0 ∈ intD ⊂ D such that 〈y∗

0 , d0〉 = 1. Let T0(·) =
〈z∗

0, ·〉d0. Then, obviously T0 ∈ L+(E,D), T0 satisfies (25) [see (24)], and
〈y∗

0 , T0(·)〉=〈z∗
0, ·〉. From (23) and from T0(z0)=0, we obtain

〈y∗
0 , y +T0(z)− [y0 +T0(z0)]〉≥0, ∀(y, z)∈ im(F ×G).

Since y∗
0 ∈D+ \ {0}, this shows that

y +T0(z)− [y0 +T0(z0)] /∈−intD, ∀(y, z)∈ im(F ×G);

i.e., (x0, y0 +T0(z0)) is a weakly efficient solution of (P)′.

Remark 3.2. Let D̂ be a convex cone such that ∅ �= D̂\{0} ⊂ intD.
In the proof of the third part Theorem 3.1, if we take d0 ∈ D̂\{0},
then the map T0 constructed in this proof will be an element of L+(E, D̂).

Theorem 3.2. Let D be pointed. Let Assumption (A) be satisfied.
If (x0, y0) is an efficient point of (P), then there exists (y∗

0 , z∗
0) ∈ D+ ×

E+ \ {(0,0)} satisfying (23) and (24). In addition, y∗
0 �=0 if condition (CQ)

holds.

Proof. We claim that (26) holds. Indeed, otherwise we find UY and
UZ such that (27) is satisfied. Let us take d ′ ∈ D\{0} such that −d ′ ∈
UY \ {0}. Then, as in the proof of Theorem 3.1, there exist λ > 0, x ∈ Q,
(y, z)∈F(x)×G(x), and (d, e)∈D×E such that (28) and (29) are satisfied.
The argument used in the proof of Theorem 3.1 shows that x ∈V and

y −y0 =−(1/λ)d ′ −d ∈−D −D ⊂−D.

Observe that y �= y0, since otherwise we have d = −(1/λ)d ′. Since d ′ �= 0,
we derive that D ∩ (−D) �= {0}, a contradiction to the pointedness of D.
Therefore, y0 − y ∈ D \ {0}, which is impossible by the efficiency property
of (x0, y0). To complete the proof, it remains to apply Theorem 2.2 and
use the same argument as in the proof of Theorem 3.1.

Theorem 3.3. Let 0∈D and let D have a compact base. Let Assump-
tion (A) be satisfied. Let condition (CQ) hold. Let (x0, y0) be a Benson
properly efficient solution of (P). Then:

(i) There exists
(
y∗

0 , z∗
0

)∈D+i ×E+ satisfying (23) and (24).
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(ii) There exists T0 ∈L+(E,D) such that (x0, y0 +T0(z0)) is a Benson
properly efficient solution of problem (P)′ and, in addition, (25)
is satisfied.

Proof. Let

C = cone(F (V )−y0 +D).

By Definition 3.3,

(−D)∩ clC ={0}.

Using Theorem 1.1, we can find a pointed convex cone D1 such that

(−D1)∩ clC ={0}, (32)

D \ {0}⊂ intD1. (33)

Since 0 /∈ intD1 ⊂D1, we derive from (32) that

[F1(V )−y0]∩−(intD1)=∅,

where

F1(x)=F(x)+D.

Thus, (x0, y0) is a weakly efficient solution of a vector optimization prob-
lem (P)1 which differs from problem (P) in that F is replaced by F1 and
D is replaced by D1. On the other hand, setting

H1β(x)= (F1(x)−y0)× (G(x)−βz0),

we see easily from the ic-K-convexlikeness of Hβ that H1β is ic-K1-convex-
like, where

K1 =D1 ×E.

Indeed, clearly,

imH1β +K1 = imH1β +{0Y }×E +D1 ×{0Z}
= imHβ +D ×E +D1 ×{0Z},

which together with (3) implies that

A1 =A+B,
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where

A1 = cone(imH1β +K1), A= cone(imHβ +K), B =D1 ×{0Z}.
Since Hβ is ic-K-convexlike, we see that int A is nonempty and convex and
that A⊂ cl intA. Therefore, int A+B is nonempty and convex and

A+B ⊂ cl intA+B ⊂ cl intA+ clB ⊂ cl(intA+B).

Making use of (7), we obtain

intA+B = int(A+B)= intA1.

Thus, int A1 is convex and A1 ⊂ cl intA1. This proves the ic-K1-
convexlikeness of H1β , as desired.

Now, applying Theorem 3.1 to problem (P)1 we find
(
y∗

0 , z∗
0

)∈D+
1 ×

E+ \ {(0,0)} such that (24) holds and

〈y∗
0 , y〉+〈z∗

0, z〉≥〈y∗
0 , y0〉, ∀(y, z)∈ im(F1 ×G), (34)

where y∗
0 �=0. Since y∗

0 ∈D+
1 \ {0} and since (33) holds, we get y∗

0 ∈D+i . To
complete the proof of the first part of Theorem 3.3, it remains to observe
that (34) ⇒ (23). To prove the second part, we use again Theorem 3.1.
Indeed, applying this theorem to problem (P)1 and using Remark 3.2, we
see that there exists T0 ∈L+(E,D) such that

[y +T0(z)]− [y0 +T0(z0)] /∈−intD1, ∀(y, z)∈ im(F1 ×G), (35)

and in addition (25) is satisfied. From (35), it is clear that

cl cone
{ ⋃

(y,z)∈im (F×G)

[y +T0(z)]− [y0 +T0(z0)]+D
}

∩ (−intD1)=∅.

Together with (33), this proves that

cl cone
{ ⋃

(y,z)∈im (F×G)

[y +T0(z)]− [y0 +T0(z0)]+D
}

∩ (−D \ {0})=∅,

that is, (x0, y0 +T0(z0)) is a Benson properly efficient solution of (P)′.

Remark 3.3. In Refs. 2–5, problem (P) is considered under the
assumptions of Proposition 3.1. By this reason, we can claim that our
Theorem 3.1 generalizes Theorem 5.1 of Ref. 2, Theorem 4.2 of Ref. 4,
and Theorem 5.1 of Ref. 5. Our Theorem 3.3 generalizes Theorem 5.1 of
Ref. 2 and Theorem 5.1 of Ref. 3. In the just mentioned References 2–5, it
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is assumed that int E �=∅. When the interior of E is empty, necessary con-
ditions for weak efficiency are given in Theorem 3 of Ref. 6. Observe that
the just mentioned theorem is also a special case of our Theorem 3.1. This
is because, on the one hand, in studying weak efficiency the cone D can
be replaced by int D (see Remark 3.1). On the other hand, the assump-
tions of Theorem 3 of Ref. 6 assure the validity of Proposition 3.2 (see
Remark 2.7); hence, our Theorem 3.1 can be applied to derive this theo-
rem of Ref. 6.
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