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A Study of Local Solutions in
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M. Campêlo2 and S. Scheimberg3

Communicated by J. P. Crouzeix

Abstract. In this paper, a linear bilevel programming problem (LBP)
is considered. Local optimality in LBP is studied via two related
problems (P) and P(M). Problem (P) is a one-level model obtained
by replacing the innermost problem of LBP by its KKT conditions.
Problem P(M) is a penalization of the complementarity constraints of
(P) with a penalty parameter M. Characterizations of a (strict) local
solution of LBP are derived. In particular, the concept of equilibrium
point of P(M) is used to characterize the local optima of (P) and
LBP.
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1. Introduction

In this work, we consider the following linear bilevel program:

(LBP) maxx,y f1(x, y)= cT
1 x + cT

2 y,

s.t. x ≥0, y solves

maxy f2(x, y)=bT y,

s.t. A1x +A2y ≤a,

y ≥0,
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where

c1, x ∈Rn1 , c2, b, y ∈Rn2 , a ∈Rm, A1 ∈Rm×n1 , A2 ∈Rm×n2 .

This problem has been studied extensively in the literature; see e.g.
Refs. 1–6. The LBP with linear constraints in the first level has also been
considered; see e.g. Ref. 7. We refer to Ref. 8 for a bibliographical survey
and to Refs. 9–11 for more recent results on bilevel and multilevel pro-
gramming.

Actually, this problem can be reformulated as a mathematical pro-
gram with equilibrium constraints (MPEC), since the second-level prob-
lem can be replaced by a linear complementarity problem (Ref. 12). The
two formulations are equivalent while considering global solutions, but the
equivalence does not hold for local solutions. We are going to show that a
local optimum of the MPEC formulation may not yield a local optimum
of LBP.

Problem LBP belongs to the class of strongly NP-hard problems
(Ref. 7). The main difficulties are due to its nonconvexity, which may
result in an exponential number of local optima (Ref. 13). On the other
hand, the design of algorithms has been made difficult due to the lack of
computationally attractive theoretical results for the problem.

Our main aim is to derive necessary and sufficient conditions for local
optimality in problem LBP. In particular, we state a characterization of
a local optimum of LBP based on the notion of equilibrium point intro-
duced in Ref. 6. This characterization is useful from a numerical point of
view and may be used to devise local algorithms. Finding local solutions
of nonconvex optimization problems is a meaningful deed itself. In addi-
tion, local procedures can be used within global algorithms. For problem
LBP, this strategy is applied in Ref. 4, 5 for example.

The paper is organized as follows. Section 2 examines the auxiliary
problems that will be used in the development. The approach follows that
one presented in Ref. 6. In Section 3, we carry out the local analysis
of LBP. We derive characterizations for its local and strict local solu-
tions. The most computationally useful characterizations are based on the
notion of equilibrium point, which is further explored in Section 4.

2. Preliminaries

In this section, we consider two problems related to LBP. The first
auxiliary problem (P) is the MPEC obtained by replacing the inner lin-
ear problem of LBP by its KKT conditions. The second problem, P(M),
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comes from a penalization of the complementarity constraints in (P) with
a parameter M ≥0. Thus, we have the following models:

(P) max cT
1 x + cT

2 y,

s.t. A1x +A2y +w =a,

x ≥0, y ≥0, w ≥0,

AT
2 u−v =b,

u≥0, v ≥0,

uT w +vT y =0,

(P(M)) max cT
1 x + cT

2 y −M(uT w +vT y),

s.t. A1x +A2y +w =a,

x ≥0, y ≥0, w ≥0,

AT
2 u−v =b,

u≥0, v ≥0,

where w∈Rm is the primal slack vector and where u∈Rm, v ∈Rn2 are the
dual vectors.

The formulations (P) and P(M) are often used as approaches to
identify the global optima of LBP; see e.g. Refs. 3, 4, 6, 14, 15. Such
approaches are based on the global equivalence among these problems.
Indeed, we show in Ref. 6 that there exists a finite M for which prob-
lems (P) and P(M) have the same (empty or nonempty) global solution
set, which also yields the global solution set of LBP. It is worth remarking
that, besides P(M), other exact penalizations for (P) have been considered
in the literature (Refs. 16–18).

Here, we use problems (P) and P(M) in the context of local optimal-
ity. We show that there is M̄ ≥ 0 such that (P) and P(M) have the same
local solution set for every M ≥ M̄. Mainly, we derive necessary and suffi-
cient conditions for a local solution of (P) to yield a local optimum of
LBP. Furthermore, we present a computationally attractive characteriza-
tion of the local optima of (P) and LBP by using the notion of equi-
librium point of the penalized problem P(M). We show that the penalty
parameter can be considered implicitly to get an equilibrium point.

For the sake of convenience, we will study local optimality within
neighborhoods given by the infinity norm. Let us recall that the infinity
norm of ν = (ν1, ν2, . . . , νp) is

‖ν‖∞ =max{|νi | : 1≤ i ≤p}
and that

Bε(ν̄)={ν ∈Rp :‖ν − ν̄‖∞ ≤ ε}
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is an ε-neighborhood of ν̄ ∈Rp. Observe that

Bε(ν,ω)=Bε(ν)×Bε(ω), for all (ν,ω)∈Rp ×Rq .

We adopt the notation introduced in Ref. 6. We consider the block
matrices

A= [A1,A2, Im] ∈ Rm×n, B =
[
0,−In2 ,A

T
2

]
∈ Rn2×n,

cT =
(
cT

1 , cT
2 ,0

)
∈ Rn, zT = (xT , yT ,wT )∈Rn, sT =(0, vT , uT )∈Rn,

where n=n1 +n2 +m,Ik is the k×k-identity matrix, and 0 is a null matrix
of an appropriate dimension for each case. We define the polyhedra

Z ={
z∈Rn

+ :Az=a
}
, S ={

s ∈Rn
+ :Bs =b

}
.

Thus, the auxiliary problems are rewritten as

(P) max F(z, s)= cT z,

s.t. z∈Z, s ∈S, sT z=0;
(P(M)) max FM(z, s)= cT z−MsT z,

s.t. z∈Z, s ∈S.

To conclude this preliminary section, let us recall the following well-
known characterization: x is a vertex of a polyhedral set

X ={
x ∈Rn

+ :Qx =q
}
,

where Q has full row rank if and only if Q can be decomposed into [D,N ]
such that

xD =D−1q ≥0, xN =0,

where D is a nonsingular matrix and xD, xN are the components of x

related to D,N respectively; see Ref. 19 for example. We denote the vertex
set of the polyhedron X by Xv.

3. Local Optimality

For our development, it will be useful to consider the point-to-set
functions

S(z)=
{
s ∈S : zT s =0

}
, Z(s)=

{
z∈Z : sT z=0

}
,

which map a point z∈Z⊂Rn+ [resp. s ∈S ⊂Rn+] into a polyhedron S(z)⊂S

[resp. Z(s)⊂Z]. These polyhedra have the following property.
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Lemma 3.1. For each z ∈ Z,S(z) is a face of S with vertex set
Sv(z) = S(z) ∩ Sv. For each s ∈ S,Z(s) is a face of Z with vertex set
Zv(s)=Z(s)∩Zv.

Proof. Let z∈Z⊆Rn+. Since S ⊆Rn+, we have that S(z)=∅ or S(z) is
the solution set of the linear program min

{
zT s : s ∈S

}
. So, it is a face of

S. Moreover, the vertices of S(z) are all vertices of S lying in S(z). Simi-
larly, we prove the second part.

The functions S(·) and Z(·) are related to our problems as follows.
The feasible region of problem (P) is the graph of S(·),

{(z, s) : z∈Z, s ∈S(z)}.

The feasible set of LBP is the domain of S(·),

{z∈Z :S(z) 
=∅},

or equivalently, the image of Z(·),
{
z∈Z : sT z=0, for some s ∈S

}
.

Note that s ∈ S(z) if and only if z ∈ Z(s). Some other relations with the
feasible set of LBP are given below.

Lemma 3.2. For z∈Z, the following assertions are equivalent:

(i) z is feasible to LBP;
(ii) Sv(z)=S(z)∩Sv 
=∅;
(iii) z∈Z(s), for some s ∈Sv ⊂S.

Proof. Let z∈Z. Then, z is feasible to LBP if and only if S(z) 
= ∅.
Since the polyhedron S(z) is included in Rn+, it has no lines. This implies
that S(z) 
=∅ if and only if Sv(z) 
=∅. By Lemma 3.1,

Sv(z)=S(z)∩Sv.

In addition,

s ∈Sv(z)=S(z)∩Sv,

if and only if z ∈ Z(s) for s ∈ Sv. Therefore, we get the desired
equivalences.
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As a consequence of the lemma above, we obtain a known character-
ization of the feasible set of LBP in terms of some faces of the polyhedral
set Z (Ref. 20). Actually, we have the following result.

Corollary 3.1. The feasible set of LBP is the union of faces of Z.
Each of these faces is given by Z(s) for some s ∈Sv.

Next, we derive some preliminary local properties.
Lemma 3.3. For each z̄∈Z, there is ε=ε(z̄)>0 such that S(z)⊆S(z̄)

and Sv(z)⊆Sv(z̄) for every z∈Z∩Bε(z̄). For each s̄ ∈S, there is ε=ε(s̄)>0
such that Z(s)⊆Z(s̄) and Zv(s)⊆Zv(s̄) for every s ∈S ∩Bε(s̄).

Proof. By the symmetry of Z(·) and S(·), it is enough to prove the
first part of the lemma. Let z̄∈Z. If z̄=0, then

S(z)⊆S =S(z̄), for every z∈Z.

Now, suppose that z̄ 
= 0. Let us partition the index set J = {1,2, . . . , n}
into the subsets

J0 ={j ∈J : z̄j =0}, J1 =J\J0.

First, we prove that there is ε>0 such that, if z∈Z∩Bε(z̄), then zj >0 for
every j ∈J1. Since z̄ 
=0, it must be J1 
=∅. Let us take j ∈J1. Consider the
closed set

Cj ={z∈Rn : zj =0}.
Therefore, z̄ belongs to the open set Rn\Cj . So, there is εj > 0 such that
Bεj

(z̄)∩Cj =∅. Define

ε =min{εj : j ∈J1}>0.

As Bε(z̄)∩Cj =∅, if z∈Z ∩Bε(z̄) 
= ∅, then z∈Z\Cj , that is, zj >0. Now,
we prove the inclusion S(z)⊆S(z̄) for z∈Z∩Bε(z̄). We consider two cases.
If S(z) = ∅, it holds trivially that S(z) ⊆ S(z̄) [it may be S(z̄) = ∅]. Other-
wise, let s ∈ S(z). Then, it must be sj = 0 for every j ∈ J1. Consequently,
we have that

z̄T s =
∑
j∈J1

z̄j sj +
∑
j∈J0

z̄j sj =0.

Hence, it results that s ∈S(z̄), implying that S(z)⊆S(z̄). In any case, there
exists ε > 0 such that S(z) ⊆ S(z̄) for every z ∈ Z ∩ Bε(z̄). In particular,
the inclusion of the extreme points holds due to Sv(z)=S(z)∩Sv for any
z∈Z.
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Corollary 3.2. For each (z̄, s̄)∈Z×S, there is ε=ε(z̄, s̄)>0 such that
S(z)⊆S(z̄), Sv(z)⊆Sv(z̄),Z(s)⊆Z(s̄),Zv(s)⊆Zv(s̄) for every (z, s)∈ (Z ×S)

∩Bε(z̄, s̄).

Corollary 3.3. Let (z̄, s̄)∈Z×S. Then, there is ε>0 such that s ∈S(z̄)

and z∈Z(s̄) if (z, s)∈Bε(z̄, s̄) and is feasible to problem (P).

Now, we can characterize a local solution of LBP in terms of a local
solution of (P).

Theorem 3.1. A point z̄ is a local solution of problem LBP if and
only if Sv(z̄) 
=∅ and (z̄, s) is a local solution of problem (P) for every ver-
tex s ∈Sv(z̄).

Proof. First, assume that z̄ ∈ Z is a local solution of LBP. Then,
there is ε >0 such that cT z≤ cT z̄ for every z∈Z ∩Bε(z̄) with S(z) 
=∅. By
Lemma 3.2, we have that Sv(z̄) 
= ∅. Let s̄ ∈ Sv(z̄). So, (z̄, s̄) is feasible to
(P). Let (z, s) ∈ Bε(z̄, s̄) feasible to (P). Then, z ∈ Z ∩ Bε(z̄) and S(z) 
= ∅
yielding that cT z≤ cT z̄. Therefore, (z̄, s̄) is a local solution of (P). Since s̄

is an arbitrary element in Sv(z̄), we conclude that (z̄, s) is a local solution
of (P) for every s ∈Sv(z̄).

Conversely, let z̄∈Z be such that Sv(z̄) 
= ∅ and (z̄, s) is a local solu-
tion of (P) for every s ∈ Sv(z̄). By contradiction, suppose that z̄ is not a
local solution of LBP. Let ε̄ = ε(z̄)> 0 be given according to Lemma 3.3.
Then, there is ẑ∈Bε̄(z̄), feasible to LBP, such that cT ẑ> cT z̄ and Sv(ẑ)⊆
Sv(z̄). By Lemma 3.2, Sv(ẑ) 
=∅. Let ŝ ∈Sv(ẑ)⊆Sv(z̄). Let us define

z(α)=αẑ+ (1−α)z̄.

Since ẑ and z̄ belong to the convex set Z(ŝ), then z(α) ∈ Z(ŝ) for every
α ∈ [0,1]. Hence, (z(α), ŝ) is feasible to (P) for every α∈ [0,1]. Since z(α)→
z̄ as α →0, for each ε>0, there is α ∈ (0,1] such that (z(α), ŝ)∈Bε(z̄, ŝ) is
feasible to (P) and satisfies

cT z(α)= cT z̄+α(cT ẑ− cT z̄)>cT z̄.

Therefore, there is ŝ ∈Sv(z̄) such that (z̄, ŝ) is not a local solution of (P),
which contradicts the hypothesis. Hence, z̄ must be a local solution of
LBP.

Remark 3.1. A point z̄ may not be a local solution of problem LBP
if (z̄, s̄) is a local solution of (P) for only some s̄ ∈Sv(z̄). This situation is
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Fig. 1. Illustration of Example E1.

illustrated by the following example:

(E1) max f1(x, y)=−x,

s.t. x ≥0, y solves

max f2(x, y)=−y,

s.t. x +y ≥2,

x −y ≤0,

y ≥0.

The feasible set of Example E1 is shown in bold in Figure 1. Point A is
the global solution. Let

z̄= (x̄, ȳ, w̄1, w̄2)
T = (1,1,0,0)T ∈Z,

corresponding to point B, and let

s̄ = (0, v̄, ū1, ū2)
T = (0,0,0,1)T ∈Sv(z̄).

Although (z̄, s̄) is a local solution of (P), z̄ is not a local solution of LBP.
On the other hand, for

ŝ = (0,0,1,0)T ∈Sv(z̄),

point (z̄, ŝ) is not a local solution of (P).
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Remark 3.2. The equivalence given in Theorem 3.1 does not hold in
the case of strict local optimality. Moreover, it is possible to have a strict
local solution z̄ of LBP such that (z̄, s) is not a strict local solution of (P)
for every s ∈ Sv(z̄). Actually, this situation occurs whenever S(z̄) is not a
singleton. For instance, let us consider Example E1, where we change the
first-level objective function to

f1(x, y)=−y.

Now,

z̄= (1,1,0,0)T ∈Z,

corresponding to point B in Figure 1, is a strict local solution of LBP.
Actually, it is the global solution. We have that

Sv(z̄)={s̄ = (0,0,0,1)T , ŝ = (0,0,1,0)T }.
Since

s(α)=αs̄ + (1−α)ŝ ∈S(z̄), for every α ∈ [0,1],

it follows that (z̄, s̄) and (z̄, ŝ) are not strict local solutions of (P). In Cor-
ollary 3.5, we are going to establish a characterization for strict local opti-
mality.

Theorem 3.1 suggests searching local solutions of problem LBP
among local solutions of (P). These points can be characterized by
the penalized problem, bringing about a better computational insight. The
characterizations will be stated using the notion of equilibrium point of
the penalized problem.

Definition 3.1. A point (z̄, s̄) ∈ Z × S is an equilibrium point of the
penalized problem P(M) if there is M̄ ≥ 0 such that, for each M ≥ M̄, it
holds that

max{FM(z̄, s) : s ∈S}=FM(z̄, s̄)=max{FM(z, s̄) : z∈Z}. (1)

If the equilibrium point (z̄, s̄) additionally satisfies

{z̄}=arg max{FM(z, s̄) : z∈Z}, (2)

it is called a primal strict equilibrium point. If the equilibrium point (z̄, s̄)

verifies also

{s̄}=arg max{FM(z̄, s) : s ∈S}, (3)
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it is said to be a dual strict equilibrium point. A primal and dual strict
equilibrium point is simply called a strict equilibrium point.

Let us observe that the definition of an equilibrium point of P(M)
was introduced in Ref. 21. It was also considered in Ref. 6 for the penal-
ized problem related to a linear bilevel problem with constraints in the
first level. The (nonstrict) equilibrium required in Definition 3.1 extends
the equilibrium considered by the mountain climbing algorithm given for a
bilinear program (Ref. 22). Indeed, in our case, condition (1) must be ful-
filled for every M ≥ M̄, which means that the equilibrium has to be held
by a family of parametric bilinear problems P(M).

In order to characterize local solutions of (P) and LBP, we establish
an important property of an equilibrium point.

Lemma 3.4. If (z̄, s̄) is an equilibrium point of the penalized problem
P(M), then

min
{
z̄T s : s ∈S

}
=min

{
s̄T z : z∈Z

}
= s̄T z̄=0. (4)

Proof. Let (z̄, s̄) be an equilibrium point. Then,

min{z̄T s : s ∈S}= z̄T s̄

comes from the first equality given in (1). Now, by contradiction, suppose
that

s̄T z̄> s̄T ẑ=min{s̄T z : z∈Z}.

Take

M >max{M̄, cT (z̄− ẑ)/s̄T (z̄− ẑ)}.

Thus,

cT ẑ−Ms̄T ẑ>cT z̄−Ms̄T z̄,

which contradicts the second equality in (1). Therefore,

s̄T z̄=min{s̄T z : z∈Z}.

Finally, we show that s̄T z̄=0. Let

ŝ ∈ arg min{z̄T s : s ∈Sv}.
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Then,

ŝ = ((D−1b)T ,0)T ,

where D is a basis of B. Consider the optimal reduced cost

ẑT = z̄T − z̄T
DD−1B ≥0.

We have that

Aẑ=Az̄=a, since ABT =0.

Hence, ẑ∈Z.
Using the first two equalities given in (4) and the definitions of ẑ and

ŝ, it follows that

0 ≤ z̄T s̄ ≤ ẑT s̄

= z̄T s̄ − z̄T
DD−1Bs̄

= z̄T s̄ − z̄T
DD−1b

= z̄T s̄ − z̄T ŝ

=0.

Then, s̄T z̄=0.

In particular, for a dual strict equilibrium point, we get the following
stronger result.

Corollary 3.4. A point (z̄, s̄) is a dual strict equilibrium point of the
penalized problem P(M) if and only if it is an equilibrium point and
S(z̄)=Sv(z̄)={s̄}.

Lemma 3.4 says that an equilibrium point is feasible to (P). With this
property, we now show the equivalence among a local solution of (P), a
local solution of P(M) for large values for M and an equilibrium point.

Theorem 3.2. The following assertions are equivalent:

(i) (z̄, s̄) is a local solution of problem (P);
(ii) (z̄, s̄) is a local solution of the penalized problem P(M) for every

M ≥ M̄, for some M̄ ≥0;
(iii) (z̄, s̄) is an equilibrium point of the penalized problem P(M).
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Proof.
(i) ⇒ (ii). Assume that (z̄, s̄) is a local solution of (P). So, there is

ε >0 such that

cT z≤ cT z̄, for every (z, s)∈Bε(z̄, s̄),

feasible to (P). Define

Z =Z ∩Bε(z̄) and S =S ∩Bε(s̄).

Regarding that Z ×S is an ε-neighborhood of (z̄, s̄) in Z×S, we are going
to show that there is M̄ ≥0 such that

max
(z,s)∈Z×S

FM(z, s)= max
(z,s)∈Zv×Sv

FM(z, s)=FM(z̄, s̄), ∀M ≥ M̄. (5)

For each M ∈ R, the first equality comes from the fact that FM(·, ·) is a
bilinear function and Z and S are compact polyhedra (Proposition IX.1
in Ref. 23). To show the second equality, define

C ={(z, s)∈Zv ×Sv : sT z>0}

and

M0 = sup{(cT z− cT z̄)/sT z : (z, s)∈C}.

Note that M0 =−∞, if C =∅; otherwise, M0 ∈ R. Thus, let us take M̄ ∈ R

such that M̄ >max{0,M0}. Consider an arbitrary (z, s)∈Zv ×Sv. If (z, s)∈
C, the definition of M0 assures that

FM(z, s)= cT z−MsT z<cT z̄=FM(z̄, s̄), ∀M ≥ M̄ >M0. (6)

Otherwise, (z, s) is feasible to (P), which yields that

FM(z, s)= cT z≤ cT z̄=FM(z̄, s̄), ∀M ∈R. (7)

By (6)–(7), the first equality in (5) and the fact that (z̄, s̄)∈Z ×S, we get
the second equality in (5) for every M ≥M̄. Then, (z̄, s̄) is a local solution
of P(M) for every M ≥ M̄.

(ii) ⇒ (iii). Assume that there is M̄ ≥ 0 such that (z̄, s̄) ∈ Z × S is a
local solution of P(M) for every M ≥ M̄. Consider an arbitrary M ≥ M̄.
Then, the directional derivative of FM(·, ·) at (z̄, s̄) in any feasible direc-
tion is nonpositive. Since Z ×S is convex, it means that

(c−Ms̄)T (z− z̄)−Mz̄T (s − s̄)≤0, ∀(z, s)∈Z ×S. (8)
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This expression with either z= z̄ or s = s̄, respectively, yields

−Mz̄T s ≤−Mz̄T s̄, ∀s ∈S, (9)

cT z−Ms̄T z≤ cT z̄−Ms̄T z̄, ∀z∈Z. (10)

Therefore, the equilibrium equation (1) holds.
(iii) ⇒ (i). Assume that (z̄, s̄) is an equilibrium point. Then, there is

M̄ ≥0 such that

FM̄(z, s̄)≤FM̄(z̄, s̄), for every z∈Z.

In addition, by Lemma 3.4, (z̄, s̄) is feasible to (P). Let (z, s) ∈ Bε(z̄, s̄),
feasible to (P), with ε >0 according to Corollary 3.3. Then,

s̄T z= s̄T z̄=0.

The previous expressions imply that

cT z=FM̄(z, s̄)≤FM̄(z̄, s̄)= cT z̄. (11)

Therefore, (z̄, s̄) is a local solution of (P).

Let us note that the characterization (i)–(iii) stated above is stronger
than Theorem 9 in Ref. 6, which establishes a similar equivalence for the
LBP with linear constraints in the first level. Indeed, such a theorem uses
the feasibility of (z̄, s̄) as a premise. Now, we have shown in Lemma 3.4
that the complementarity condition is a consequence of the equilibrium.
This fact assures that finding an equilibrium point is enough to have a
local solution of (P). Besides, we can observe that P(M) is a local exact
penalization for (P).

We establish similar equivalences for strict local solutions as follows.

Theorem 3.3. The following assertions are equivalent:

(i) (z̄, s̄) is a strict local solution of problem (P);
(ii) (z̄, s̄) is a strict local solution of the penalized problem P(M) for

every M ≥ M̄, for some M̄ ≥0;
(iii) (z̄, s̄) is a strict equilibrium of the penalized problem P(M).

Proof. Let us follow the proof of Theorem 3.2 and only point out
the necessary modifications.
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(i) ⇒ (ii). Assume that (z̄, s̄) is a strict local solution of (P) within
the neighborhood Bε(z̄, s̄). Let (z, s)∈Bε(z̄, s̄)\(z̄, s̄). Thus, we get a strict
inequality in (7) for (z, s) feasible to (P). Moreover, by considering (5)–(6),
we conclude that (z̄, s̄) is a strict local solution of P(M) for every M ≥M̄.

(ii) ⇒ (iii). Assume that there is M̄ ≥ 0 such that (z̄, s̄) ∈ Z × S is a
strict local solution of P(M) for every M ≥ M̄. Then, a strict inequality
holds in (8) for (z, s) 
= (z̄, s̄). Hence, we get strict inequalities in (9) and
(10) for s 
= s̄ and z 
= z̄, respectively. Thus, conditions (2)–(3) are attained,
which imply that (z̄, s̄) is a strict equilibrium point.

(iii) ⇒ (i). Assume that (z̄, s̄) is a strict equilibrium point. Let ε > 0
verifying Corollary 3.3 and let (z, s)∈Bε(z̄, s̄), feasible to (P), with (z, s) 
=
(z̄, s̄). It follows that s ∈S(z̄). Since Corollary 3.4 ensures that S(z̄)={s̄},
it must be s = s̄ and z 
= z̄. Thus, condition (2) leads to a strict inequality
in (11), which implies that (z̄, s̄) is a strict local solution of (P).

A characterization of local solutions of LBP in terms of equilibrium
points follows.

Theorem 3.4. A point z̄ is a (strict) local solution of LBP if and only
if Sv(z̄) 
=∅ and (z̄, s) is a (primal strict) equilibrium point of the penalized
problem P(M) for every vertex s ∈Sv(z̄).

Proof. The equivalence in the nonstrict case is a direct consequence
of Theorems 3.1 and 3.2.

Now, assume that z̄ is a strict local solution of LBP within a neigh-
borhood Bε(z̄). It remains to be shown that condition (2) holds for every
s ∈ Sv(z̄) 
= ∅. Let s̄ be arbitrary in Sv(z̄). Then, (z̄, s̄) is an equilibrium
point. Given M̄ ≥0 according to Definition 3.1, let us consider ẑ∈Z such
that

FM(ẑ, s̄)=max{FM(z, s̄) : z∈Z}, for every M ≥ M̄.

We want to show that ẑ= z̄. Since FM(z̄, s̄)=FM(ẑ, s̄) for every M ≥M̄ and
s̄T z̄=0, it must be

s̄T ẑ=0 and cT ẑ= cT z̄.

Then, ẑ∈Z(s̄). By the convexity of Z(s̄), there is α ∈ (0,1) such that

z(α)∈Z(s̄)∩Bε(z̄) and cT z(α)= cT z̄,

where

z(α)=αẑ+ (1−α)z̄.
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As z̄ is a strict local solution and z(α) is feasible to LBP, it must be z(α)=
z̄ which implies that ẑ= z̄. Thus, condition (2) holds. Therefore, (z̄, s̄) is a
primal strict equilibrium point. Moreover, since s̄ is arbitrary in Sv(z̄), we
conclude that (z̄, s) is a primal strict equilibrium point for every s ∈Sv(z̄).

Conversely, let z̄ ∈ Z such that Sv(z̄) 
= ∅ and (z̄, s) is a primal strict
equilibrium point for every s ∈Sv(z̄). By Lemma 3.3, there is ε = ε(z̄)> 0
such that Sv(z)⊆Sv(z̄) for every z∈Z ∩Bε(z̄). Consider z∈Bε(z̄)\{z̄}, fea-
sible to LBP. By Lemma 3.2, we conclude that there is s̄ ∈ Sv(z) ⊆ Sv(z̄).
Thus, (z̄, s̄) is a primal strict equilibrium point. Using condition (2), it fol-
lows that

cT z=FM̄(z, s̄)<FM̄(z̄, s̄)= cT z̄.

Therefore, z̄ is a strict local solution of LBP.

In Ref. 24, the authors reformulate a disjoint bilinear program
(BILD) as a linear maxmin problem (LMM) and show that a local solu-
tion of LMM yields a local solution of BILD. They note also that the
number of local optima of LMM may be less than the one of BILD.
These results resemble the statement of Theorem 3.4. In fact, an LMM is
a special case of an LBP, P(M) is a parametric disjoint bilinear problem,
and (z̄, s̄) is an equilibrium point if and only if there is M̄ ≥ 0 such that
(z̄, s̄) is a local solution of P(M) for every M ≥M̄. It is also worth noting
that Theorem 3.4 goes further than Proposition 6 in Ref. 24, in the sense
that it presents a characterization.

The next corollary expresses the equivalence corresponding to Theo-
rem 3.1 for strict optimality. Note that, in this case, the condition of Sv(z̄)

being a singleton is necessary to characterize a strict local solution z̄ of
LBP.

Corollary 3.5. The following assertions are equivalent:

(i) (z̄, s̄) is a strict local solution of problem (P);
(ii) (z̄, s̄) is a strict equilibrium point of the penalized problem

P(M);
(iii) z̄ is a strict local solution of problem LBP and Sv(z̄)={s̄}.

Proof. By Corollary 3.4, we conclude that (z̄, s̄) is a strict equilib-
rium point if and only if (z̄, s̄) is a primal strict equilibrium point and
Sv(z̄)={s̄}. Thus, by Theorems 3.3 and 3.4, the result follows.



78 JOTA: VOL. 125, NO. 1, APRIL 2005

4. Equilibrium Points

In this section, we explore the characterization of local solutions of
LBP in terms of equilibrium points as given by Theorem 3.4. We aim to
find results which are more attractive from a computational point of view.
We start giving a characterization for an equilibrium point which does not
depend on the parameter M.

Theorem 4.1. A point (z̄, s̄) is an equilibrium point of the penalized
problem P(M) if and only if s̄ ∈S and z̄∈arg max{cT z : z∈Z(s̄)}.

Proof. Let (z̄, s̄) be an equilibrium point. Then, s̄ ∈S and z̄∈Z. By
Lemma 3.4, it must be z̄∈Z(s̄). Moreover, we have that

cT z̄≤ max{cT z : z∈Z(s̄)}
≤ max{cT z− M̄s̄T z : z∈Z}
= cT z̄,

where M̄ ≥0 is given by Definition 3.1. Hence,

z̄∈arg max{cT z : z∈Z(s̄)}.
Conversely, assume that s̄ ∈S and

z̄∈arg max{cT z : z∈Z(s̄)}.
Then, (z̄, s̄) is feasible to (P). By Lemma 3.3, there is ε = ε(s̄) such that
Z(s) ⊆ Z(s̄) for every s ∈ S ∩ Bε(s̄). Let (z, s) ∈ Bε(z̄, s̄), feasible to (P).
Then, s ∈S ∩Bε(s̄) and z∈Z(s). It follows that z∈Z(s̄). As

z̄∈arg max{cT z : z∈Z(s̄)},
it must be

F(z, s)= cT z≤ cT z̄=F(z̄, s̄).

Hence, (z̄, s̄) is a local solution of (P) and by Theorem 3.2 an equilibrium
point.

It is known that the feasible set of LBP is nonconvex in general.
However, by Corollary 3.1, it can be decomposed into a finite number of
polyhedra, each one defined by Z(s) for some s ∈Sv. According to the the-
orem above, an equilibrium point (z̄, s̄) ∈ Zv × Sv yields the best feasible
vertex z̄ in the face Z(s̄) of Z.
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Theorem 4.1 establishes also how to find an equilibrium point if LBP
is not infeasible nor unbounded, which means that Z ×S 
=∅ and

sup{cT z : z∈Z(s)}<+∞, for any s ∈S.

Indeed, by the theorem, it is a matter of finding s̄ ∈ S such that
Z(s̄) 
=∅. Such a point can be chosen as a solution of the linear problem
min{(z0)T s : s ∈S}, where z0 ∈Z is arbitrary; see Proposition 1 in Ref. 6.

In the rest of this section, we derive sufficient conditions for local
optimality in LBP to be satisfied by an equilibrium point.

Corollary 3.5 states that a strict equilibrium point (z̄, s̄) yields a
local optimum z̄ of LBP. Actually, the strict equilibrium condition can be
relaxed by the dual strict equilibrium condition. In this case, Theorem 3.4
assures that z̄ is a local solution of LBP, provided that Sv(z̄)={s̄} by Cor-
ollary 3.4. This situation can be recognized by searching the adjacent ver-
tices to s̄, as shown in the next corollary.

Corollary 4.1. Let (z̄, s̄) be an equilibrium point of the penalized
problem P(M). If s̄ ∈ Sv and z̄T s > 0 for every s ∈ Sv adjacent to s̄, then
z̄ is a local solution of problem LBP.

Proof. Let (z̄, s̄) be an equilibrium point with s̄ ∈Sv. By Lemma 3.4,
it follows that s̄ ∈Sv(z̄). Thus, z̄ is feasible to LBP. In addition, Lemma 3.1
assures that S(z̄) is a face of S. By hypothesis, s /∈ S(z̄) for every vertex
s ∈ Sv adjacent to s̄. Hence, Sv(z̄) = {s̄}. By Theorem 3.4, (z̄, s̄) is a local
solution of LBP.

Another sufficient condition for local optimality in LBP is given
below. It is weaker but more difficult to be verified computationally.

Theorem 4.2. Let (z̄, s̄) be an equilibrium point of the penalized
problem P(M). If there is ε >0 such that

s̄ ∈
⋂
z

{S(z) : z∈Z ∩Bε(z̄), S(z) 
=∅}, (12)

then z̄ is a local solution of problem LBP. Particularly, if s̄ ∈Sv then S(z)

can be replaced by Sv(z) in (12).

Proof. Let (z̄, s̄) be an equilibrium point. By Lemma 3.4, it follows
that s̄ ∈S(z̄). Then, by Definition 3.1,

max
{
cT z− M̄s̄T z : z∈Z

}
= cT z̄, for some M̄ ≥0.
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We recall that the feasible set of LBP is {z ∈ Z : S(z) 
= ∅}. Let us con-
sider ε > 0 satisfying (12) and let us restrict LBP to Bε(z̄). It follows
that

max
{
cT z : z∈Z ∩Bε(z̄), S(z) 
=∅

}

=max{cT z− M̄s̄T z : z∈Z ∩Bε(z̄), S(z) 
=∅}
≤max{cT z− M̄s̄T z : z∈Z}
= cT z̄. (13)

Since z̄ ∈ Z ∩ Bε(z̄) and S(z̄) 
= ∅, equality holds in (13). Hence, z̄ is
a local solution of LBP. Besides, as the polyhedron S(z) has no lines,
Sv(z) 
= ∅ if S(z) 
= ∅. Then, we can replace S(z) by Sv(z) in (12) when
s̄ ∈Sv.

Remark 4.1. Condition (12) is weaker than that one which is used
in Corollary 4.1. In fact, that condition implies that Sv(z̄) = {s̄}. So, for
ε = ε(z̄) given by Lemma 3.3, condition (12) holds trivially. On the other
hand, it may be the case that condition (12) does not imply Sv(z̄) = {s̄}.
Indeed, let us consider the example below,

(E2) max f1(x, y)=−x,

s.t. x ≥0, y solves
max f2(x, y)=−y,

s.t. x +y ≥2,

x −y ≤0,

2x +y ≥2,

y ≥0.

Its feasible set is shown in bold in Figure 2. Let

z̄= (x̄, ȳ, w̄1, w̄2, w̄3)
T = (0,2,0,2,0)T ∈Z,

related to point A, and let

s̄ = (0, v̄, ū1, ū2, ū3)
T = (0,0,1,0,0)T ∈S.

We have that (z̄, s̄) is an equilibrium point for M̄ = 0. In addition, let
ε ∈ (0,1) and z = (x, y,w1,w2,w3)

T ∈ Bε(z̄), feasible to LBP. We can
see that z lies on the segment (A,B). Thus, w1 = 0 and so s̄T z =
0. Hence, (z̄, s̄) satisfies (12). However, the hypothesis of Corollary 4.1
is not verified, because there is ŝ ∈ Sv(z̄), adjacent to s̄, namely ŝ =
(0,0,0,0,1)T .
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Fig. 2. Illustration of Example E2.

Remark 4.2. Condition (12) is not necessary for an equilibrium point
to be a local solution of LBP. Indeed, let us consider Example E2 with the
first-level objective function replaced by f1(x, y) = −y. Then, the global
solution, which is attained at point B in Figure 2, does not verify condi-
tion (12).

Now, we consider an assumption of nondegeneracy in order to get
a more interesting characterization. We are going to use the following
notation. Let (z̄, s̄) ∈ Zv × Sv be given, where z̄ is a nondegenerate ver-
tex defined by the basis E of A = [E,N ]. We denote by N (z̄) and B(s̄)

the index sets of the nonbasic variables at z̄ and the basic variables at s̄,
respectively. For i ∈N (z̄), we have that

dT
i =

(
dT
iE, dT

iN

)
=

(
−(E−1Ni)

T , eT
i

)

is an extreme direction of Z, where Ni and ei are respectively the
columns of the matrices N and In−m corresponding to the variable
zi .

Theorem 4.3. Let (z̄, s̄) ∈ Zv × Sv be an equilibrium point of the
penalized problem P(M), where z̄ is a nondegenerate vertex. Let

N +(z̄)={i ∈N (z̄) : cT di >0}.



82 JOTA: VOL. 125, NO. 1, APRIL 2005

Then, N +(z̄)⊆B(s̄). In addition, z̄ is not a local solution of LBP if and
only if there are i ∈N +(z̄) and ŝ ∈Sv(z̄) with ŝi =0.

Proof. Let (z̄, s̄)∈Zv ×Sv be an equilibrium point such that z̄ is non-
degenerate. First, we prove that

sT di = si, ∀i ∈N (z̄), ∀s ∈Sv(z̄). (14)

In fact, let i ∈ N (z̄) and s ∈ Sv(z̄). Since sT z̄ = 0 and z̄E > 0, it must be
sE =0. Hence,

sT di = si − sT
EE−1Ni = si .

To prove the desired inclusion, consider i ∈N +(z̄). By (14), it follows
that s̄T di = s̄i ≥ 0 because s̄ ∈ Sv(z̄). Suppose that s̄T di = 0. As z̄ is non-
degenerate, there is α > 0 such that z = z̄ + αdi ∈ Z. Then, s̄T z = 0 and
cT z−cT z̄=αcT di >0. Thus, it results that z̄ /∈arg max{cT z :z∈Z(s̄)}, which
contradicts Theorem 4.1. Hence, s̄i = s̄T di > 0 and so i ∈ B(s̄). Therefore,
N +(z̄)⊆B(s̄).

Now, we prove the claimed equivalence. Assume that z̄ is not a local
solution of LBP. Since Sv(z̄) 
= ∅, by Theorem 3.4 there is ŝ ∈ Sv(z̄) such
that (z̄, ŝ) is not an equilibrium point. By Theorem 4.1,

z̄ /∈arg max{cT z : z∈Z(ŝ)}.

Since z̄∈Zv(ŝ) and is nondegenerate, there must exist i ∈N +(z̄) and α >0
such that z= z̄+αdi ∈Z(ŝ). Therefore, ŝT di =0 implying, by (14), that ŝi =
0. Conversely, let i ∈N +(z̄) and ŝ ∈Sv(z̄) with ŝi =0. By (14), ŝT di = ŝi =0.
Let us consider an arbitrary ε>0. Since z̄ is nondegenerate, there is α >0
such that z= z̄+αdi ∈Z ∩Bε(z̄). In addition, z is feasible to LBP because
ŝT z=0. Moreover,

cT z− cT z̄=αcT di >0.

Thus, z̄ is not a local solution of LBP.

Finally, let us comment on the case where an equilibrium point (z̄, s̄)

is such that z̄ is a nondegenerate vertex which is not a local solution of
LBP. From this point (z̄, s̄), we can find an improved equilibrium point
(ẑ, ŝ) with cT ẑ > cT z̄ or conclude that LBP is unbounded. Actually, we
obtain

ŝ ∈Sv(z̄) and ẑ∈arg max{cT z : z∈Z(ŝ)},
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according to Theorems 4.3 and 4.1. Note that

arg max{cT z : z∈Z(ŝ)}=∅

only if LBP is unbounded.
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