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Abstract
In response to a growing need for STEM professionals, this study reports the results of the initial validation of a refined survey
instrument that purports to measure the five constructs of the social cognitive career theory framework within the subjects of
mathematics, science, engineering and technology. To investigate the instrument’s reliability and psychometric properties, we
administered this 45-item survey to students in grades 4–12. Reliability and validity (content and construct) were assessed using
Cronbach’s coefficient alphas and structural equation modeling. Path coefficients for the five constructs indicated weak to
moderate influences on the subscales, and the goodness-of-fit indices demonstrated that the model is acceptable. Initial results
indicate the survey has the potential to collect reliable and valid data and suggest the instrument may be helpful in measuring
students’ interests and choices in STEM careers for research, partnerships, and curricular development. Additionally, results
highlight two areas for further investigation, which include the impact conscientious or random responders have on the survey’s
psychometric properties and what constitutes satisfactory Cronbach’s alpha for results to be interpreted in a significant way.
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Introduction

In this age of rising global competition, proficiency in science,
technology, engineering, and mathematics (STEM) disci-
plines is viewed as being increasingly essential in today’s
workforce. STEM workers propel innovation and competi-
tiveness by generating new ideas, new companies, and new
industries (Noonan 2017). Globally, employers are faced with
the task of recruiting more individuals into STEM industries
(Marginson et al. 2013). Many countries are not producing the
amount of STEM professionals that are needed in order to

meet the workforce demands (Wilson et al. 2016). In the
USA, STEM occupations have increased by 14% since
2008, while other occupations have grown only 1.7%
(Noonan 2017). It is projected that the USA will need approx-
imately one million more STEM professionals than it will
produce over the next decade to meet this growing demand
(The President’s Council of Advisors on Science and
Technology; PCAST 2012). To accomplish this goal, a 34%
annual increase in the number of students who receive under-
graduate STEM degrees is needed (PCAST 2012). Despite
this need, only 24% of incoming college students declare a
STEMmajor (Shapiro and Sax 2011), and less than half of the
students who declare a STEM major graduate with a STEM
degree (Price 2010). Policymakers, researchers, and educators
are emphasizing the importance of educating students for
STEM-related jobs, but too few of US high school graduates
are ready for college coursework or careers in STEM areas
(American College Testing; ACT 2017).

In order to understand why many countries are not produc-
ing the workers in STEM fields at the rate needed, it is impor-
tant to understand the factors that motivate students to pursue
or not to pursue a career in STEM fields. While much of the
focus has been on increasing student achievement in science
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and mathematics (National Research Council 2011), it is im-
portant to understand other factors involved, such as student
interest and student choice in STEM. Considering this need
for information, this article describes the second phase of de-
velopment of a survey designed to measure students’ interest
and choice in STEM with populations ranging from 4th–12th
grade.

Theoretical Framework

As part of a National Science Foundation (NSF) grant funded
project to investigate the challenges and barriers for students
to pursue a STEM career, the researchers decided to utilize
social cognitive career theory (SCCT) as a theoretical frame-
work to understand how individuals determine academic and
career choices (Lent and Brown 2006, 2008; Lent et al. 1994,
2000). Derived from Bandura’s social cognitive theory
(1986), the SCCT framework explores the way people’s be-
havior and environments can influence one another (Lent
2013). The aim of SCCT is to explain four interrelated aspects
of career development: (a) how basic academic and career
interests develop, (b) how educational and career choices are
made, (c) how academic and career success is obtained, and
(d) how satisfaction or well-being in the work environment is
experienced (Lent 2013). Correspondingly, the SCCT frame-
work explores four interrelated models of career development
including interest, choice, performance (Lent et al. 1994), and
satisfaction (Lent 2013). Within each of the four models of
SCCT, there are three sociocognitive mechanisms that are
believed to apply important influences to career development.
The sociocognitive mechanisms include self-efficacy beliefs,
outcome expectations, and personal goals (Lent et al. 1994).
The three mechanisms will be further described in the subse-
quent paragraphs.

Self-efficacy is the belief that an individual has pertaining
to his/her ability to perform a certain behavior or task
(Bandura 1997). Self-efficacy beliefs are dynamic and are
specific to a particular activity. It is thought that self-efficacy
is derived from four primary sources of information: experi-
ences of mastery, vicarious experiences (e.g., observing sim-
ilar others), social persuasion, and emotional and physiologi-
cal states (Bandura 1997). SCCT assumes that individuals are
likely to develop interest, choose to pursue the interest, and
therefore perform better at tasks and/or activities in which they
have a stronger self-efficacy (Lent 2013).

Outcome expectations are personal beliefs about the result
or consequences of performing particular behaviors (Lent
2005; Lent 2013). Self-efficacy is believed to affect outcome
expectations (Lent 2013), and both can influence whether an
individual will choose to persist or avoid a particular activity
(Bandura 1986; Lent et al. 1994; Lent 2013). For example, an
individual is more likely to participate in an activity if she or

he views the engagement will lead to a valued or positive
outcome (e.g., social and self-approval, tangible rewards, de-
sirable work conditions).

Bandura (1986) describes personal goals as an individual’s
intent to engage in a particular activity or perform a particular
outcome. There are two types of personal goals described in
the SCCT framework: they include choice goals (the type of
activity or career an individual wants to pursue) and perfor-
mance goals (the quality of performance one plans to
accomplish within a given task; Lent 2013). According to
the SCCT framework, both choice goals and performance
goals are impacted by an individual’s self-efficacy and out-
come expectations (Lent 2013).

The Interest Model and the Choice Model of the SCCT
Framework

Although SCCT includes four distinct models, the researchers
decided to build the instrument around the interest and choice
models. Both of these models demonstrated affordances to be
used broadly, since students could be asked general, selected
response questions about their interests and potential choices,
whereas the performance model and the satisfaction model
would require more student-specific contexts and extended
response items. Therefore, the researchers decided to leverage
the interest model and choice model to learn more about ele-
mentary and secondary students’ career decisions.

The interest model explores the ways self-efficacy and out-
come-expectations develop students’ interests. For example, if
an individual is exposed to coding, and has received positive
feedback on her ability to code, it is reasonable that she will
develop a high self-efficacy for coding. If she views that cod-
ing will demonstrate a positive outcome in her future, her high
self-efficacy combined with her outcome expectations will
expectantly increase her interest in coding. This combination
of interest, self-efficacy, and outcome expectations is likely to
encourage her involvement in coding activities further, which
will increase her likelihood to code more often, which can
presumably refine her self-efficacy and outcome expectations
(Lent 2013).

Adding on, the choice model considers the ways interest,
self-efficacy, and outcome-expectations influence choice
goals, which then motivate choice actions, or the efforts to
implement one’s goals (Lent 2013). For example, a student
who is considering a career in engineering (choice goal) might
participate in a robotics competition (choice action). However,
he may find he has difficulty completing the required tasks,
such as designing and building a robot, and may not enjoy
working as part of a team. From this experience, he may also
conclude that the design environment and rewards available as
a future engineer are less suited for him than he initially
thought. These learning experiences may encourage the stu-
dent to revise his self-efficacy and outcome expectations,
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leading to a shift in interest and career goals, which could lead
to the choice action of finding a different career path.

Thus, both of these narrative stories illuminate how the
SCCT interest model and choice model can be applied to
elementary and secondary students’ career choices.
Specifically, the five SCCT constructs that are involved in
these models are interest, self-efficacy, outcome expectations,
choice goals, and choice actions. Therefore, these are the five
SCCT constructs the researchers decided would guide the in-
strument design process for this study.

Instruments Utilizing SCCT Constructs

The researchers reviewed previously developed instruments
for measuring student outcomes (i.e., content knowledge, rea-
soning skills, psychosocial attributes, attitudes) and found
they were either limited to a single STEM subject
(mathematics, Adelson and McCoach 2011; Tapia and
Marsh 2004), (science, Germann 1988; Kennedy et al.
2016), (technology, Washington et al. 2016), (engineering,
Capobianco 2015) or systematically collected data across all
STEM subject areas (Erkut and Marx 2005; Kier et al. 2013;
Guzey et al. 2014; Tyler-Wood et al. 2010; Unfried et al.
2015). Out of the surveys that considered all STEM subjects
(i.e., science, technology, engineering, and mathematics),
there were only two surveys that utilized the SCCT frame-
work: the Student Attitudes toward STEM (S-STEM; Faber
et al. 2013; Unfried et al. 2015) and the STEM Career Interest
Survey (STEM-CIS; Kier et al. 2013). The S-STEM (Faber
et al. 2013; Unfried et al. 2015) is structured to measure stu-
dent attitudes and interests in STEM, and the STEM-CIS
(Kier et al. 2013) is also used to measure student interest in
STEM. Thus, the focus of the current surveys was only based
on the interest model (containing interest, self-efficacy, and
outcome expectations constructs), which excludes the impor-
tance of student decision-making regarding choice goals and
choice actions that might steer a student toward a certain ca-
reer path.

Purpose

Because career-related interests are grounded in self-efficacy
and outcome expectations which foster career goals, and in
turn motivate choice actions, the researchers felt it was imper-
ative to develop a survey that measured the five SCCT con-
structs driving the interest model and the choice model.
Therefore, the authors (Roller et al. 2018) developed the
Student Interest and Choice in STEM (SIC-STEM) Survey,
which employed SCCT’s interest model and choice model.
The goal of this study is to determine the validity of the
SIC-STEM Survey 2.0. The purpose of this paper is to (a)
examine the reliability (content and construct) and validity

evidence of data from the SIC-STEM Survey 2.0 for use in
assessing student interest and choices in STEM, (b) discuss
survey limitations and areas of future investigation, and (c)
offer suggestions for appropriate uses of the survey.
Specifically the following research questions guided our eval-
uation of the instrument:

1. What are the Cronbach’s alphas for the subscales of math-
ematics, science, and engineering and technology for the
five SCCT constructs (interest, self-efficacy, outcome
expectations, choice goals, and choice actions) and what
do these calculations suggest about the reliability of the
SIC-STEM Survey 2.0?

2. What does the inter-rater reliability of coded items suggest
about the content validity of the SIC-STEM Survey 2.0?

3. Is the structural equation model of the SIC-STEM Survey
2.0 adequate? What does this model suggest about con-
struct validity?

Method

Instrument Design

The creation of the SIC-STEM Survey began in 2016 and
started with an investigation of the S-STEM instrument by
Faber et al. (2013). After operationalizing Lent’s (2013)
SCCT construct definitions and coding S-STEM items, a team
of four researchers noticed that “the S-STEM items were not
evenly distributed across the SCCT constructs and in some
cases were lacking entirely” (Authors 2018, para. 13). The
researchers developed three items for each SCCT construct
for mathematics, science, and engineering and technology,
resulting in a 45-item survey. Furthermore, an initial pilot
study was conducted with 12 high schools across the USA
with a total of 196 out of 210 students completing the survey
online.

The SIC-STEMSurvey pilot data were subjected to explor-
atory factor analyses (EFA) using SPSS 9.5 Version 22.
Additional examination of the survey revealed five distinct
components to be used for advance analysis (Roller et al.
2018). Using 0.7 as an acceptable reliability coefficient
(Cronbach 1951; Nunnally 1978); the internal consistency
reliability for the instrument, the content specific subscales,
and the latent constructs within each of the subscales were
measured. Appropriate levels of reliability were established
(Roller et al. 2018). Data from the pilot of the SIC-STEM
Survey yielded evidence for the validity of the items and reli-
ability of the instrument. In an effort to further improve item
validity and instrument reliability, constructs yielding a less
than satisfactory Cronbach’s alpha, below 0.7 (Nunnally
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1978), were investigated and revised. These new items (SIC-
STEM Survey 2.0) are included in the current sample.

To make sure the survey was accessible for all students, the
readability level of each item was investigated by identifying
the Flesch-Kincaid grade level for each item. In cases where
the reading level was higher than fifth grade, item language
was simplified by shortening the sentence and reducing the
number ofmultisyllabic words. However, four items remained
in the range of 5.0–6.6 mainly due to including larger words,
such as “engineering.” Overall average readability, however,
for all 45 items was a 2.0, or second-grade level making the
instrument appropriate for the sample population.

Data Collection

The SIC-STEM Survey 2.0 was distributed to students in two
different packages: one for upper elementary (4th and 5th
grade) students and one for secondary (6th–12th grade) stu-
dents. The upper elementary package contained the 45-item
SIC-STEM Survey 2.0, five questions regarding possible ca-
reer choices, and six questions about the student. The second-
ary student package contained all of the items from the upper
elementary package plus 32 questions on potential barriers
that might be faced by the student in going to college or train-
ing school after high school. For the purpose of this study, we
will only focus on the 45 SIC-STEM Survey 2.0 items that
were administered to both groups.

Sample

Initial validation of the SIC-STEM Survey 2.0 was conducted
with data gathered from four school systems in the southeast-
ern region of the USA. As shown in Table 1, a total of 821
students, ranging from 4th–12th grade, completed the survey
from the four school systems. The distribution of participants
by grade varied from 162 from 5th grade (19.7% of the

sample) to 42 from 12th grade (5.1% of the sample). A total
of 22 (2.7% of the sample) participants provided no response
for their grade.

Moreover, Table 2 lists the demographics from each school
system sample. The sample from school system A was pri-
marily White students with a significant population of
Hispanic and African American students, while the sample
from school systems B, C, and D were predominantly
African American students. All school systems included in
this analysis are Title 1 as shown by the percentage of free
and reduced lunch from Table 2.

Psychometric Properties of Instrument

To ensure the instrument produced valid and reliable data, the
psychometric properties of the SIC-STEM Survey 2.0 were
established. Three domains describe the quality of an instru-
ment: reliability, validity, and responsiveness (Scholtes et al.
2011; Burton and Mazerolle 2011). The authors’ assessed the
first two domains, specifically reliability and validity, of the
SIC-STEM Survey 2.0 in this initial validation study. Content
and construct validity were assessed for the validation part of
this analysis.

Reliability

To determine internal consistency, Cronbach’s (1951) coeffi-
cient alpha for the subscales of mathematics, science, and
engineering and technology was calculated for the five
SCCT constructs of interest, self-efficacy, outcome expecta-
tions, choice goals, and choice actions. Analyses were also
performed to examine how each item in the construct support-
ed or weakened the reliability of that specific subscale’s con-
struct. Reliability for the mathematics subscale ranged from
0.80 for choice goals to 0.53 for outcome expectations
(Table 3). Three of the five constructs (interest, self-efficacy,
and outcome expectations) did not yield satisfactory
Cronbach’s alphas of 0.7 (Nunnally 1978).

However, Cronbach’s alpha coefficients were also calcu-
lated if an item was deleted (Table 3). Further investigation
revealed that all three reversed items (M1, M2, and M13) did

Table 1 Sample Grade Distribution

Grade System A System B System C System D Total

4 19 34 15 4 72

5 20 109 27 6 162

6 0 24 51 0 75

7 0 6 79 1 86

8 18 0 41 92 151

9 23 19 8 37 87

10 8 0 19 19 46

11 16 0 20 42 78

12 9 3 0 30 42

No Response 7 6 4 5 22

Total 120 201 264 236 821

Table 2 Sample Demographics

System African
American

Hispanic White Other Free/reduced
lunch

A 18% 18% 56% 8% 48%

B 98% 0% 2% 0% 76%

C 69% 1% 29% 1% 78%

D 99% 0% 0% 1% 78%
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not support the reliability of the construct that they were
intended to support, suggesting that either the wording of the
item needed to be altered or that the students may not have
noticed the reversed wording. If the reversed items were re-
moved, the remaining items would yield satisfactory
Cronbach’s alphas for the interest (0.82), self-efficacy (0.70),
and outcome expectations (0.71) constructs. Because of the
results of this initial reliability analysis, further investigation is
warranted to determine if the students were behaving as con-
scientious or random responders (Marjanovic et al. 2015).

Similar to the mathematics subscale, three of the five con-
structs (interest, self-efficacy, and outcome expectations)
within the science subscale did not have satisfactory
Cronbach’s alphas, while the choice goals and choice actions
constructs were satisfactory (Table 4). However, unlike the
mathematics subscale, if the science reverse-worded items
were removed, it only provided a satisfactory Cronbach’s al-
pha for the self-efficacy construct, whereas the interest and
outcome expectancy alphas were still too low (0.59 and
0.60, respectively). Again, further investigation is warranted
as to the impact a conscientious or random responder has on
the reliability of the constructs of this subscale.

The reliability coefficients for the engineering and tech-
nology subscale ranged from 0.49 for outcome expecta-
tions construct to 0.70 for the choice actions construct
(Table 5). Only the choice actions construct achieved a
satisfactory Cronbach’s alpha value. However, the choice
goals construct’s Cronbach’s alpha value is close to the
satisfactory level. Like the mathematics and science sub-
scales, if the reverse-worded items were removed, the self-
efficacy and outcome expectations constructs achieve a

satisfactory level of Cronbach’s alpha with the interest con-
struct very close.

Like other surveys of this nature (Tyler-Wood et al. 2010;
Unfried et al. 2015), the overall Cronbach’s alpha coefficients
were also calculated at the subscale level. The results yielded
reliability coefficients of 0.89 for mathematics, 0.84 for sci-
ence, and 0.87 for engineering and technology, indicating all
items supported the subscale.

Content Validity

Content validity was used to examine the extent to which the
items in the SIC-STEM Survey 2.0 are each aligned to one
SCCT construct. As shown in Table 6, previously used work-
ing definitions from Roller et al. (2018) were developed for
each of the SCCT constructs based on Lent (2013). These
definitions were applied to each item that purported to mea-
sure a specific domain within the SCCT construct in question.
Five researchers with specialties in mathematics education,
science education, engineering/technology, or human devel-
opment coded the SIC-STEM Survey 2.0 items to the five
SCCT constructs after revising some of the initial SIC-
STEM Survey items. The coding between the five researchers
demonstrated 96% inter-rater reliability. Out of 45 items, four
items demonstrated 60% inter-rater reliability, and three items
demonstrated 40% inter-rater reliability. These were the only
items not to score 100% inter-rater reliability. The seven items
that demonstrated disagreement were discussed, and consen-
sus was reached among all researchers that each item adhered
to the definition before it was included in the final instrument
for validation.

Table 3 Mathematics subscale
reliability coefficients Construct Cronbach’s alpha Cronbach’s alpha if item deleted

Interests 0.64* M1 (0.82) M6 (0.34) M11 (0.37)

Self-efficacy 0.57* M2 (0.70) M7 (0.24) M12 (0.45)

Outcome expectations 0.53* M3 (0.25) M8 (0.36) M13 (0.71)

Choice goals 0.80 M4 (0.70) M9 (0.76) M14 (0.72)

Choice actions 0.79 M5 (0.74) M10 (0.73) M15 (0.66)

M1 indicates mathematics item 1. Bold denotes reverse-worded. * indicates a Cronbach’s alpha below 0.7

Table 4 Science subscale
reliability coefficients Construct Cronbach’s alpha Cronbach’s alpha if item deleted

Interest 0.61* S1 (0.48) S6 (0.59) S11 (0.47)

Self-efficacy 0.56* S2 (0.35) S7 (0.30) S12 (0.74)

Outcome expectations 0.37* S3 (0.18) S8 (0.00) S13 (0.60)

Choice goals 0.82 S4 (0.75) S9 (0.76) S14 (0.73)

Choice actions 0.83 S5 (0.77) S10 (0.77) S15 (0.76)

S8 indicates science item 8. Bold denotes reverse-worded. * indicates a Cronbach’s alpha below 0.7
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Construct Validity

One of the most important features of scientific studies in-
cludes measuring and relating the variables, as well as reveal-
ing the causality (if any). However, some variables such as
intelligence, interest, motivation, and achievement cannot be

directly measured. A model is proposed here to measure some
of these variables (SCCT constructs). Confirmatory factor
analysis was performed to evaluate the construct validity of
the SCCT constructs. In this case, it is important to establish
mathematical relationships that show how endogenous struc-
tures (predicted-endogenous) are linkedwith exogenous struc-
tures (predictive-exogenous; Yilmaz et al. 2006), through an
analytical approach such as structural equation modeling
(SEM; Hair et al. 1998), which consists of a combination of
multivariate statistical techniques.

SEM is an effective way to build and test theoretical
models that can explain possible causal relationships. SEM
was used to investigate the 45 items aligned with the subscales
(mathematics, science, and engineering and technology) and
the constructs (interests, self-efficacy, outcome expectations,
choice goals, and choice actions), which was the goal of the
instrument’s design. Furthermore, SEM uses a specified asso-
ciation structure to analyze correlations between observed
measurements for the purposes of explaining model variabil-
ity and uncovering relationships between latent variables. The
software SmartPLS 3.0 was employed to explore relationships
between unobserved constructs using partial least squares
structural equation modeling (PLS-SEM).

A model for each subscale (mathematics, science, and en-
gineering and technology) was developed around the five
SCCT constructs (interests, self-efficacy, outcome-expecta-
tions, choice goals, and choice actions). Figure 1 shows the
SEM for the engineering and technology subscale. The SEM
has three columns: from left to right the columns are the sur-
vey items, SCCT constructs, and subscale. Each survey item is
further identified with abbreviations that represent the sub-
scale, the item number, and the SCCT construct.
Additionally, for a limited number of instances where the
items were reverse-worded, an R is noted. Thus,
ET13_OE_R represents engineering and technology item
13, measuring outcome expectations, and the item is re-
verse-worded. More importantly, the arrows in Fig. 1 suggest
the direction of causal relationships between items and con-
structs. In this analysis, causality is only implied by correla-
tion. This can be observed in the structural path diagram
(Fig. 1) by the arrows pointing from latent constructs to

Table 5 Engineering and
technology subscale reliability
coefficients

Construct Cronbach’s alpha Cronbach’s alpha if item deleted

Interest 0.51* ET1 (0.68) ET6 (0.21) ET11 (0.25)

Self-efficacy 0.51* ET2 (0.71) ET7 (0.19) ET12 (0.28)

Outcome expectations 0.49* ET3 (0.19) ET8 (0.12) ET13 (0.75)

Choice goals 0.68* ET4 (0.51) ET9 (0.77) ET14 (0.38)

Choice actions 0.70 ET5 (0.67) ET10 (0.52) ET15 (0.64)

ET2 indicates engineering and technology item 2. Bold denotes reverse-worded, * indicates a Cronbach’s alpha
below 0.7

Table 6 SCCT construct definitions

SCCT
construct

Working definition Item examples from SIC-
STEM Survey 2.0

Self-efficacy Items focus on one’s
perceived ability or a
judgment of one’s ability.
For example, “I can do
something” or “I am
good/bad at something.”

• I am not confident in
math.

• I can do well in science.

Outcome
expecta-
tions

Items focus on the cause
(decision or action) and
effect (consequence of that
decision). For example, “If
I do this, then this will
happen.”

• Knowing how to design
things will help me in
the real world.

• Doing problems helps
me in math.

Interests Items focus on whether
students either like or do
not like something. For
example, “I like/do not like
something.”

• I like doing experiments.
• I like to know how

machines work.

Choice
goals

Items focus on a goal or
“wanting to do something”
that was aligned to a
STEM activity or career.

• I want to take math in
college.

• I want to choose a job in
science.

Choice
actions

Items need to 1) reference a
career/job and 2) include a
statement about taking an
action. For example, “I
work on problem solving
skills in math club because
I want a math job some-
day” implies that the deci-
sion to work on problem
solving skills (an action) is
viewed as being supportive
toward getting a math job
(future career goal).

• I use computers because I
will need those skills in
my job.

• I ask for help when I need
it because I will use
math in my job.

Working definitions from “Title” by Roller et al. (2018)
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observed items, which suggests the items are considered to be
reflective of the constructs. The SEM for the science subscale
and mathematics subscale is similar to Fig. 1.

Model Adequacy There are several different goodness-of-fit
statistics researchers used to assess the adequacy of the struc-
tural equation models. The following are two of the measures
suggested by Kline (2011) that could be calculated using
SmartPLS 3.0.

1). The model chi-square (χ2) is an assessment of the overall
model fit. Chi-square is sensitive to sample size. The null
hypothesis is that the model fits perfectly, so p values
greater than 0.05 are desired.

2). Standardized root mean square residual (SRMR) is an-
other measure of model fit. It is the square root of the
difference between the residuals of the sample covari-
ance matrix and the hypothesized model. SRMR is a
metric often used when items vary in range (e.g., Likert
Scale 1–5). SRMR values less than 0.08 are suggestive of
an adequate fit.

We also used R2, another goodness-of-fit metric, which
measures the proportion of total variability explained by the
model. Table 7 displays the results of the SEM for the analysis
of the SIC-STEM survey for mathematics, science, and engi-
neering and technology.

The p values for the goodness-of-fit chi-square test are all
less than 0.05, which is below the established threshold for
this metric. Due to the chi-square’s sensitivity to sample size,
it is recommended to use other model fit indexes, particularly
for sample sizes over 400 where the chi-square statistic is
almost always significant (Carvalho and Chima 2014). In
the table above, the chi-square’s p values are all less than
0.01, indicating that the null hypothesis of a “good” model
fit would be rejected. This is due to the large sample size, and
therefore, other fit measures will be used to evaluate the fit of
the model.

The SRMR for the model indicates a good fit when the
SRMR is less than 0.08, and an acceptable fit when the
SRMR is less than 0.10 (Kline 2011). Each of the subscale
models is on the threshold of being adequately fit with the
mathematics subscale having a SRMR value of 0.09, the sci-
ence subscale having a SRMR value of 0.12, and the engi-
neering and technology subscale having a SRMR value of
0.11. For the mathematics model, a value of 0.09 indicates
an acceptable fit, and the other two models are approaching
an acceptable fit of 0.12 and 0.11.

The coefficient of determination (R2) is the proportion of
the total variability explained by the model. Hence, R2 can
be used to quantify the predictive accuracy of the model
with respect to each latent subscale (Henseler et al. 2009).
An R2 value of at least 0.75 is considered to represent sub-
stantial model fit, while R2 ≥ 0.50 is considered to indicate a
moderate fit, and R2 ≥ 0.25 is considered to indicate a weak
fit (Henseler et al. 2009). There is moderate to substantial
model accuracy across all three subscales with mathematics
achieving an R2 of 0.84, science an R2 of 0.73, and engi-
neering and technology having an R2 of 0.82. While science
is slightly below the recommended value, it is approaching a
substantial fit, and thus, holistically, the mathematics and
engineering and technology values demonstrate a substan-
tial or good fit. Interpreting these values, for example, the
five SCCT constructs explain 84% of the variability in the
mathematics scores. Said another way, 84% of the variabil-
ity in the mathematics scores can be attributed to the five
SCCT constructs.

Fig. 1 Structural path diagram for engineering and technology subscale

Table 7 SEMs goodness-of-fit
measures Measure Mathematics Science Engineering and technology Cutoff for good fit

χ2 986.25 (p < 0.01) 1327.92 (p < 0.01) 1203.72 (p < 0.01) p > 0.05

SRMR 0.09 0.12 0.11 SRMR < 0.08

R2 0.84 0.73 0.82 R2 > 0.75
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In summary, the goodness-of-fit indices demonstrate that
the model is acceptable. The empirical evaluation of the model
included evaluating the fit indices χ2 and SRMR, and the R2

value implies acceptable fit.

Model Analysis Since the model demonstrated acceptable fit,
the model was analyzed to investigate the relationships among
the constructs and subscales. The effects of the constructs
(interests, self-efficacy, outcome-expectations, choice goals,
and choice actions) on the subscales (mathematics, science,
and engineering and technology) were investigated using f2 to
determine what impact each construct had on each subscale.
The path coefficients of the survey items on the constructs
were also considered to determine the strength of association
between the different structures in the model.

The f2 (the sampling distribution to measure each con-
struct’s effect on each subscale) statistic measures the degree
of the impact one latent variable has on another, which means
it measures the strength of each predictor variable in
explaining the endogenous variables (science, mathematics,
engineering and technology). This is determined by measur-
ing how much of the explained variability is unique due to a
particular variable. According to Cohen (1988), an f2 value of
0.350 or greater is representative of a strong effect, at least
0.150 a moderate effect, and at least 0.020 a weak effect.
Table 8 displays the strengths of each construct with respect
to each subscale. The results indicate that there are no strong
effects, with most of the effects being between moderate and
weak (Table 8). This implies that all constructs influence the
subscales to some degree; however, some of these influences
are weak, and some are moderate according to Cohen. Taking
the moderate f2 statistics into consideration, students’ intent to
pursue a STEM career would be most influenced by students’
interest, outcome expectations, and choice goals regarding
mathematics; students’ self-efficacy in science; and students’
interests and outcome expectations regarding engineering and
technology. For example, that would mean increasing stu-
dents’ choice goals regarding mathematics (wanting to do
something that was aligned to a STEM activity or career)

would have a moderately positive influence on students’ pur-
suit of a STEM career.

The path coefficients describe the associations between the
different structures in the model. These path coefficients (or
connection strengths) are the parameters of the model and
represent the estimates of effective connectivity of the path
models shown in Figs. 2, 3, and 4. For example, 0.823 (see
Fig. 2) is the path coefficient of the first mathematics interest

Table 8 f2 statistics for each construct and schedule

Construct Mathematics Science Engineering and
technology

Interest 0.171* 0.079 0.191*

Self-efficacy 0.067 0.137* 0.074

Outcome
expectations

0.214* 0.148 0.155*

Choice goals 0.155* 0.057 0.109

Choice actions 0.070 0.081 0.125

*indicates moderate effect

Fig. 2 Mathematics subscale structural equation model

Fig. 3 Science subscale structural equation model
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survey item 1. This implies if the mean of the mathematics
interest survey item 1 increases by one standard deviation,
then the mean of the interest construct would increase by
0.823; one standard deviation from its mean. In general, the
path coefficients for the three models measure the increase in
standard deviation on the latent variable if the observed vari-
able is increased. Figures 2, 3, and 4 depict the path coeffi-
cients that were computed via the PLS-SEM algorithm for
each subscale.

Lastly, the t values for each construct to each subscale were
used to test the hypothesis that each construct had a significant
effect on each subscale. All t values had a p value less than
0.001. This implies that the coefficients in the model were
statistically significant at a level less than 0.001. This is
interpreted to mean that each model construct had a statisti-
cally significant effect on each subscale. For example, all five
constructs of interest, self-efficacy, outcome expectations,
choice goals, and choice actions are useful in predicting the
subscales of science, mathematics, and engineering and tech-
nology. This confirms construct validity for the SIC-STEM
Survey 2.0.

Discussion

The SIC-STEM Survey 2.0 is an instrument that was inten-
tionally designed to collect information about the factors that
influence student STEM career interest and choice in regard to
the five constructs (interests, self-efficacy, outcome
expectations, choice goals, and choice actions) that are

utilized in the SCCT interest and choice models (Roller et al.
2018). While other instruments have aligned with the SCCT
framework (S-STEM; Faber et al. 2013; Unfried et al. 2015;
STEM-CIS; Kier et al. 2013), the SIC-STEMSurvey 2.0 is the
first survey instrument to collect data about choice goals and
choice actions. This in turn provides information beyond stu-
dents’ interests in STEM, specifically how students leverage
their decisions and choices toward a STEM career path. Data
of this nature have the potential to be useful in understanding
and addressing the national shortage of STEM graduates.

Instrument Reliability and Validation

This study supports the research questions that the revised
SIC-STEM Survey 2.0 has the potential to produce reliable
and valid data among 4th–12th grade students. Cronbach’s
coefficient alphas were calculated for each subscale (mathe-
matics, science, and engineering and technology) and con-
struct (interests, self-efficacy, outcome expectations, choice
goals, and choice actions), which demonstrated levels of ac-
ceptable reliability coefficients in some of the constructs.
Reverse-worded items also tended to weaken the construct
reliability, with each subscale containing at least two items
that, if deleted, would raise the Cronbach’s alpha for that
construct. A reverse-worded item appeared in the interest,
self-efficacy, and outcome expectations constructs for each
subscale. Further analysis is warranted as to the impact the
reverse-worded items have on the detection of a conscientious
or random responder.While the instrument could be improved
at the item level, all three subscale composite reliability coef-
ficients are at 0.84 or above, which implies that the data col-
lected with the SIC-STEM Survey 2.0 demonstrates subscale
reliability and only some construct reliability.

The instrument was analyzed further to determine if in-
deed it is an instrument that produced valid and reliable data
with the targeted population. Content validity demonstrated
a 96% inter-rater reliability among five researchers, with
consensus being reached for 100% of the items, indicating
the items were aligned to the construct definitions.
Construct validity of items were investigated by utilizing
PLS-SEM. The structural equation model analysis for each
subscale in the SIC-STEM Survey 2.0 supported items was
reflective of the SCCT constructs. Additionally, the
goodness-of-fit indices (χ2, SRMR, and the R2 values) dem-
onstrated that the model is acceptable. Further model anal-
yses provided path coefficients, which suggest each con-
struct item had a weak to moderate influence on the sub-
scale. Particularly interesting was that different SCCT con-
struct path coefficients appeared as moderately influential
in each subscale, versus one or two SCCT constructs being
stronger across all three subscales. Specifically, the path
coefficient for choice actions in mathematics demonstrated
a moderate influence on whether a student would pursue aFig. 4 Engineering and technology subscale structural equation model
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STEM career, which is important to highlight because pre-
vious instruments had not collected information regarding
choice actions. Moreover, t values indicated that each con-
struct had a statistically significant effect on the subscale,
thus concluding that the five SCCT constructs are predictive
of the subscale in the SIC-STEM 2.0 Survey.

Limitations

The large variability in the sampled students’ ages (4th–
12th grade) demonstrates that the SIC-STEM Survey 2.0
can be used to collect data across broad populations. As
more data is gathered in future studies, it may be inter-
esting to analyze the results in grade bands (4th–5th,
6th–8th, and 9th–12th) to highlight elementary, middle,
and high school trends. The reverse-worded items were
originally included in the instrument to identify whether
the students were paying attention when completing the
survey. While intended as a delimitation, Cronbach’s
alpha values indicate that the reverse-worded items were
often detrimental to the instrument’s reliability. Future
studies may choose to include these items rewritten in a
positive way to determine if they still load on their
appropriate categories. Lastly, a limitation of the instru-
ment is that it was designed with only three items per
construct. The rationale for this design was to create a
survey that fit the attention span of students and could
be efficiently implemented in schools without consum-
ing too much instructional time. Thus, while a practical
recommendation to increase instrument reliability further
would be to increase the number of items beyond three,
SEMs with many constructs and items tend to not fit
as well as SEMs with few constructs and items
(MacCallum et al. 1996).

A limitation in the implementation of the SIC-STEM
Survey 2.0 instrument was the researchers did not observe
students taking the survey but instead had teachers admin-
ister the instrument. While directions were included with
the instrument on how to administer the survey, teachers
naturally try to support students and may have read items
or even helped students understand items by providing
them with definitions or examples. These definitions may
have included inaccuracies or specific examples, which
may have influenced students’ opinions. Readability was
also explored during survey development to promote ac-
cessibility; however, readability does not imply compre-
hension. Furthermore, the interpretation of the items by
students in 4th to 12th grade was not investigated during
this study. Thus, it could be that students were interpreting
these items similarly or differently. This limitation could
be explored in the future by completing student interviews
in various grade levels to learn more about how students
are comprehending and interpreting each item.

Areas for Future Investigation

Moreover, the reliability analysis of the SIC-STEM Survey
2.0 has highlighted two areas that need to be investigated
further: (1) the impact conscientious or random responders
have on the survey’s psychometric properties and (2) the level
of Cronbach’s alpha that is deemed satisfactory for the results
of this survey to be interpreted in a significant way. Because
this survey was designed with a reverse-worded item for the
interest, self-efficacy, and outcome expectations constructed
for the three subscales, it provides an opportunity for a re-
searcher using this survey to determine if the survey responder
was behaving as a conscientious or a random responder.
Several techniques (Curran 2016; Marjanovic et al. 2015)
have been developed recently that need to be explored to
determine their usefulness in detecting a conscientious or ran-
dom responder and the impact those detections have on the
reliability of this instrument. Data from the SIC-STEM
Survey 2.0 may afford this sort of exploration and analysis.

The entirety of this survey’s reliability analysis is based on
a satisfactory level of Cronbach’s alpha of 0.7 from Nunnally
(1978). According to Cho and Kim (2015), Nunnally’s work
has become a standard used by many in their reliability as-
sessment for an instrument. However, several researchers
(Cho and Kim 2015; Schmitt 1996; Taber 2018) have recently
begun to question the 0.7 level, since it was derived from
Nunnally’s personal intuition and not from empirical evidence
(Churchill and Peter 1984; Peterson 1994). Therefore, as ad-
ditional data is gathered and analyzed with this instrument, it
is recommended that the acceptable level of alpha continues to
be explored.

During validation testing, specific SCCT constructs
within each subscale were illuminated as having more of
an influence on students pursuing STEM careers.
Specifically, students’ interest, outcome expectations, and
choice goals were highlighted in mathematics, students’
self-efficacy in science, and students’ interests and outcome
expectations in engineering and technology. Thus, this data
suggests it might be more important for science teachers to
focus their efforts on supporting students’ belief that they
can do science (self-efficacy) than it would be to make the
content more interesting, given that the self-efficacy con-
struct had a stronger path coefficient. Moreover, mathemat-
ics had the most SCCT constructs in a subscale to be iden-
tified as moderately influential. Future research investigat-
ing the impact of mathematics, and specifically the SCCT
constructs regarding mathematics, has on students’ impact
to pursue STEM careers could be valuable work. Exploring
ways to strengthen interest, outcome expectations, and
choice goals in mathematics may provide a productive
space fo r widen ing the STEM caree r p ipe l ine .
Additionally, more generalizable studies about how to best
impact a SCCT construct within any subject area could also
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be beneficial for addressing the STEM workforce shortage
earlier, perhaps with STEM experiences in K-12 education.

Appropriate Uses

Based on this study, the SIC-STEMSurvey 2.0 has demonstrat-
ed that the instrument can collect valid and reliable data from a
broad range of students, specifically enrolled in 4th to 12th
grade. Since the survey relies heavily on a student’s ability to
read and comprehend the text, this instrument is not recom-
mended for implementation with early elementary students
(K-3rd grade) but could perhaps be effective at gathering data
from undergraduate students. This extension into post-
secondary education could provide insights into the differences
and similarities between engineering and non-engineering stu-
dents’ STEM interest and choice. Future studies investigating
interest and choice in post-secondary education might also ex-
tend work from childhood through college.

The instrument has been implemented within the educa-
tional environment because it is a space where students feel
safe and a teacher can easily assist if a student has difficulty
understanding the survey or becomes overwhelmed complet-
ing the survey. Situations of this nature were not reported
during this study; however, it would be important to have a
responsible adult who is able to respond to a student (e.g.,
reading a word, stopping the survey) in these types of situa-
tions. Furthermore, because the survey length is already sub-
stantial in order to collect data about each construct and sub-
scale, it is recommended that this instrument only be com-
bined with a limited number of additional items (e.g., demo-
graphics, career interest), similar to this study. If researchers
want to gather data beyond the SCCT constructs for STEM
subscales that require more lengthy instruments, then it would
be recommended to employ these instruments in a separate
sitting to help break up the time.

Future Uses of the Instrument

The SIC-STEM Survey 2.0 demonstrated satisfactory levels
of reliability and validity suggesting it can be utilized for larg-
er data collection with students. Specifically, this instrument
could provide individual schools with data that might aid ad-
ministrators in understanding the state of their students’ inter-
ests and choices toward STEM. Having this knowledge would
provide school system personnel with information to guide
ongoing curriculum development, as well as to encourage
partnerships with STEM employers and stakeholders.
Furthermore, by using data from this instrument to modify
or create new opportunities for students that are intentionally
designed with a goal of strengthening more influential SCCT
constructs in STEM subjects, more students might pursue
STEM fields and careers.
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