
Modeling and Measuring High School Students’ Computational
Thinking Practices in Science

Golnaz Arastoopour Irgens1 & Sugat Dabholkar2 & Connor Bain2
& Philip Woods2 & Kevin Hall2 & Hillary Swanson2

&

Michael Horn2
& Uri Wilensky2

Published online: 5 February 2020
# Springer Nature B.V. 2020

Abstract
Despite STEM education communities recognizing the importance of integrating computational thinking (CT) into high school
curricula, computation still remains a separate area of study in K-12 contexts. In addition, much of the research onCT has focused
on creating generally agreed-upon definitions and curricula, but few studies have empirically tested assessments or used con-
temporary learning sciences methods to do so. In this paper, we outline the implementation of an assessment approach for a 10-
day high school biology unit with computational thinking activities that examines student pre-post responses as well as responses
to embedded assessments throughout the unit. Using pre-post scores, we identified students with both positive and negative gains
and examined how each group’s CT practices developed as they engaged with the curricular unit. Our results show that (1)
students exhibited science and computational learning gains after engagingwith a science unit with computational models and (2)
that the use of embedded assessments and discourse analytics tools reveals how students think differently with computational
tools throughout the unit.
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Introduction

In recent decades, computational tools and methods have be-
come pervasive in mathematical and scientific fields (National
Research Council 2010). Tools such as mathematical and sta-
tistical models have expanded the range of phenomena that
are explored and have become necessary for analyzing in-
creasingly large data sets across disciplines (National
Academy of Sciences, National Academy of Engineering,,
and Institute of Medicine 2007). With these advances, entirely
new fields such as computational statistics, neuroinformatics,
and chemometrics have emerged. The varied applied uses of

computational tools across these fields have shown that future
scientists will not only need to know how to program but also
be knowledgeable about how information is stored and man-
aged, the possibilities and limitations of computational simu-
lations, and how to choose, use, and make sense of modeling
tools (Foster 2006).

As a result of these changes, science, technology, engineer-
ing, and mathematics (STEM) education communities have
recognized the importance of integrating computational think-
ing (CT) into school curricula (National Research Council
2012; NGSS Lead States 2013), and there are several impor-
tant efforts underway to more closely integrate CT skills and
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practices into mainstream science and mathematics class-
rooms such as Bootstrap (Schanzer et al. 2018; https://www.
bootstrapworld.org), GUTS (Lee et al. 2011; https://
teacherswithguts.org), and CT-STEM (Swanson et al. 2019;
https://ct-stem.northwestern.edu). However, while much of
the research on CT and CT in STEM has focused on
creating generally agreed-upon definitions and CT curricula
(Shute et al. 2017), few studies have empirically tested assess-
ments or used contemporary learning sciences methods to do
so (Grover and Pea 2013). In this paper, we outline the assess-
ment approach for a 10-day biology unit with computational
thinking activities. We examine both high school student pre-
post responses as well as responses to embedded assessments
throughout the unit. We explain how we coded responses for
CT-STEM discourse elements and then quantitatively mea-
sured the development of students’ CT-STEM practices over
time. We identify two groups of students: those who had pos-
itive gains on pre-posttests and those who had negative gains
on pre-posttests, and we examine how each group’s CT-
STEM practices developed as they engaged with the curricu-
lar unit.

Theory

Computational Literacy and Restructurations

As computational tools are becoming increasingly ubiquitous,
computational thinking is becoming an essential skill for ev-
eryone, not just computer scientists or STEM professionals.
Computer scientists have theoretically stressed the importance
of algorithmic thinking for decades (Dijkstra 1974; Knuth
1985), but in the early 1980s, Papert (1980) presented an
alternative empirical approach for investigating how children
think with computers. More recently, Wing (2006) popular-
ized the concept of computational thinking for K-12 educa-
tion, claiming that computational thinking should be as fun-
damental as reading, writing, and arithmetic. She characterizes
computational thinking as “thinking like a computer scientist”
(2006, p. 36) and as “formulating a problem and expressing its
solution(s) in such a way that a computer—human or
machine—can effectively carry out” (2017, p. 8). Although
Wing 2017 and others advocate for broadening participation
in CT, many of the current definitions and examples are rooted
in computer science culture and the term computational think-
ing is continually conflated with computer science and pro-
gramming (Grover and Pea 2013; Israel et al. 2015). But if
computational thinking is for everyone, then its definitions,
examples, and fundamental components should not be limited
to practices specific to computer scientists and be accessible to
broader populations.

Computational tools have changed how science is
practiced and have created new systems of knowledge that

make learning concepts easier. But even before the invention
of computers, scientists made representational changes that
had significant benefits for learners. For example, diSessa
(2001) considers howwhenGalileo was exploring the concept
of uniform motion, he described the relationships among dis-
tance, velocity, and time in terms of lengthy, text-based theo-
rems. With the invention of algebra, Galileo’s theorems were
transformed into a simpler representational form of distance
equaling velocity times time: d = v × t. This algebraic repre-
sentational transformation modified a complex notion into a
concept that students now learn in secondary school. This
alternative representation is what Wilensky and Papert
(2010) define as a restructuration of the domain: a change in
the representational infrastructure of how knowledge is exter-
nally expressed in a domain which affects how knowledge is
internally encoded in the mind. This is a powerful idea for the
design of learning environments because just as algebra made
Galileo’s difficult concepts more accessible to the public hun-
dreds of years ago, restructurations, particularly those involv-
ing computational tools, can make complex concepts more
accessible to students today.

One example of a computational infrastructure that can
help restructurate advanced science content is NetLogo, a pro-
gramming language for agent-based modeling (Wilensky
1999). Agent-based approaches have been shown to be an
effective tool for scientists to describe and explore phenomena
and for learners to understand phenomena (Abrahamson and
Wilensky 2007; Blikstein and Wilensky 2009; Sengupta and
Wilensky 2009). Contrary to traditional mathematical models
that use differential equations, agent-based models use a set of
computational rules to model phenomena. For example, the
Lotka-Volterra mathematical model is a time-dependent sys-
tem of differential equations that represent predator-prey dy-
namics. These are composed of variables like the population
sizes of predator and prey species and other parameters math-
ematically describing their interactions. Understanding the
evolution of this system over time typically depends on an
understanding of calculus. An agent-based model of the same
phenomenon has different fundamental components, in this
case, predator and prey agents, such as wolves and sheep.
Such agents have characteristics that describe their current
state and relatively simple rules that direct their actions and
interactions. Rather than relying on equations to describe
predator-prey phenomena, students can program rules
governing individual agent behavior to explore complex
macro-level patterns, such as extinction or overpopulation,
that emerge from micro-level interactions between a large
number of agents. Students draw on their intuitions about their
own behavior in the world in order to determine the rules they
program into their model. They can then run their model and
test and refine their thinking. This approach to learning about
population dynamics is beneficial for students who have not
had the opportunity to learn algebra and calculus or have
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found those infrastructures to be too complex to master. Thus,
what fundamentally makes NetLogo an example of a
restructuration is that it alters how information is understood
in a domain and in turn, provides a more accessible represen-
tation than traditional representations (Wilensky and Papert
2010).

Characterizing Computational Thinking and Learning
in STEM

Berland and Wilensky (2015) claim that computational think-
ing is, in fact, not monolithic and deeply affected by the per-
spective of a person and the context in which the person uses a
computational tool. The nature of computational thinking is
influenced by the domain and context in which it exists, which
varies from art to social sciences to STEM. In order to char-
acterize the nature of computational thinking in STEM do-
mains, Wilensky, Horn, and colleagues (Weintrop et al.
2016) outlined a taxonomy of CT-STEM practices. The re-
searchers developed the taxonomy by conducting a literature
review, examining the practices of teachers and students en-
gaging in computational math and science activities, and con-
sulting with teachers, researchers, and STEM professionals.
The taxonomy was based on real-world examples of compu-
tational thinking as it was practiced in STEM research disci-
plines, as opposed to decontextualized practices or practices
specific to computer science.

The taxonomy is comprised of four major strands: data
practices, modeling and simulation practices, computational
problem solving practices, and systems thinking practices.
Each of the four major strands contains five to seven practices.
For example, the data practices strand includes collecting data,
creating data, manipulating data, analyzing data, and visualiz-
ing data. One practical application of this taxonomy was pro-
viding an operational definition of CT in STEM that was sub-
sequently used to inform the design of curricula and assess-
ments. For example, a 2-h ecosystem stability biology lesson
was designed to engage students in CT-STEM practices and
focused on the modeling and simulation strand of the taxono-
my (Dabholkar et al. 2017). For this lesson, students explored
population dynamics in a NetLogo simulation of an ecosys-
tem and investigated population-level effects of parameters
for individual organisms, such as reproduction rates, by ex-
ploring the simulation with various parameter values.
Through their exploration, students learned about factors af-
fecting the stability of an ecosystem and developed computa-
tional practices related to using and assessing models
(Swanson et al. 2018).

Modeling and Measuring Computational Thinking

One key philosophy guiding the design of lessons that have
been developed using the CT-STEM taxonomy is

constructionism (Papert 1980; Papert and Harel 1991). A con-
structionist approach emphasizes creating objects that repre-
sent how a learner actively constructs and reconstructs their
understanding of a domain (Kafai 1995). The act of construc-
tion allows the learner to guide their learning through the
creation of personally meaningful and public artifacts. In
many cases, the object that is being constructed is computa-
tional in nature (Brady et al. 2015; Sengupta et al. 2013;
Sherin 2001; Wagh et al. 2017; Wilensky 2003). When con-
structed objects are computational, they are easily manipulat-
ed in multiple ways to represent conceptual ideas (Papert
1980). For example, in one study, students who used the
RANDOM function in their computer code to generate ran-
dom colors, numbers, or other chosen variables showed an
understanding of how to apply stochastic functions to achieve
desired results in their projects (Papert 1996). Thus, the crea-
tion of computational objects not only has the potential to
represent domain knowledge but also has the affordance of
representing such knowledge in multiple forms.

When learners have access to various representations of
concepts, they make decisions about how to connect among
these different representations and pieces of their knowledge.
The more connections a learner makes between objects, the
richer their understanding of the underlying concepts related
to that object and ultimately, a learner develops a high quality
relationship with the object and concepts (Wilensky 1991).
diSessa (1993) argues that more expert knowledge systems
have more reliable and productive connections between
knowledge elements than novice knowledge systems. In the
novice knowledge systems, elements are fragmented, loosely
interconnected, and cued inconsistently. In contrast, in the
expert knowledge system, elements are coherently related,
strongly connected, and cued more consistently in contexts
where they are productive. Learning—the progression from
novice to expert—occurs through the reorganization and re-
finements of connections in the knowledge system. Thus, the
novice knowledge system contains the foundational building
blocks that are viewed as productive for the construction of
expert knowledge systems. For example, foundational ele-
ments in the novice system could be based on intuition
(diSessa 1993), common sense (Sherin 2006), or personal
epistemologies (Hammer and Elby 2004).

Empirically, connected networks of novice and expert
knowledge systems can be visualized and analyzed through
network analysis tools. In general, network analyses trace the
flow of information through links and nodes. In social net-
work analysis, for example, researchers examine patterns
among people’s interactions, where the nodes of the network
represent people and links among the nodes represent how
strongly certain people are connected. To measure connec-
tions among cognitive elements, the nodes represent the
knowledge and skills of one individual and the links represent
the individual’s associations between knowledge. These
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nodes are elements identified in discourse, which could be in
the form of written documents, conversations, or actions. The
links are analytically determined when elements co-occur in
the discourse. Researchers have shown that co-occurrences of
concepts in a given segment of discourse data are good indi-
cators of cognitive connections (Arastoopour et al. 2016;
Lund and Burgess 1996).

One tool for developing such discourse networks is
Epistemic Network Analysis (ENA) (Shaffer et al. 2016;
Shaffer et al. 2009; Shaffer and Ruis 2017). ENA measures
when and how often learners make links between domain-
relevant elements during their work. It accomplishes this by
measuring the co-occurrences of discourse elements and
representing them in weighted network models. This means
that when someone repeatedly makes a link between elements
over time, the weight of the link between those elements is
greater. Furthermore, ENA enables researchers to compare
networks both visually and through summary statistics that
reflect the weighted structure of connections (Collier et al.
2016). Thus, researchers can use ENA to model discourse
networks and quantitatively compare the discourse networks
of individuals and groups of people in a variety of domains
(Arastoopour et al. 2014; Arastoopour and Shaffer 2013;
Bagley and Shaffer 2009; Hatfield 2015; Nash and Shaffer
2013). These affordances also allow researchers to make
claims about assessing student knowledge development
(Arastoopour et al. 2016).

Assessing CT-STEM Practices and Competencies

CT assessments have been developed in the context of block-
based programming, using tools such as Scratch (Bienkowski
et al. 2015; Brasiel et al. 2017; Brennan and Resnick 2012;
Grover et al. 2015; Moreno-León et al. 2017; Moreno-León
et al. 2015; Portelance and Bers 2015; Seiter and Foreman
2013) and Alice (Denner et al. 2014; Werner et al. 2012;
Zhong et al. 2016), game design, using tools such as
AgentSheets/AgentCubes (Koh et al. 2014a; Koh,
Nickerson, & Basawapatna, 2014; Webb 2010), and robotics
(Atmatzidou and Demetriadis 2016; Berland and Wilensky
2015; Bers et al. 2014). The CT assessments discussed in this
section focus on assessments used by researchers to evaluate
and measure learning.

A popular form of assessment is performance-based tests
that measure CT competencies and feature the same
computational tools that students use in their curricular units.
For example, Brennan and Resnick (2012) developed three
sets of Scratch design scenarios increasing in complexity.
Within each of these sets, students chose one of two Scratch
design projects that were framed as projects created by another
Scratch user. After choosing a project, students were asked to
explain the functionality of the project, how he or she would
extend the project, and fix a bug within the code.

These assessments, such as the ones by Brennan and
Resnick (2012), are deemed as authentic because they use
the same tools that used in the curriculum and are representa-
tive of practices and ways of thinking within a discipline that
are applicable outside of the classroom (Shaffer and Resnick
1999). However, some issues with these assessments that use
authentic tools are that they are time-consuming, subjective,
and sometimes inaccurate (Grover 2017). Moreover, typically
no pretest is administered and, as a result, there is no baseline
comparison for making claims about growth in student learn-
ing. Without a pretest, it is not clear whether students devel-
oped CT competencies as a result of participating in an inter-
vention. Some researchers have argued that a pretest is prob-
lematic for assessing computational thinking because students
require some degree of familiarity with the software in order to
engage effectively with the assessment (Webb 2010; Werner
et al. 2012). In other words, students need to be familiar with a
tool in order to take a pretest, but if they become familiar with
a tool before they take the pretest, then we forfeit a baseline-
level measure.

One solution to this problem is to design pre-post assess-
ments that use the same tools that students use in the unit, but
offer a user-friendly, customized version of the tool for assess-
ment purposes. These versions would be designed such that
students without any prior experience with the tool can still
productively engage with the assessment and their CT com-
petencies can be measured (Weintrop et al. 2014). If the tool
within the assessment is appropriately designed, then a pre-
post assessment will not only be measuring the change in
proficiency of using the computational tool but also the
change in CT competencies that are elicited with the use of a
particular tool within a curricular unit.

In addition to administering performance-based assess-
ments, researchers have examined final artifacts (Bers et al.
2014; Moreno-León et al. 2015) or the use of different CT
practices/competencies over time (Koh et al. 2014a; Koh
et al. 2014b). Although Grover (2017) advocates the use of
multiple and multi-faceted measures, most studies do not con-
sider such measurements holistically. In one recent study that
is most aligned with our work, Basu et al. (2014) designed a
CT measurement approach for an ecology curricular unit
using the CTSiM platform. The assessment combined pre-
post scores and student work. In particular, they examined
correlations among pre-post scores, quality of their computa-
tional models, and the evolution of their models over time.
Similarly, we examined students’ pre-post scores from
performance-based assessments, but in our approach, we also
examined the relationship between students’ assessment
scores and their responses to embedded assessment questions
in the unit using discourse analytics.

In this study, we designed a curricular unit, From
Ecosystems to Speciation, with learning objectives based on
the CT-STEM taxonomy. In conjunction with the learning

J Sci Educ Technol (2020) 29:136–160 139



objectives, we developed pre-post assessments and embedded
assessment prompts throughout the unit. We implemented this
10-day unit in one high school classroom with 121 students
and conducted analyses on 41 students who responded to all
pre-post questions. To score student pre-post responses, we
developed rubrics and then separated students into positive
and negative gain groups. We then examined the embedded
curricular responses of one positive gain student and one neg-
ative gain student both qualitatively and as discourse net-
works. To examine learning at a larger scale, we quantitatively
examined the curricular responses of all 41 students to deter-
mine how both positive gain and negative gain students de-
veloped or did not develop CT-STEM practices. When iden-
tifying student CT-STEM practices, we used the taxonomy as
a guiding framework and thematic analysis (Braun and Clarke
2006) to identify student-constructed practices that fit under
the broader taxonomy categories. This top-down, bottom-up
approach allowed for the identification of emergent student-
constructed CT-STEM practices but still within the categories
of the taxonomy. The research questions in this study are as
follows: (1) Do students demonstrate gains on a pre-post CT-
STEM assessment after participating in From Ecosystems to
Speciation? (2) How do students’ CT-STEM practices change
over time when participating in From Ecosystems to
Speciation as represented by ENA discourse networks? (3)
Are students’ pre and post scores associated with particular
CT-STEM practices as represented by ENA discourse
networks?

Methods

Participants and Setting

From Ecosystems to Speciation is a 10-day biology unit fo-
cused on predator-prey dynamics, competition among species,
carrying capacity, genetic drift, and natural selection and
builds on previous ecology units for high school students
(Hall and Wilensky 2017; Wilensky et al. 2012). Activities
that took place online were split into lessons and each lesson
consisted of 5–7 pages. Typically, on each page, students read
a prompt with a description of a NetLogo (Wilensky 1999)
model and suggestions for exploration. Then, students an-
swered 2–5 embedded assessment questions on the same page
on the basis of their exploration. The teacher, Ms. Santiago,
facilitated student learning by walking around the classroom
to further probe and talk through the assessment questions
with students or offer technical assistance for exploring the
models. She also conducted class-level discussions and dem-
onstrations several times throughout the unit to check student
understanding and explain concepts. On the first and last days
of the unit, students take pre-post assessments. Figure 1 shows
one page of lesson 2 in which students explored a model

(using the drop-down menu and sliders to change parameters)
and answered two embedded assessment questions.

We examined students’ responses to embedded assessment
questions from the four lessons the students completed. The
first lesson was designed for students to gather information
from a real-world case study: the wolf and moose populations
on Isle Royale, a uniquely isolated ecosystem in Michigan. In
this lesson, students developed questions about factors that
might be influencing population size changes over time and
identified programmable rules to model such ecosystems. In
the second lesson, students explored a NetLogo model of the
Isle Royale wolf-moose ecosystem to learn about predator-
prey relationships, interdependence of populations in an eco-
system, and ecosystem stability. The third lesson focused on
competition between individuals in a population for resources.
In this lesson, we used HubNet architecture that allows a serv-
er computer to host multiple client model (Wilensky and
Stroup 1999, 2002). The teacher controlled the server model,
and each student controlled an individual bug in the client
models. As students engaged with the model, they learned
how consumer/producer interactions for limited resources
leads to a competition for those resources, even when there
is no intentional effort by individuals to compete. In the fourth
lesson, students moved beyond individual competition and
learned how populations compete against each other by ap-
plying the concepts of stability and change in population sizes
over time, direct and indirect interactions between individuals,
and immediate and delayed outcomes in two different
ecosystems.

Data Collection

CT-STEM units are hosted by an online platform. Students
logged into their individual accounts using Chromebooks.
Students’ responses to online embedded assessment questions
in the lessons and their pre-posttest responses were saved and
anonymized.

Pre-Post Assessments

We developed two forms, A and B, for the pre-post assess-
ments. In each form, students read a description of a NetLogo
model and explored the model. Then, students answered sev-
en questions related to the model that were aligned with CT-
STEM learning objectives. Themodel in formA simulated the
spread of contagious viruses among people (Wilensky 1998)
but was redesigned to include instructions embedded in the
model and the ability to change the underlying code was re-
moved (Fig. 2). The model in form B simulated the spread of
pollution (Felsen and Wilensky 2007) and the relationships
among people, airborne pollution, and green landscape ele-
ments (Fig. 3).
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Both models contained three output components that were
represented graphically (virus: sick, immune, and healthy peo-
ple; pollution: trees, people, pollution), featured oscillations
among populations of agents, and were about how people are
affected by something in the environment. Students also an-
swered almost identically worded questions on each form; the
wording was only altered to identify the appropriate agents.
An analysis of the pre and post responses for each question
showed no significant differences between mean student
scores from form A and mean student scores from form B

(Table 1). For these reasons, we considered these models to
be at similar difficulty levels for CT-STEM assessment pur-
poses, and thus, form A and form B were considered to be
isomorphic forms.

We randomly distributed formA to half the students for the
pre assessment and form B to the remaining half. For the post
assessment, the students who received form A for the pretest
received form B for the posttest and those who received form
B for the pretest received form A for the posttest. Because not
all students completed the unit, we analyzed responses for

Fig. 1 One page from lesson 2 in which students explored a NetLogo model of wolf-moose predator-prey relationships. In this version of the model,
students added plants as agents and discovered how to stabilize the ecosystem
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three questions that were aligned with the main learning ob-
jectives in the lessons. Specifically, we omitted two questions

asking students how changing parameters affected the model
and to identify errors in code. Both questions were written at a

Fig. 2 NetLogo virus model used
in form A assessment

Fig. 3 NetLogo pollution model
used in form B assessment
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level that was more advanced than students had an opportuni-
ty to experience in the unit. We developed a rubric for each
question based on learning objectives as well as common
themes in student responses. Students received one point for
every competency that was identified in the rubrics. We then
summed the points across all questions for each student for
their pre and post assessment. We calculated the difference
scores (post minus pre) for each student. Students who de-
creased in their scores from pre to post were categorized as
“negative gain” and those who increased in their scores from
pre to post were categorized as “positive gain.”Rubrics can be
viewed in the Appendix.

Discourse Network Analysis of Embedded Assessment
Questions in the Unit

Qualitative Coding

We used thematic analysis (Braun and Clarke 2006) to
search for student responses that were related to the CT-
STEM taxonomy. Braun and Clarke (2006) distinguish
between a deductive top-down analysis, that is driven by
theoretical frameworks and research questions, and an in-
ductive bottom-up analysis, that is mainly data-driven and
not bound to the researcher’s theoretical interests.1 Our
approach used both a bottom-up analysis that allowed
for identifying emergent student CT-STEM practices that
were not identified a priori and also a top-down analysis
in which such student practices fit broadly within the pre-
defined taxonomy categories. In addition to reading

student responses, we used word frequencies, n-grams
(frequencies of phrases in the text), and topic modeling
to examine the language in the data. Based on this inves-
tigation, we developed a coding scheme of seven dis-
course elements that were related to students’ CT-STEM
practices from the taxonomy (Table 2). We used this cod-
ing scheme to code student responses and the questions.

In this study, we collected all 41 students’ responses to
embedded assessment questions within the unit, which to-
taled to 1766 student responses. Because we collected such
a large number of responses, we developed an automated
coding algorithm to code student responses. We then used
nCoder, an online software for developing and testing au-
tomated coding schemes, to test inter-rater reliability
among two human coders and the automated algorithm
(Eagan et al. 2017; Shaffer et al. 2015). In addition, for
providing a usable platform to test inter-rater reliability,
the nCoder provides a statistic, rho, that functions like a
p value. If rho is less than .05, then the results from the
sample which was coded can be generalized to a larger
dataset (Shaffer 2017). To automate the coding scheme,
we developed key words and regular expressions to enable
automated detection for each code. For example, one reg-
ular expression for automatically coding experimentation
includes searching for the words “to see,” but not “to see
who.”We measured the reliability among two human raters
and the computer. When the human and the computer
disagreed, we refined the automated algorithm until we
reached acceptable agreement and rho values using an un-
used set of student responses. Once human and the com-
puter reached acceptable agreement kappa and rho values
on a sample of data, we concluded that the code was con-
ceptually reliable and allowed the automated algorithm to
code the full dataset.

The inter-rater reliability results show that all but three
pairwise agreements among rater one, rater two, and the

1 Braun & Clark (2006) note that when researchers use a bottom-up approach,
they do not completely analyze their data in an “epistemological vacuum”
because they “can not free themselves [completely] of their theoretical and
epistemological commitments.” Even if researchers do not explicitly take a
theoretical or epistemological stance, their implicit biases and points of view
shape the analysis of the data.

Table 1 Pre and post assessment t
test results comparing student
scores on form A and form B for
each question

Question Pre
or
post

Form Mean SD Statistic

1. Notice the oscillations (the graph moving up and down)
in the graph. Why do these oscillations occur? Are there
patterns in how the graph moves up and down?

Pre A 0.97 0.71 t(39) = 1.63;
p > .05B 0.69 0.67

Post A 0.39 0.99 t(39) = 1.32;
p > .05B 0.10 0.07

2. List at least two ways that this model makes
simplifications compared to how these viruses/pollution
and other related factors behave in the real world.

Pre A 0.37 0.50 t(39) = 0.33;
p > .05B 0.32 0.48

Post A 0.55 0.60 t(39) = 0.18;
p > .05B 0.58 0.61

3. Given these simplifications and your understanding of
the model, why and how is this model useful for the
study of viruses/pollution?

Pre A 0.50 0.80 t(39) = 0.56;
p > .05B 0.63 0.69

Post A 0.68 0.58 t(39) = 0.44;
p > .05B 0.77 0.69
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computer had rho values of less than .05, which means
the kappa statistic from the coded sample can be general-
ized to the entire dataset (Table 3). Cohen’s kappa values
ranged from .60–1.0 and sample sizes for each code for
the inter-rater reliability tests ranged from 50 to 100
excerpts.

Epistemic Network Analysis: Network Representations

After coding for CT-STEM discourse elements, we used
Epistemic Network Analysis (ENA) to measure and visu-
alize the connections students made across their discourse,
as defined by the coding scheme. ENA measures the

Table 2 Coding scheme of seven CT-STEM discourse elements found in From Ecosystems to Speciation

CT-STEM discourse
element

Definition Student response example Curriculum question example

Agents Identifying agents that are used in any of
the models in the unit. This does not
have to be an explicit reference to the
model. Examples include wolves,
moose, plants, bugs, birds, and
invaders.

“If there is too much wolves then there is
little moose and if there is too much
moose then there is little wolves.”

“When a spot of green grass is eaten by
your bug, what do you think you’ll see
happen in that spot?”

Agent actions Describing one or more agent actions in
any of the models in the unit.
Examples include eating, hunting,
dying, and reproducing.

“If there was another predator trying to
also eat the moose there would not be
as much moose for the wolves and the
other predators to eat there would not
be enough food for both predators.”

“Were all bugs in the ecosystem equally
successful at finding food? Use data to
support your claim.”

Biological systems Referring to a biological phenomenon
such as carrying capacity, ecosystem
stability, or competition among
species.

“Well from what I believe the cause to
this competition is the grass because
bugs needs to eat in order to gain
energy but there’s too many bugs so
they compete each other in order to
feed themselves.”

“How did the outcome of this
competition compare to the previous
ones?”

Experimentation Describing actions taken to
experiment/explore a model. Or refer-
ring to concepts/actions related to sci-
entific experimentation such as mak-
ing and testing predictions.

“I made these changes so I could see
where the two intersected quicker.”

“One is to make predictions and the other
is to not go outside and study them one
by one.”

“Sketch the shape of the graph that you
predict you will see for the size of the
wolf population between 1959 and
2010.”

Justifications Justifying a statement or providing a
reason for an action or event.

“If the moose population goes down that
means the wolves are going to go
down because they use moose to
survive that’s their food.”

“I changed these changes because I
thought the moose would change and
decrease but it did not seem to
happen.”

“Sincemoose cannot typically migrate on
or off the island, what other factors
might cause the size of the moose
population to change from year to
year?”

Quantitative amount Using numbers to represent an amount. “About 500 is the maximum number of
moose.”

NA

Temporal change Describing a change in terms of time.
May also include the description of the
rate of time.

“Well for what I see the difference is that
with the plants moose’s population
rapidly go up so fast and without the
plants they still go up but after a while
they start to die slowly and the wolves
population go up and that makes it
unstable.”

“Describe the relationship between the
moose and plant populations over
time. Be as detailed as possible in your
description.”

Directional change Describing a change and specifying the
direction of change such as an increase
or decrease.

“When the population stabilizes the
average death rate would decrease and
the average birth rate of the bugs will
increase causing the population to
increase even more.”

“Which of the populations increase first?
Explain why you think this might be
the case.”

Graphs Referring to graphical forms of data from
a model.

“When the graph reached its highest
point the animal population did not
overlap each other when one
population was higher than other one
was at its lowest point it goes as a
cycle.”

“Looking at the graph, do the peaks
(highest point) of the animal
populations overlap? If not describe
what you see.”
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connections between discourse elements, or codes, by
quantifying the co-occurrence of those elements within a
defined stanza. Stanzas are collections of utterances such
that the utterances within a stanza are assumed to be
closely related topically. For any two codes, the strength
of their association in a network is the frequency of their
co-occurrence in every accumulated stanza over time. In
this study, a stanza was defined as two utterances: the
embedded assessment question and the student response.
Thus, co-occurrences of codes were counted if they oc-
curred within a question, within the student’s response, or
between the question and the student’s response. Figure 4
shows an example of one stanza for one student, Carrie.
In this example, Carrie had co-occurrences within her ut-
terance (agent actions and justifications) and also between
her utterance and the assessment question (agent actions
and agents, agent actions and bio systems, justifications
and bio systems, and justifications and agents). We view
this as a “conversation” between the curricular unit and
the student.

To store the co-occurrences, ENA constructs an adjacen-
cy matrix for each stanza, which is a symmetric matrix such
that both the rows and columns are codes. Every entry in the
matrix represents howmany times a code represented in that
row co-occurs with the code represented in that column.
These matrices are then summed to obtain a cumulative
adjacency matrix that contains all the co-occurrences that
occurred in one person’s discourse over all stanzas. For ex-
ample, Fig. 5 shows the cumulative adjacency matrix for
Carrie.

For mathematical purposes, Carrie’s matrix is
“unwrapped” or reshaped such that each row is appended
to the one above it. Because Carrie’s matrix is symmetric,
only the numbers above the diagonal (the upper triangle)
in the matrix are unwrapped. Carrie’s unwrapped matrix is
represented as a vector: [1, 0, 1, 2, 1, 0]. This vector is then
converted into a normalized vector by dividing each num-
ber in the vector by its magnitude. This normalized vector
would be represented as [.38, 0, .38, .76, .38, 0]. Both vec-
tors show that the co-occurrence which occurred most fre-
quently in Carrie’s discourse was between bio systems and
agent actions at a value of 2.0 and a magnitude-
normalized value of .76. These values in this normalized
cumulative adjacency vector are visualized as weighted
links in Carrie’s network (Fig. 6).

One way to interpret the weighted links is to convert the
weights to percentages. In Carrie’s network, the magnitude of
the vector containing the normalized, weighted links can be

calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:382 þ 02 þ :382 þ :762 þ :382 þ 02
p

¼ ffiffiffi

1
p ¼ 1 .

Because the magnitude of the vector equals 1 unit, the squared
components of the vector can be interpreted as percentages.
For example, the squared value of the strongest weighted link
in Carrie’s network is .762 = .58, which means that 58% of
Carrie’s network is weighted towards the link between bio
systems and agent actions. The remaining three connections
each constitute 15% of Carrie’s network.

Table 3 Inter-rater reliability (Cohen’s kappa) scores for two human
coders (H1 and H2) and the automated coding algorithm (computer)

Code H1 v. H2 H1 v. computer H2 v. computer

Agents .92* .92* .84*

Agent actions .68 .60 .84*

Biological systems .86* .87* .82*

Experimentation .83* .94* .88*

Justifications .95* .91* .86*

Quantitative amount .90* 1.0* .90*

Temporal change .89* 1.0* .89*

Directional change .75* .69 .95*

Graphs 1.0* 1.0* 1.0*

*rho < .05

Fig. 4 Example of one stanza in
the response data of one student,
Carrie
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Epistemic Network Analysis: Centroid Representations

The network representations are useful when examining one,
two, or three discourse networks. However, this approach is
difficult when comparing many networks, and so ENA offers
an alternative representation in which the centroid (center of
mass) of each network is calculated and plotted in a two-
dimensional space. To create a space where all networks and
centroids can be equally compared, the locations of the nodes
must be fixed for all networks.

In this study, the location of the nodes are determined by
conducting a mean-rotation of the data in which the mean
centroids of the positive gain students and the mean centroids
of the negative gain students were calculated and plotted to
create a line in order to maximize variance between the two
groups. This line defined the first dimension (x-axis) and the
mean-rotation loadings determined the location of the nodes
in this first dimension (an optimization routine is also used).

The second dimension (y-axis) was calculated by performing
a dimensional reduction using singular value decomposition
(SVD) to rotate the vectors to show the greatest variance
among the matrices and also be orthogonal to the mean-
rotated first dimension. This second dimension is used for
interpretation purposes so that the networks can be visualized
in two dimensions. It is for interpretation purposes because the
first dimension consisted of a mean-rotation in which the
mean of each group is placed on the x-axis and is orthogonal
to the second dimension. Because of the orthogonal restric-
tion, there will be no differences in the means of the groups in
the second dimension (for more detailed mathematical
explanations of ENA, see Shaffer et al. 2016, 2009; Shaffer
and Ruis 2017).

For example, Fig. 7a shows Carrie’s network from above
(blue) with the approximate center of mass location in a con-
structed two-dimensional space. Figure 7a also shows a sec-
ond student’s network with their approximate center of mass
(red). Figure 7b shows 20 additional students’ centers of mass
projected into the same two-dimensional space without show-
ing their network representations. Without examining their
network representations, we can infer that the students with
centers of mass that are located more to the left make more
connections with bio systems and agent actions, and the stu-
dents with centers of mass that are more to the right make
more connections with agents and justifications. Those who
have centers of mass towards the positive y-axis make more
connections with bio systems and agents and those who have
centers of mass towards the negative y-axis make more con-
nections with agent actions and justifications.

Results

Pre-Post Assessments

There was a statistically significant increase from pretest (M =
1.80, SD = 1.42) to posttest (M = 2.48, SD = 1.31) scores
(t(40) = 2.38, p < .05) with an effect size (Cohen’s d) of .68
(Fig. 8). A Cohen’s d of .68 indicates that 75% of the posttest
group will be above the mean of the pretest group (Cohen’s
U3), 72% of the two groups will overlap, and there is a 68%
chance that a person picked at random from the posttest group
will have a higher score than a person picked at random from
the pretest group (probability of superiority). The distribution
of student pre and post score differences (post score minus pre
score) ranged from − 4 to + 4 (Fig. 9).

These results indicated that (1) on average, students had
learning gains from pre to post after participating in the unit
and (2) the assessment was able to detect this gain.

Figure 10 shows pre and post responses for two example
students. One student, Julian, had a positive gain of + 2, and
one student, Pablo, had a negative gain of − 2. Both students

Fig. 5 Carrie’s cumulative adjacency matrix showing the number of co-
occurrences for each pair of codes that appears in all of her discourse
(top). Carrie’s unwrapped cumulative adjacency matrix with only the
numbers above the diagonal (bottom)

Fig. 6 Carrie’s weighted discourse network representation of her
cumulative adjacency matrix
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received the virus model for the pretest and the pollution mod-
el for the posttest.

Curricular Activities: a Focus on Two Students

Between the pre- and posttest, students engaged with the CT-
STEM biology curricular unit. Students explored models and
answered questions individually on his/her own computer but
were encouraged to work together. In lesson 1, students read
about Isle Royale, an island in Michigan with a wolf and
moose population. Students were asked to think about direct
and indirect relationships among the two populations that are
isolated on the island. In what follows, we focus on two

students’ responses as they engaged with the curricular unit:
Julian, who had positive gains from pre to post, and Pablo,
who had negative gains from pre to post. Although Julian
represented the majority of students who had increases from
pre to post, we examined both students to get a sense of how
both high and low performing students engaged in CT-STEM
practices.

Lesson 1: Julian

Julian (positive gain) explained that the wolf population may
increase when the moose populations also increases because
“more wolves will be able to eat.” He also added that the wolf
population may decrease later “because of the low amount of
moose left on the island” indicating the effect over time of
predator-prey population dynamics. Julian was able to repre-
sent his ideas in the form of oscillations on a graph (Fig. 11).
Although the oscillations do not show a time lag between the
two populations which is typical in predator-prey relation-
ships, the graph shows how the size of the populations in-
crease and decrease over time and have dependencies. Thus,
Julian reasoned through the predator-prey relationships in a
uniquely isolated ecosystem and provided explanations with
justifications for how populations change over time.

Lesson 1: Pablo

Pablo (negative gain) also reasoned through the relationships
among wolves and moose on Isle Royale, but his responses
did not provide detailed information. For example, he ex-
plained that the wolf population will decrease simply “based
on the limited [amount] of food there.” While his statement

Fig. 7 a Carrie’s (blue) and another student’s network (red) overlaid in a
two-dimensional space after a dimensional reduction on students’
normalized adjacency vectors. Approximate centers of mass are also
shown for each student’s network. b Carrie’s (blue) and another

student’s (red) approximate centers of mass along with 20 additional
students (gray) in the fixed two-dimensional space that can be
interpreted by the location of the nodes

Fig. 8 Mean pre and post assessment scores for 41 students who
answered all pre and post questions. Bars represent confidence intervals
for a normal t distribution. There was a significant difference between pre
and post scores (p < .05) with an effect size of .68
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was true, Pablo did not describe the fluctuating relationships
among moose and wolf populations. When asked to consider
how a change in the size of population might affect another
population, Pablo responded that “if that certain animal is
there to [too] and just disappears or just dies period or gets
eaten” then one population can affect another. Pablo’s ideas

were further represented in his graph in which both wolf and
moose populations decreased linearly and did not fluctuate
over time. Thus, as shown in his responses, Pablo identified
relationships among predators and prey but did not provide
descriptions about the dependencies and indirect effects
among the two populations over time.

Lesson 2: Julian

In lesson 2, students examined predator-prey relationships
further by using the Wolf-Moose Predation NetLogo model.
This model simulates interactions between wolf and moose
similar to those on Isle Royale. Using the model, students
explored concepts of population stability.

When asked about the changes he made to model and the
results of his changes, Julian explained that he “increased the
amount of wolves” and then explained the “moose population
had at first decreased and than [then] the wolves population
increased. After time pasted [past] the wolves started to quick-
ly decrease until they died out. And because of that the moose
population quickly increased.” Here, Julian provided a chain
of reasoning which described what he saw in the model over

Fig. 9 Distribution of pre-post score differences (post minus pre score)
for each student ranging from − 4 to + 4

Question Student Pre Response Post Response 
1) Notice the oscillations (the 

graph moving up and down) in the 

graph. Why do these oscillations 

occur? Are there patterns in how 

the graph moves up and down?

Julian  (positive 

gain)

these oscillations occur 

because it tells you how 

many people are sick, 

healthy, and immune to the 

virus. some peaks occur 

before other groups because 

when there are more sick it 

effect with all the other 

groups like for example the 

healthy and the immune

these oscillations occur 

because when the pollution 

rate increases the level 

increases, and when there are 

more people the population 

level also increase, but when 

pollution and population are 

at its highest then the lower 

the tree population is

Pablo (negative 

gain)

the peaks of some people is 

that maybe only a few can 

not catch this type of stuff 

other then that a more people 

are sick and the others are 

just not having it in any ways

they are going up and down 

on the graph what so ever in 

the graph

2) List at least two ways that this 

model makes simplifications 

compared to how these 

viruses/pollution and other related 

factors behave in the real world.

Julian (positive 

gain)

these virus behave different 

in the real world then in the 

model because more and 

more people inteact with 

each other causing it to make 

more and more people 

become infect with either 

disease.

the model doesn 't show the 

whole world is only shows a 

country, and the model doesn 

't show the real behavior of 

people and animals

Pablo (negative 

gain)

well u can tell if its real by 

going to look at the real 

studies of both of em and 

looking at it / ovsevering 

[observing] both of the 

diseases

it will just get teste [tested] 

to see if everything on the 

model was true

3) Given these simplifications and 

your understanding of the model, 

why and how is this model useful 

for the study of viruses/pollution? 

Julian (positive 

gain)

models are useful for the 

study of viruses because it 

tells you possible ways on 

how each virus can infect an 

large group of people in 

larger scales

the model is useful for 

studying pollution because it 

tells you possible effects it 

could have on a country or 

even the whole world

Pablo (negative 

gain)

its useful because it lines up 

the data and everything else 

so u can see what yours 

doing and when youre doing 

it and when youre doing 

something wrong in any way

its useful because it lets us 

know whats polly n not 

Fig. 10 Julian’s (positive gain
student) and Pablo’s (negative
gain student) pre and post
responses
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time. When asked why he made the changes, Julian explained
that he thought if he increased the wolf population then “the
ecosystem will become stabilized.” However, he discovered
that “It didn’t work instead the wolves died out and the moose
population increased and inherited the earth.” This shows that
Julian initially predicted that increasing the wolf population
would stabilize the ecosystem potentially because the wolves
would eat more moose and the moose would not overpopu-
late. However, as Julian indicated, simply increasing the size
of the wolf population did not stabilize the ecosystem.

When Julian added plants to the model, he identified an
indirect relationship among plants and wolves: “when there is
a lot of plants the animals that eat and are hunted by wolves
increase and giving the wolves more food to hunt.” Here,
Julian is explaining that when there is a plentiful amount of
plants, thenmoose will have enough food to eat and the size of
the moose population will increase. As a result, the wolves
will have more opportunities to hunt and eat moose. Although
it is possible to adjust the parameters to make the ecosystem
stable, Julian was unable to do so. However, he identified the
relationships among wolves, moose, and plants and correctly
described why the ecosystem was classified as unstable. At
the conclusion of the lesson, Julian reflected on the use of
models in scientific fields. He claimed that models are useful
for scientists because “a person can’t live over 100 years so
they can’t see how much a population might increase over

those years.” In other words, Julian recognized how compu-
tational models can simulate future effects and assist scientists
to “find out why a certain population might have died out or
how a population might increase over time.”

Lesson 2: Pablo

Based on his responses at the start of the lesson, Pablo also
identified the system as unstable. However, he did not provide
as deep of a reasoning process as Julian. Pablo claimed, “I
would describe this as a [an] unstable ecosystem based on
the graph.” Pablo refers to the graph as a justification for
why the ecosystem is unstable but does not provide details
about the size of the populations and which populations have
become extinct. When asked about his changes to the model,
Pablo explained that he “changed the reproduce thing to both
of them” to see if he could stabilize the ecosystem but did not
provide a justification for why he made changes to the repro-
duction parameter. He explained that he wasn’t able to stabi-
lize the ecosystem, but that he “got it a little way there in a way
based on the graph.” Again, Pablo refers to the graph gener-
ally to explain why the ecosystem was unstable and indicated
that although the ecosystem was unstable, he was able to sus-
tain the population longer based on the changes hemade to the
reproduction parameter (Fig. 12).

Fig. 11 Sample of responses
from Julian (positive gain) and
Pablo (negative gain) in lesson 1
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When Pablo added plants to the model, he claimed “the
plants keep the ecosystem okay without plants it makes it
worse” without explaining what it means for the ecosystem
to become worse. At the conclusion of the lesson, Pablo
reflected on the use of models in scientific fields. He said that
scientists “use models like these to test certain things because
if they didn’t it in real life it probably mess up a lot of things.”
Overall in this lesson, Pablo identified an unstable ecosystem,
described changes he made to the model to affect stability, and
realized that models can be used for experimentation and

simulation purposes. However, Pablo did not explain the re-
lationships among wolves, moose, and plants, and how the
phenomena of stability are affected by the predator-prey pop-
ulation relationships.

Lesson 3: Julian

In lesson 3, students participated in a NetLogo HubNet model
in which they were all connected to a shared model managed
by the teacher (Wilensky and Stroup 1999, 2002). In the first

Fig. 12 Sample of responses
from Julian (positive gain) and
Pablo (negative gain) in lesson 2
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model, each student controlled a bug which wanders a world
and eats grass to gain energy. In the second model, students
did not control the bugs and instead observed automated bugs
eat grass. Then, students compared histograms of energy dis-
tributions for each model. The goal of this lesson was to learn
how variation can naturally arise in a population and to illus-
trate how competition can occur among individuals evenwith-
out intent (Fig. 13).

When asked about the first model in which students were
controlling the bugs, Julian responded that people were not
able to get an equal amount of food “because some people had
gotten more than someone else, this is because people saw it
has a competition.” He was able to represent the distribution
of energy gained in the class by drawing a sketch of the gen-
eral histogram. When asked about the second model in which
the bugs were automated, Julian responded that there was still
a competition occurring “because all the bugs raced to get the
most amount of energy so they wouldn’t die from low amount
of energy” and explained that competition still occurs al-
though it is not intentional “because at one point everyone is
just trying to survive and live for many years before going to
the after life.” Although Julian did not explain the difference
in variation of energy gained in the two models, he indicated
that both intentional and unintentional competition occur in

ecosystems because of organisms needing resources to
survive.

Lesson 3: Pablo

In contrast, Pablo did not specifically identify that competition
nor did he explain why the student-controlled bugs were not
able to receive equal amounts of food. However, he did iden-
tify that “based on how much grass there is there’s really no
way u [you] can get a equal amount of food.” When asked to
represent the distribution of energy gained in the class, Pablo
left the histogram blank. At the end of the lesson, Pablo iden-
tified that competition occurred in both the student-controlled
and automated bug models: “even if there [they’re] not con-
trolled we still get the same resolution.” However, Pablo did
not describe the difference in variation of energy gained in the
two models and did not explain why competition occurred in
both models.

Discourse Networks: Julian

As shown by the student responses above, Julian used data
from the model to explain biological systems such as ecosys-
tem stability and competition among individuals. As he

Fig. 13 Sample of responses
from Julian (positive gain) and
Pablo (negative gain) in lesson 3
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progressed through the lessons, he explained relationships
among the agents in the models and how models are useful
for experimentation and for examining change over time.

We represented Julian’s connections among computational
and science concepts in his responses as discourse networks
accumulated over time (Fig. 14). Julian’s network from lesson
1 shows strongly weighted connections among agents, agent
actions, justifications, and directional change. His lesson 1
network also showed less weighted connections between
quantitative amounts, agents, and graphs. This indicates that
Julian was focused on justifying agent actions in terms of their
increase or decrease in population size. His lesson 2 network
showed the addition of connections among bio systems, ex-
perimentation, and temporal change. This change in Julian’s
network occurred because in lesson 2, he made connections
between agent interactions in the model and the biological
concept of ecosystem stability. In lesson 3, Julian added more
connections to quantitative amount and strengthened connec-
tions to experimentation and temporal change as indicated by
the thicker links.

Discourse Networks: Pablo

Pablo also made connections among computational and sci-
ence concepts in his responses. He focused on agents and

agent actions and had few explanations or justifications for
agent actions or biological phenomena. As he progressed
through the lessons, he provided information as to how
models are useful for simulated experimentation and that they
are used to not “mess up a lot of things in real life” but did not
focus on examining change over time. Pablo’s connections
among computational and science concepts in his responses
are represented as discourse networks accumulated over time
(Fig. 15). His network from lesson 1 shows higher weighted
connections between agents and agent actions and additional
connections among justifications, biological systems, and
agents. This indicates that Pablo was focused on justifying
agent actions and identifying biological phenomena. Most of
the connections that Pablo made occurred in lesson 1. As he
progressed through the lessons, he addedminimal connections
and these were mostly to experimentation because he
discussed how scientists can use models for experimental pur-
poses. His final network is more heavily weighted with agent
and agent actions and less with justifications and directional/
temporal change.

In addition to having different patterns of connections, both
students had differences in terms of their network densities
and average weighted links. Julian’s network was more dense
than Pablo’s network. At the end of the curricular unit, Julian’s
discourse network had a density of .92 and Pablo’s discourse

Fig. 14 Julian’s (positive gain student) accumulated weighted discourse networks from lessons 1, 2, and 3
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network had a density of .54. Julian’s network also had more
highly weighted connections. At the end of the curricular unit,
the values of the weighted links in Julian’s discourse network
had a mean of .12 and the links in Pablo’s discourse network
had a mean of .08.

Curricular Activities: All Students

In this section, we examined the discourse of all 41 students
who completed the pre and post assessments. Figure 16 shows
the mean discourse network for negative/zero gain students
and Fig. 17 shows the mean discourse network for positive
gain students. The networks show that negative/zero gain stu-
dents had the strongest connections among agents, agent ac-
tions, and justifications in their networks. Positive gain stu-
dents also had connections among these three elements.
However, on average, positive gain students had stronger con-
nections to justifications and also links to directional change
compared to negative/zero gain students.

Figure 18 shows the subtracted mean discourse networks
for positive and negative/zero gain students. The subtracted
network representation shows that on average, students who
had positive gains on the assessment made more connections
among justifications, agents, and biological systems as well as
among directional and temporal changes. In contrast, students

who had negative/zero gains on the assessment made more
connections with agent and agent actions and were less likely
to make connections to biological systems and justifications
when compared to the positive gain students.

The differences between the two networks in terms of the
values of their weighted links are also shown. These values are
shown for the top six largest differences between positive gain
and negative/zero gain students. The largest difference be-
tween positive and negative/zero gain student networks was

Fig. 15 Pablo’s (negative gain student) accumulated weighted discourse networks from lessons 1, 2, and 3

Fig. 16 Mean discourse network for negative/zero gain students. Only
the strongest connections with weighted links values greater than 0.1 are
shown for interpretability purposes and to show the strongest connections
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the link between agents and justifications with a value of .10
in favor of the positive gain students. The next largest differ-
ence was the link between agent actions and quantitative
amount with a value of .07 and in favor the negative/zero gain
students. The next four largest differences were in favor of the
positive gain students between agents and directional change
(.06), biological systems and justifications (.06), agents and
temporal change (.05), and justifications and directional
change (.05).

According to the node locations and the loading vectors, a
high score on the x-axis represents connections to among
agents, directional change, and justifications, where as a low
score on the x-axis represents connections to agents and agent
actions.

Examining the centroids of all 41 students provides a larger
scale representation of the network results (Fig. 19). Positive gain
students (M = .11, SD= .18, n= 20) had significantly higher dis-
course network centroids in the x-direction than negative/zero
gain students (M = − .10, SD = .16, n = 21; t(38.4) = 2.02,
p < .05) with an effect size of .50. Thus, positive gain students

made more connections with justifications and directional/
temporal changes than the negative/zero gain students.

Positive gain students (M = .45, SD = .23) did not have
significantly higher network densities than negative/zero gain
students (M = .35, SD = .19; t(38.12) = 1.58, p = .14).
However, positive gain students (M = .07, SD = .01) had sig-
nificantly higher average weighted link values than negative/
zero gain students (M = .05, SD = .02; t(34.25) = 2.23, p < .05)
indicating that positive gain students had more strongly
weighted connections among computational and science con-
cepts and practices in their discourse networks.

Discussion

CT is an essential component of STEM education (National
Research Council 2010; NGSS Lead States 2013) but has not
yet been well integrated into K-12 curricula. In addition, few
studies have empirically tested CT assessments or used contem-
porary learning sciences methods and analytics to do so (Grover
and Pea 2013). In this study, we described the development of a
CT-STEM biology unit for high school students and our assess-
ment approach that used pre-post assessments to guide the anal-
ysis of the development of students’ CT-STEM practices.

In this paper, we outlined the design of a pre-post assess-
ment with two isometric forms that measured students’ CT-
STEM practices. There was a significant increase from pre to
post which suggests that the assessment did not yield a ceiling
or floor effect—the test was neither too difficult nor too easy.
The significant increase also suggests that after participating in
our designed CT-STEM unit, students showed gains in (1)
exploring a computational model and explaining how interac-
tions between elements produce scientific system behaviors,
(2) identifying simplifications made by a computational model,
and (3) assessing the match between a computational model

Fig. 17 Mean discourse network for positive gain students. Only the
strongest connections with weighted links values greater than 0.1 are
shown for interpretability purposes and to show the strongest connections

Fig. 18 Subtracted mean
discourse networks for positive
(blue) and negative/zero (red)
gain students. Weighted links
represent the difference between
weighted links of mean positive
gain student network and mean
negative gain student network.
The values of the weight
differences are shown on links.
Only the top six differences are
shown for interpretability
purposes and to show the highest
differences
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and the phenomenon and understanding a model’s range of
applications. Thus, after participating in a science unit that
contained computational activities, students showed learning
gains on an assessment that measured CT-STEM practices.
One noteworthy aspect of this pre-post assessment design is
that it is one of the few performance-based assessments mea-
suring computational thinking in a science context which in-
cludes both a pre and a post component. The pre component is
critical for making claims about the effectiveness of the inter-
vention as well as to normalize for initial level of knowledge
(Adams and Wieman 2011).

However, solely examining the pre-post scores did not re-
veal how students developed CT-STEM practices when engag-
ing with the curricular unit. To model the development of stu-
dent learning,we presented an in-depth analysis of one positive
gain student’s and one negative gain student’s responses to
embedded assessments. This analysis showed different trajec-
tories for learning in which students explored agent-based
models, developed rules for agents, explained emergent bio-
logical phenomena from computational models, analyzed data
from computational models, and explained affordances of
computational models for science. One student who had pos-
itive gains from pre to post, Julian, supported his understand-
ing of biological phenomena by using evidence from the mod-
el. For example, in lesson 2, when Julian explored a computa-
tional model, he was able to test his hypothesis that increasing
the size of the wolf population would combat the high moose
population and stabilize the ecosystem. However, after con-
tinuing to explore the model, he realized a better approach
for stabilizing the ecosystem was to add plants to the model

and was able to justify his approach and explain some biolog-
ical mechanisms behind stability. In contrast, when Pablo ex-
plored the computational model, he varied the reproduction
parameter in an attempt to stabilize the ecosystem. To deter-
mine whether the ecosystem reached stability, Pablo mainly
based his reasoning on the oscillations in the graph but did
not provide descriptions of the mechanisms behind stability.

To increase the scale of this result, we analyzed all 41 stu-
dent responses which revealed that on average, students with
positive gains were more likely to (1) provide justifications for
agent actions in the model, (2) link these justifications to bio-
logical phenomena, such as ecosystem stability and competi-
tion among species, and (3) describe changes in biological
computational models both temporally and directionally. In
contrast, negative gain students were more likely to (1) discuss
agents in terms of their actions but less likely to provide justi-
fications and (2) link experimentation with agents, agent ac-
tions, and quantitative amounts. These results suggest that
modeling connections among CT-STEM discourse elements
provided a quantifiable and measurable representation of stu-
dents’ developing CT-STEM practices which differentiated be-
tween positive and negative gain students. These findings align
with other studies that used ENA tomeasure differences among
groups of learners (Arastoopour et al. 2014, 2016; Hatfield
2015; Knight et al. 2014; Siebert-Evenstone et al. 2017).

Our two main claims in this paper are that (1) on average,
students exhibited science and computational learning gains
after engaging with a science unit with computational models
and (2) that the use of embedded assessments and discourse
analytics tools reveals how students think with computational

Fig. 19 Centroid of discourse
networks for all 41 positive gain
students (blue) and negative/zero
gain students (red). Plot shows a
significant difference between
positive and negative/zero gain
students in their discourse
networks

J Sci Educ Technol (2020) 29:136–160 155



tools throughout the unit. The main computational tools in this
unit were NetLogo agent-based models about ecosystem sta-
bility and competition among species. The results provide ev-
idence that students used these models to make sense of bio-
logical phenomena in ways that are different from traditional
equation modeling. Students connected micro-level agent ac-
tions, such as eating and reproducing, to macro-level biological
system phenomena, such as ecosystem stability and extinction.
In this sense, the computational activities in this unit are a
restructuration of the domain—altering knowledge representa-
tions and providing opportunities for a broader range of
learners to have access to scientific concepts (Wilensky and
Papert 2010). Although on average, students exhibited gains,
many students exhibited a decrease from pre to post. For future
work, it would be helpful to more deeply analyze data from
negative gain students to identify at a smaller grain size where
students might bemore successful with earlier intervention. For
example, if students are having difficulty exploring the models,
the teacher may play a more explicit role in modeling how to
engage with NetLogo. Or, as the results suggest, if negative
gain students are having difficulty making connections with
exploring the model and analyzing temporal or directional
change within the model, then more instructional supports
can be employed to help students make those connections.

The results also show various student sense-making pro-
cesses as they engage with the unit. This method aligns with
one particular aspect of a constructionist pedagogical
approach—that students may take multiple trajectories when
making sense of concepts (Papert 1980). Thus, another con-
tribution of this work is providing various models for how
students develop CT-STEM practices in a science context,
which may be helpful for refining existing conceptualizations
including the CT-STEM taxonomy (Weintrop et al. 2016)
used in this study.

One challenge in this study was the limited number of
students (41 out of 121 students) who completed the pretest,
curricular unit, and posttest. In the future, we will investigate
the main causes of this limitation and revise our curricular unit
and assessments so that a higher percentage of students can
successfully complete the materials. Another limitation is that
no additional data was collected about students’ prior knowl-
edge. We did not collect information about students’ experi-
ences with programming or computational thinking.
Moreover, we do not have information about students’ lan-
guage or writing abilities, which potentially could have im-
pacted our findings. Thus, we cannot control for such experi-
ences. For future studies, we will collect this information, as
well as collect and analyze multiple forms of data from stu-
dents such as their oral participation in the classroom and their
actual interactions with the models (clickstream data).

A future potential of this work is transforming discourse
learning analytics into real-time assessments for instructors to
use in classrooms. In this study, the analyses were completed

after students completed the curricular unit. However, one ave-
nue for future work is to conduct discourse learning analytics as
students are engaging with the unit. We imagine that an assess-
ment system for teachers could be designed that includes net-
work analytics visualizations that are interpretable and action-
able. Teachers can interpret student networks and determine
how to intervene with students to assist in their development
of CT-STEM practices. For example, even without such analyt-
ics Ms. Santiago, Pablo’s teacher was able to see that Pablo’s
responses were somewhat sparse and that he may require some
feedback or assistance. However, in a classroom setting, it may
be difficult for a teacher to read responses, determine the content
of the responses, and decide which aspects of a student’s re-
sponse to use as a starting point for discussion or intervention. If
such discourse network analytics were available to Ms.
Santiago, she could quickly view Pablo’s network, see what
connections Pablo was able to make with reproduction rates
and oscillating populations in the wolf-moose ecosystem mod-
el, and then use what Pablo already knows about reproduction
rates to begin a discussion about the mechanisms that cause
oscillations in the graph and the factors that contribute to eco-
system stability beyond reproduction rates.

In another hypothetical example, without such analytics,
Ms. Santiago could see that Julian’s responses were longer
and more detailed than most students. But again, it may be
difficult to read and analyze responses in a classroom setting.
Using discourse network analytics, Ms. Santiago could iden-
tify the key contributions in Julian’s responses, use the assess-
ment system to highlight such contributions, and share his
response with the class as an example or as a starting point
for a discussion.

In addition to on-the-fly teacher interventions, teachers
could view student networks over the course of the unit to
examine students’ development of broader concepts. For ex-
ample, without such analytics, Ms. Santiago may read through
individual student responses and “code” each student response
for science and computational thinking practices such as iden-
tifying agent actions or explaining biological systems. If Ms.
Santiago had access to student discourse networks, she could
reduce the time she spends on examining student responses
and see how her students make connections across such prac-
tices over time and whether such connections change at vari-
ous points in the unit. In other words, she can rely on the
analytics to group her students’ language together into relevant
categories and provide a high-level visualization of their sci-
ence learning and computational practices. Based on the visu-
alization results, the teacher can choose which student re-
sponses to read and assess further. Looking even further into
the future, if sufficient data is collected over time about student
learning and teacher interventions, such assessment systems
could also provide intervention suggestions and discussion
prompts to engage students and thus augment a teacher’s abil-
ities to facilitate science learning for their students.
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Appendix

Table 4 Rubrics used to score student pre and post assessments. Students received one point for each item on the rubric.

Question Category Description Example

Question 1: Notice the oscillations (the graph
moving up and down) in the graph. Why do
these oscillations occur? Are there patterns
in how the graph moves up and down?

Key Features Describing key features of oscillations such as
moving up and down or having a repeating
pattern.

“The oscillations go up and down
but even out almost at the end.”

Cause and Effect Describing an event and the cause for an event.
This could be an input and an output in the
model.

“this happens because once
everybody is better from getting
sick they all become immune.”

Graph Referring to the graph as a source of data or
evidence.

“This probably occur because some
groups in the graph depend on
the other results to make a
decision”

Question 2: List at least two ways that this
model makes simplifications compared to
how these viruses/pollution and other
related factors behave in the real world.

Agent-based
Simplification

Describing simplifications that are directly
related to agents.

“people talk and touch each other”

Non
Agent-based
Simplification

Describing simplifications that are not directly
related to agents.

“it just shows the population”

Missing
Elements

Identifying missing elements in the model. “The model only effects trees and
humans. Not everything else on
earth.”

Question 3: Given these simplifications and
your understanding of the model, why and
how is this model useful for the study of
viruses/pollution?

Illustrate Stating a model is useful for purposes of
illustrating or simulating ideas. Illustrating
can address levels, potentially recognizing
the visual of a n aggregate vs. agent
phenomena.

“Well it shows us how every one
who has what, it shows whos
effected, and it shows that which
person got what.”

Experimentation Exploring the model by changing parameters
and manipulating variables. Includes testing
hypotheses to explore understanding of
scientific concepts. Also includes stating
that scientists test hypotheses and conduct
experimental studies.

“it was helpful because it was
somewhat realistic to real world
problems and it could help out
scientist study.”

Feasibility Addressing how feasible models are. Includes
discussions about the benefit of time, lower
costs, scaling benefits, lower risks, and
other conveniences.

“to manipulate or make adjustments
to an ecosystemwithout affecting
the real ecosystem”

Understanding Stating the outcome of experimentation or
exploration of the model. Includes
understanding relationships at a macro and
micro level, understanding mechanisms of a
phenomena, and gaining
understanding/learning for oneself.

“to understand its danger, to see
how it works, less people die”

Application Describing actions taken after using the model.
Includes policy changes or
recommendations, environmental actions,
and intervening with animal populations.

“It help us calculate whether we
should build more or less and
how we should help our
enviroment.”
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