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Abstract Manipulative environments play a fundamental
role in inquiry-based science learning, yet how they impact
learning is not fully understood. In a series of two studies,
we develop the argument that manipulative environments
(MEs) influence the kind of inquiry behaviors students
engage in, and that this influence realizes through the affor-
dances of MEs, independent of whether they are physical or
virtual. In particular, we examine how MEs shape college
students’ experimentation strategies and conceptual under-
standing. In study 1, students engaged in two consecutive
inquiry tasks, first on mass and spring systems and then on
electric circuits. They either used virtual or physical MEs.
We found that the use of experimentation strategies was
strongly related to conceptual understanding across tasks,
but that students engaged differently in those strategies
depending on what ME they used. More students engaged
in productive strategies using the virtual ME for electric cir-
cuits, and vice versa using the physical ME for mass and
spring systems. In study 2, we isolated the affordance of
measurement uncertainty by comparing two versions of the
same virtual ME for electric circuits—one with and one
without noise—and found that the conditions differed in
terms of productive experimentation strategies. These find-
ings indicate that measures of inquiry processes may resolve
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apparent ambiguities and inconsistencies between studies
on MEs that are based on learning outcomes alone.
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Introduction

Inquiry-based instruction plays a prominent role in con-
temporary models of science teaching and learning (Quinn
et al. 2012). Novel virtual and physical tools such as interac-
tive computer simulations or remote laboratories have cre-
ated new opportunities for inquiry-based experimentation
in schools beyond traditional physical laboratories (Heradio
et al. 2016). These tools enable learners to observe scien-
tific phenomena, manipulate variables, set up experiments,
and collect data; hence, we refer to them as manipulative
environments (ME) for inquiry. The design space for such
manipulative environments is large and diverse, and not
all ME are effective at fostering science learning through
inquiry (Zacharia et al. 2015). How can we help educators
choose environments best suited for their needs, and inform
designers to develop effective environments? In order to
answer these questions, we need to understand (1) what
makes an environment effective for a learning objective, (2)
what the critical design features are for successful learning,
and (3) how can we leverage these features.

The past decades have seen great progress in research on
MEs for inquiry-based learning. A large body of research
has focused on medium of MEs and have compared the rel-
ative effectiveness of virtual and physical ME and of com-
binations thereof; more recently, researchers have shifted
attention to the affordances of MEs besides their medium;
affordances such as the capability to manipulate normally
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unobservable variables or the presence of measurement
error (de Jong et al. 2013; Zacharia et al. 2008). Ongoing
research on the impact of different MEs on learning, and on
the role of various affordances of ME, examined different
technologies, subject domains and age groups; but results
are still inconclusive (de Jong et al. 2013).

These ambiguities need to be resolved to properly inform
the evaluation of existing MEs and the design of new ones.
In this paper, we argue that the reason for these ambiguities
is more of a methodological nature than of a conceptual one,
and suggest two ways to modify the predominantly used
experimental designs to address the problem. We present
this argument in two parts, each of which is based on a
different study.

The first part of the paper presents the argument that stud-
ies comparing—or combining—virtual and physical MEs
appear to be inconclusive because they focused on learning
outcomes with little consideration of inquiry process, such
as learners’ experimentation strategies or data interpreta-
tion. Causal mechanisms for the impact of ME on learning
outcomes are likely to be found in how learners engage with
a ME. Therefore, not examining this engagement means
not examining the reasons for differences in learning out-
comes between MEs (Parnafes 2006). In study 1, learners
used either a virtual or a physical ME (VME or PME) in
two inquiry tasks on different physics phenomena—mass
and spring systems and electric circuits. We measured both
their use of experimentation strategies, in particular the con-
trol of variable strategy, and their conceptual understanding
before and after each activity. Results indicate that in both
tasks, learners’ use of experimentation strategies differed
by medium of ME (virtual or physical), and this difference
could partially account for the different learning outcomes
between VME and PME. Furthermore, measures of exper-
imentation strategies revealed distinctions between MEs
even when the average changes in conceptual understanding
were the same.

The second part of the paper argues that the inconsis-
tencies between studies on the impact of affordances of
MEs on learning arise because the studies mainly compared
MEs across medium, i.e., virtual MEs (VME) with physi-
cal MEs (PME). MEs that differ in medium tend to differ in
more than just one affordance. For instance, the VME and
PME used in study 1 for the electric circuits task differed in
ease of variable manipulation, complexity of the scientific
phenomenon, measurement uncertainty, and observational
feedback. It is almost impossible to match VME and PME
with respect to all but the target affordance (e.g., Triona and
Klahr 2003). Potential confounds remain due to intrinsic
differences between the media, such as the amount of visual
information, the dimensionality of the phenomenon, or the
ways of interacting with each medium.

Fig. 1 Diagram of study 1 and study 2. Arrows indicate the targeted
relationships in each study

Instead of evaluating the causal impact of single affor-
dances by contrasting VME and PME, we suggest to com-
pare MEs of the same medium that differ in only the target
affordance. In study 2, we used this approach to explore
what affordances caused the differences between learners
using the VME and PME in the electric circuits task in study
1. Specifically, we targeted system-inherent noise, which is
one of the affordances considered to be a key differentiator
between VME and PME (de Jong et al. 2013). We found
that the presence of noise had an impact on learners’ exper-
imentation strategies and reasoning, but that this affordance
alone could not account for the results of study 1.

The overall goal of these studies (see Fig. 1) was to pro-
vide experimental evidence for, first, the necessity of using
measures of inquiry strategies, in this case experimentation
strategies, when studying how MEs impact learning out-
comes (study 1); and second, the necessity of examiningME
affordances separately and independent of medium, when
studying how MEs impact learning outcomes (study 2).

Theoretical Background

Inquiry-based learning approaches build on constructivist
models of learning that consider learning as an active, inter-
pretive and iterative process, where learners construct their
ideas and understanding of new experiences based on prior
ones (Hofstein and Lunetta 2004). Activities for inquiry-
based experimentation in classrooms typically require stu-
dents to investigate multivariate systems using the tools
for experimentation and data analysis (Chinn and Malhotra
2002b; de Jong and van Joolingen 1998).

Research communities hold different views about what
science inquiry is. These have implications for how inquiry
activities are designed, what factors are considered as
important, and what measures of learning are used (e.g.,
compare Duschl and Grandy 2008 and Pedaste et al. 2015).
Research on ME and on inquiry processes predominantly
hold the view of science inquiry as a cyclic process of
hypotheses generation, planning and execution of experi-
ments and data analysis (Pedaste et al. 2015), while other
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Table 1 Broad categorization of affordances of ME, with examples

Type of affordance Examples of affordances

Representation Dynamics of representations (Ainsworth and VanLabeke 2004)

Multiple and multimodal representations (Hsu and Thomas 2002)

Visualization of objects and processes, abstract, or beyond perception (Winn et al. 2006)

Dynamic linking across representations (van der Meij and de Jong 2006)

Interaction Physicality/tangibility (ability to touch concrete material) (Lazonder and Ehrenhard 2014)

Possibility to repeat and modify experiments (Zacharia et al. 2008)

Manipulation and customization of measurement equipment (Triona and Klahr 2003)

Manipulation of reified objects, e.g., global temperature (Windschitl 2000)

Degrees of freedom of manipulation (Renken and Nunez 2013)

Built-in support (scaffolds and feedback) Immediate feedback and error correction (Huppert et al. 2002)

Directing attention of students (de Jong and van Joolingen 1998)

Cognitive or collaborative scaffolds (Zacharia et al. 2015)

Complexity of model Degree of complexity (by adding friction, gravity, resistance, etc.)

Measurement uncertainty and system-inherent noise (Renken and Nunez 2013)

Infrastructure Portability, safety, cost-efficiency, reliability, etc.

Notes: We have listed affordances that have been reviewed byMarshall and Young (2006), Olympiou and Zacharia (2012) and de Jong et al. (2013)

work is more aligned with argumentation-driven and dialec-
tic views of science inquiry (Duschl and Grandy 2008;
Sandoval and Reiser 2004). For this paper, we draw on the
former view of science inquiry in the design of the inquiry
activities. However, we think that our conclusions are gener-
ally applicable to inquiry-based learning approaches using
manipulative environments, independent of the underlying
view of science inquiry.

Manipulative Environments for Inquiry-Based
Experimentation

A large body of research on manipulative environments
has focused on the effect of medium of ME on inquiry-
based learning. The aggregate findings are that both virtual
and physical ME generally promote conceptual understand-
ing, but the studies disagree on their relative effectiveness
(Finkelstein et al. 2005; Gire et al. 2010; Jaakkola and
Nurmi 2008; Klahr et al. 2007; Marshall and Young 2006;
Olympiou and Zacharia 2012; Winn et al. 2006; Zacharia
et al. 2008).

The prevalent explanation for the lack of consistency
is that the VMEs and PMEs in the studies carried differ-
ent affordances (Klahr et al. 2007; Olympiou and Zacharia
2012). We conceptualize affordances of a ME as: 1. what
you can possibly do in the ME and how you interact with
it (interaction); 2. what you can possibly see in the ME
and how that information is represented (representation);
3. how all of this is made available to the user (structure
and scaffolds). We include representational aspects of a ME
into the concept of affordances because the information a

ME provides builds the basis for decisions of how to inter-
act with it. Researchers have been compiling a growing list
of affordances of ME that range from safety-related affor-
dances to the types of variables that can be manipulated.
Table 1 shows a list of affordances grouped into five broad
categories. These categories might not capture all possible
affordances of MEs, but they capture essential affordances
that are independent of the medium of a ME. In this paper,
we will not talk about affordances for infrastructure nor
about affordances for built-in support, which have been
extensively reviewed in Zacharia et al. (2015).

WhileVMEand PME share some affordances for inquiry-
based learning, like the possibility for active manipulation
or collecting data from experiments, other affordances have
been treated as inherently tied to a medium (Winn et al.
2006). For instance, VME are more likely to enable direct
interaction with objects that are not manipulable in real
life, whereas PME naturally provide the affordance of phys-
ical touch (Lazonder and Ehrenhard 2014). Recent work
has shown that any combination of VME and PME leads
to better conceptual understanding than either one alone,
likely because combinations best leverage the different
affordances of each ME1 (de Jong et al. 2013; Jaakkola
2012; Olympiou and Zacharia 2012; Zacharia 2007).

In large parts, MEs have been combined based on the
match of their affordances with specific learning objectives.

1Alternative explanations are that combinations of ME provide mul-
tiple representations, which leads to increased learning benefits, irre-
spective of affordances. The current state of research cannot exclude
these alternative explanations (Lazonder and Ehrenhard 2014).
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Choosing MEs that way can resolve the inconsistencies
mentioned previously to the extent that the links between
affordances and learning objectives are understood. For
some learning objectives, it is clear which affordances
match them well. For instance, the affordances of PME are
generally better aligned with learning goals of developing
practical laboratory skills, such as troubleshooting of exper-
imental apparatus, or understanding safety procedures (de
Jong et al. 2013). Conversely, affordances of VME might be
better for learning objectives related to phenomena that are
impossible to examine with PME at school (Olympiou and
Zacharia 2012).

It is much less clear what affordances lend themselves
to learning objectives related to conceptual or epistemolog-
ical understanding (Chen et al. 2014; Chini et al. 2012). For
example, the affordance of manipulating variables rapidly
and easily (normally attributed to VME) is either seen as
beneficial because learners get exposed to more examples in
the same amount of time (Huppert et al. 2002; Zacharia and
de Jong 2014), or as detrimental because it can encourage
learners to carry out “play-like,” undeliberated interactions
(Renken and Nunez 2013). Another example is the affor-
dance of measurement uncertainty due to noise that is
naturally present in PME. On the one hand, measurement
uncertainty can make it difficult to interpret the data, as it
decreases the signal-to-noise ratio in the data (Chinn and
Malhotra 2002a). On the other hand, the absence of mea-
surement uncertainty can induce oversimplified views of
science inquiry (Chen 2010; Chen et al. 2014).

One reason for these contradictions is that the inter-
play between affordances and conceptual understanding is
inherently rather complex and thus difficult to study (e.g.,
physicality, see Gire et al. 2010; Lazonder and Ehren-
hard 2014; Triona and Klahr 2003; Zacharia et al. 2012).
Klahr et al. (2007) argue that conflicting results could
also arise from the lack of proper control for confounding
variables in these studies, such as the method of instruc-
tion or curriculum materials. More fundamentally, we think
that comparisons of VME and PME inherently confound
the effect of single affordances. For example, Finkelstein
et al. (2005) found differences in conceptual understanding
between learners using VME and PME on an inquiry task
for electric circuits; but we cannot determine from this study
whether the difference in performance was caused because
the VME provided richer visual cues, allowed for easier
manipulation of the circuits, constrained the manipulation of
irrelevant variables (e.g., the color of the wires), or because
of the interplay between these affordances.

Several studies, in particular on representational affor-
dances, have shown that it is possible to isolate the effect
of specific affordances by using MEs of the same medium
that differ only in the targeted affordance. These stud-
ies found that conceptual understanding can be fostered

when abstract objects are represented in addition to concrete
objects (Olympiou et al. 2013), when multiple represen-
tations are used rather than single representations only
(Ainsworth and VanLabeke 2004), or when representations
are dynamic rather than static (see McElhaney et al. 2015
for a thorough review).

Inquiry Strategies and Conceptual Understanding
in Inquiry-Based Experimentation

Developmental and cognitive psychologists studying
inquiry-based learning have particularly focused on inquiry
strategies and their interplay with prior knowledge (Klahr
and Dunbar 1988; Schauble 1996). They have predomi-
nantly used microgenetic methods (Siegler and Crowley
1991), i.e., tracking the process of change by observing
participants as they engage in an inquiry-based activity
(Zimmerman 2000). They show that students’ learning out-
comes from inquiry-based activities depend on their inquiry
strategies, such as their experimentation or data interpreta-
tion strategies (for extensive review, see Zimmerman 2000,
2007).

In this paper, we focus on experimentation strategies as
a subset of inquiry strategies, because how students learn
from the experiments hinges on the quality of the data they
gathered. Data from unconfounded experiments, i.e., exper-
iments that target isolated variables by controlling other
variables, are more likely to be interpreted correctly and
more likely to promote conceptual understanding than data
from confounded experiments (Chen and Klahr 1999; Klahr
and Nigam 2004). This is why the control of variable
strategy (CVS), the strategy to set up unconfounded exper-
iments, is one of the most extensively studied, systematic
experimentation strategies (Zimmerman 2000).

A robust finding is that the use of CVS is subjected to
large inter- and intra-individual variability, depending on a
variety of factors; for example, the frequency and utility of
CVS depends on students’ domain-specific knowledge, stu-
dents with higher prior knowledge tend to use CVS more
often (Kanari and Millar 2004; Schauble 1996; Schauble
et al. 1992).

There is skepticism of the focus on CVS in light of
its limitations for exploring multivariate relations or devel-
oping an epistemologically rich understanding of science
(Conlin 2014; Kuhn et al. 2008; McElhaney 2010). How-
ever, as a basic domain-general search strategy, CVS is valid
and essential for investigation across different content areas
(Chen and Klahr 1999), as it produces evidence that is inter-
pretable and facilitates inferential skills (Zimmerman 2007).
The use of CVS also can easily be extracted from the experi-
ments students run during an inquiry activity. As such, CVS
provides a simple but robust measure of experimentation
strategies that are productive for learning, i.e., are correlated
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with learning outcomes, and that we could use to study how
ME impact learning at a fine-grained level.

Overall, there has been relatively little work connect-
ing the body of research on inquiry strategies to research
on manipulative environments. Some experimental studies
on manipulative environments did look at how students
engaged with virtual and physical MEs during an inquiry
activity. They focused on measures of experimentation like
the number of experiments (Chien et al. 2015; Lazonder and
Ehrenhard 2014; Renken and Nunez 2013), or the problems
that emerged during the setup or the evaluation of experi-
ments (Finkelstein et al. 2005; Zacharia and de Jong 2014;
Zacharia and Michael 2016). These studies found differ-
ences between the virtual and physical MEs, which suggests
that the manipulative environment can impact how students
go about an inquiry activity.

However, only a few studies on MEs have examined
experimentation strategies and the quality of experiments.
Triona and Klahr (2003) have looked at how virtual and
physical MEs compare as tools for teaching CVS. Renken
and Nunez (2013) compared middle school students’ exper-
imentation and conceptual understanding in an activity on
pendulum motion when using either a VME or a PME.2

They found that students using the VME ran more trials and
fewer controlled experiments; but the study lacks conclu-
sive evidence for how these differences came about because
the MEs differed in multiple affordances, such as the ease
of manipulation and range of variable values.

A further limitation of Renken and Nunez (2013) is the
simplified task structure with a rather small space of pos-
sible experiments, and a fixed sequence of inquiry phases
for each student. Such structural simplifications are com-
mon in studies on inquiry-based learning (for review, see
Zimmerman 2000). However, there is a risk of oversimplifi-
cation. For example, when the range of choices is too small
(for example by dichotomizing variables, Kuhn and Dean
2005), trial and error methods become sufficiently efficient
to cover the range of possible experiments; or when the
inquiry process is structured too heavily, students’ cognitive
involvement gets reduced to mere execution of steps.

Target Concept and Intentionality: Adapting Simple
Measures of Experimentation Strategies to more Complex
Inquiry Tasks

We employed less structured, more complex inquiry tasks
than Renken and Nunez (2013). The target phenomena were
multivariate, with multiple non-dichotomous dependent and
independent variables. Furthermore, the tasks were goal-
oriented in that learners had to find relevant relationships

2In Lazonder and Ehrenhard (2014), the researcher ensured that each
experiments students designed was unconfounded.

between the variables, but open-ended in that learners did
not get any further guidance or procedural constraints.

Such tasks give learners more flexibility both in what
experiments to run and in how to run them. In order to
account for the increased flexibility and complexity, we
propose two modifications to simple frequency counts of
control of variable strategy (CV) as measures of productive
experimentation strategies:

First, we take into account the time between experiments
as a measure of how intentional learners are in their actions
(Fischer 1980). A learner might set up a controlled experi-
ment intentionally, after deliberate planning and reflection,
or accidentally by non-goal directed manipulation of vari-
ables (de Jong and van Joolingen 1998). Levy and Wilensky
(2006) proposed to distinguish between these behaviors
by the duration between consecutive experiments. Longer
durations likely indicate intentional behavior due to reflec-
tion on or planning of experiments. Hence, we define CV
that occur “long enough” after the previous experiment as
intentional CV, and as non-intentional otherwise.

Second, we distinguish between CV experiments that tar-
get different concepts. In multivariate systems, certain rela-
tions between variables might be more familiar to learners
than others. Accordingly, experiments targeting the unfa-
miliar relations can benefit conceptual understanding more
than experiments of familiar variables (Salehi et al. 2015),
but this is not necessarily always the case (Renken and
Nunez 2013).

In sum, we operationalize experimentation strategies as
depicted in Fig. 2, with emphasis on the deepest level in
this decision tree. Besides focusing on CV experiments, we
also keep track of experiments that are confounded. Under
“other,” we capture experiments that cannot be classified as
either CV or confounded, such as repetitions of experiment
configurations. Importantly, this operationalization implies
that we need to consider all dimensions when evaluating the
experimentation strategies, and not just one.

As we considered intentionality of experiments, we
also wanted to see whether we could support learners be
more reflective and hence more intentional in their inquiry.
There are instructional interventions for supporting stu-
dents in productively designing, observing, and interpreting

Fig. 2 Operationalization of experimentation strategies
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experiments (Chinn and Malhotra 2002a). Predict-Observe-
Explain (POE) is one such approach that requires learners
before each experiment to make predictions about the out-
come, to design the experiment, and to re-examine the
predictions in comparison to the new observations (Rickey
and Stacy 2000). Despite its caveats (Kearney et al. 2001),
POE is a simple intervention that has been conducive to con-
ceptual understanding, for example in physics. We hypoth-
esize in study 1 that the POE intervention gets learners
to think more carefully about how to run the experiments,
which manifests in an increased proportion of intentional
and unconfounded experimentation (Gunstone and Mitchell
2005; Paulson et al. 2009).

Summary of the Literature Review and Purpose
of Study 1 and Study 2

For conceptual understanding to develop in inquiry activi-
ties, productive inquiry strategies are essential, and not just
the exposure to one medium of ME. Manipulative envi-
ronments and influences of their affordances on inquiry
strategies have been under-researched. Therefore, studies on
MEs have been inconclusive about how the MEs and their
affordances impact conceptual understanding. We argue
that measures of inquiry strategies, including experimenta-
tion strategies, can resolve some of the inconsistencies by
increasing the “resolution” of the difference between MEs.
The present work lies at the intersection of research on ME
and research on inquiry strategies to address these issues.

Study 1

Research Questions

The main research questions addressed are the following:

1.A. Does the use of productive experimentation
strategies differ between the virtual or physical
MEs?

1.B. To what extent does the use of these strate-
gies mediate potential differences in conceptual
understanding?

1.C. How does the relation between medium, exper-
imentation strategy, and conceptual learning
outcomes compare between activities?

2. Does accounting for intentionality improve
the measures of productive experimentation
inquiry strategies?

3. Does the POE intervention moderate the effect
of ME on learning outcomes by improving the
use of productive experimentation strategies?

General Study Design

We applied a 2 x 2 study design, and each participant did
two inquiry activities during the study. The first between-
subject factor was medium of the ME. Participants used
either the physical system (PME) or the interactive com-
puter simulation (VME) for both activities. The second
factor was the POE instruction. In the first activity, par-
ticipants either received an instructional intervention on
Predict-Observe-Explain (POE) or no guidance. In the sec-
ond activity, participants did not receive any instructional
guidance.

The first activity was on mass and spring oscillation,
and the second one on basic DC electric circuits (activ-
ity as a within-subject factor). We chose these two subject
domains because of the following reasons: First, these topics
were new enough to the college student population, yet easy
enough to be explored in the short time span of the activities.
Second, the nature of phenomena differed significantly in
terms of the physical perception of the dependent variables.
Mass and spring systems provide physically grounded expe-
riences through the perceptual salience of weight, tension,
and forces. The variables of interest are visually perceptible
without the need of additional measurement tools (similar to
Lazonder and Ehrenhard 2014). On the other hand, current
and voltage are indirectly perceptible only by using light
bulbs or measurement tools.

Materials and Methods

Participants

Sixty-eight students of the same community college partic-
ipated in the experiment for credit of psychology courses.
Average age of participants was 20.5 (SD = 3.49). The
study was run individually. Participants were randomly
assigned to the experimental conditions. The unbalanced
design resulted from some registered participants not attend-
ing their study session (see Fig. 4).

Manipulative Environments

The manipulative environments are shown and described in
Fig. 3a and b.

Procedure

For the overall procedure, see Fig. 4.

Mass and Spring Activity Introduction: Participants were
familiarized with the concepts and theME. Prompt of Activ-
ity: “How do the mass and the spring constant influence
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Fig. 3 Study 1: Manipulative environments for the Mass and Spring
activity and the Electric Circuits activity. a PME (left): The system
consists of two hooks to hold springs; there are four different pairs of
springs. Several disks of different weights can be attached to hang-
ers as the mass; VME (right): PhET interactive computer simulation
(Perkins et al. 2005). The only parameter participants are allowed to
change is “softness of spring 3.” There are seven different weights. In
both MEs, amplitude and frequency can be measured with a measur-
ing tape and stopwatch. b PME (left): The electric circuits kit was a

prototype developed by Chan et al. (2013). Resistors, batteries, wires,
and LEDs can be quickly snapped together and disconnected again
through magnetic connectors. VME (right): PhET Circuit Construction
Kit (Perkins et al. 2005) is a drag-and-drop ME for simple DC cir-
cuits. We de-activated the feature that explicitly visualizes the current
flow in closed circuits to not provide users of the VME a conceptual
advantage. Both MEs provide an ammeter and a voltmeter to measure
current and voltage. Participants were given seven resistors to work
with. There was no restriction on the number of wire elements

the frequency of oscillation and amplitude of oscillation?”
In the Predict-Observe-Explain condition, participants were
guided as follows: During the activity, the researcher asked
a participant before each experiment to first decide on the
target variable, and to predict the results of the intended
experiment. After each experiment, they had to decide
whether the prediction was confirmed or not, and explain
why. The other condition received no guidance.

Writing Intervention The POE condition had to explain
the POE framework in their own words, and apply it to
another hypothetical activity. The other condition had to
summarize what they did during the activity, and what their
findings were. The purpose of this task was to make sure
participants in the POE condition engaged cognitively with
the idea of the POE framework again before starting the
second activity.

Electric Circuit Activity Introduction: Participants were
familiarized with the concepts and the ME. Participants
were shown three basic electric circuits containing a single
resistor, two resistors in series, and two resistors in paral-
lel and told they could extend them by any combination of

Fig. 4 Procedure and conditions of study 1. For more detail, see text

resistors available. Prompt of Activity: “Explore the rela-
tionship between how bright the bulb shines, the voltage
across the bulb and the current through it. How is it affected
by resistors? Explore by finding the resistor configurations
that maximize and minimize the brightness of the light
bulb.” In each ME, participants started from an incomplete
circuit as shown in Fig. 3b.

In both activities, participants could take notes. Partici-
pants were allowed to stop at any time they thought they had
completed the task.

Subject Knowledge Assessment

Mass and Spring Activity The pre-test and the post-test
had four multiple-choice questions, each with two sub-
questions. The first two questions addressed the impact
of changing either the spring constant or the mass on the
amplitude and frequency of oscillation. The third ques-
tion targeted the understanding of force and speed in an
oscillating spring-mass system. The fourth question was a
near-transfer question inspired by the generalization ques-
tions of Renken and Nunez (2013), asking learners to apply
their knowledge to a bungee jumping scenario.

Electric Circuit Activity The pre-test and the post-test
consisted of two questions. The first question asked partici-
pants how adding a resistor in series (pre-test) or in parallel
(post-test) to a circuit with one resistor would affect: the
brightness of the light bulb; the current in the circuit; and the
voltage across the bulb. The second question was a modi-
fied version of the assessment developed byMcDermott and
Shaffer (1992). Participants had to do pairwise comparisons
of the brightness of light bulbs in five circuits with different
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resistor configurations. There were nine such comparisons.
See Supplementary Materials S.3 for the post-test items.

Pre-test and post-test items received a score of 1 for a
correct answer, and 0 otherwise. Questions that required
participants to explain their reasoning were given 0.5 for
partially correct answers. The maximal scores were 8 (mass
and spring) and 12 (electric circuits). Besides the overall
aggregate score, we calculated also sub-scores for the two
target concepts of each activity (spring constant and mass;
series and parallel circuits).

Coding of Experimentation Strategies

We video-recorded or screen-captured each activity. From
these recordings, we extracted for each participant each
experimental configuration. We defined an experiment
based on what variables participants manipulated: a new
experiment started when one or more variables were
changed, or it was repeated when the variable configura-
tions did not change, but a new run was initiated. We coded
the type of an experimental manipulation from the contrast
between two succeeding experimental configurations (and
the contrast of simultaneous experiments in the mass and
spring activity).

For each activity, we defined the 25th percentile of the
histogram of all dwell times between manipulations as the
threshold time for intentionality. We coded any manipula-
tion with a dwell time shorter than the 25th percentile as
non-intentional. We use the same threshold of intentionality
for both VME and PME instead of using different thresholds
for each medium. As a consequence, if one ME requires by
nature more time for setting up experiments, manipulations
of that ME are more likely to be coded as intentional com-
pared to the other ME. That way, we can capture potential
learning or reflection processes that happen as participants
are setting up experiments. The threshold times were 11 and
19 s respectively for the mass and spring and the electric
circuits activity. In the mass and spring activity, the Median
of dwell times was 20 s, with a maximum of 280 s. For
the electric circuits activity, the Median was 32 s, with a
maximum of 253 s.

As explained in Section “Target Concept and Intentional-
ity: Adapting Simple Measures of Experimentation Strate-
gies to more Complex Inquiry Tasks,” we differentiated
experimental manipulations based on the targeted concepts. In
theMass and Spring activity, we distinguished betweenmanip-
ulations of the spring constant and of the mass; in the
Electric Circuits activity, we distinguished between compar-
isons of circuits with only non-parallel resistor configura-
tions from comparisons with at least one circuit with parallel
resistor configuration. See Supplementary Materials S.1 for
more details of how we coded experimentation strategies.

Analysis

As illustrated in Fig. 2, we focused on experiments,
resp. experimental manipulations, that were either (1) non-
intentional manipulations, (2) intentional but confounded
manipulations, or (3) intentional CV manipulations tar-
geting different concepts. Experiments that were neither
confounded nor CV were categorized as “other.” For each
participant, we calculate the proportion of occurrences of
each of the tracked manipulations. The four main manipu-
lation types accounted in average for 87.2% resp. 92.7% of
a participants’ manipulations in the Mass and Spring resp.
Electric Circuits activities.

Multiple linear regression cannot capture the regularities
in this multidimensional space of experimental manipu-
lations. Rather, we used cluster analysis to find clusters
of participants that look similar in terms of these dimen-
sions of experimental manipulations. We took the following
approach to examine the relation between MEs, experimen-
tation strategies and learning outcomes as depicted in Fig. 1:
We clustered participants into two groups based on the
aggregate measures of experimentation strategies. We then
examined how the clusters compared in terms of learning
outcomes, to find the patterns of experimentation strategies
that were productive, and then analyzed how participants in
the different conditions split up between the clusters.

We used PortioningAroundMedoids (PAM) for clustering
(Reynolds et al. 2006), with cosine distance as the distance
metric. We evaluated the quality of the clusters with the sil-
houette score (Rousseeuw 1987), a measure of similarity
between points and the clusters they are assigned to.

For pairwise comparisons between variables that vio-
lated the normality assumptions, we report results from the
nonparametric Mann-Whitney U test.

Results

In the following sections, we present the analyses of the con-
ditions with respect to conceptual understanding and exper-
imentation strategies. For comparisons of different opera-
tionalizations of experimentation strategies, across inquiry
activities and studies, see Supplementary Materials S.2.7.

Mass and Spring Activity

This analysis includes only data for the participants that
were not in POE because the intervention itself provided
significant scaffolding. This leaves us with 34 participants,
after excluding 2 participants with perfect pre-test scores.

We found that the conceptual understanding was higher
for the PME, but that the difference was not significant:
Linear regression of post-test scores on medium shows
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Fig. 5 Study 1 Mass and Spring
Cluster Analysis: a Pre-test and
post-test by cluster and
condition of ME. Error bars
indicate standard error. b Box
plot of all manipulation types
used to calculate the clusters:
Intentional CV with at least one
parallel circuit, or no parallel
circuit, intentional confounded,
and non-intentional
manipulations. Numbers show
the proportions of all
manipulations per participant
that are of a manipulation type

a positive but small effect, βmedium=.06, t (31)=1.0,
p=.33, when controlling for pre-test scores, βpre=.32,
t (31)=1.9, p=.06, see Fig. 5a; i.e., the main effect was
a 6% difference in post-test scores by medium. Includ-
ing measures of experimentation strategy into the regres-
sion model, we find that intentional spring-only manip-
ulation (ICVS) was a significant predictor of post-test
scores, βICVS=.34, t (29)=2.1, p=.05, but not intentional
mass-only manipulations (ICVM),βICVM=.03, t (29)=.2,
p>.5.3 This reflects also the difference in prior knowledge
about the impact of the spring constant versus the mass
on harmonic oscillations (Mspring=41.2%, SD=31.3%;
Mmass=52.9%, SD=30.0%),4 paired t (33)=−1.54, d=.4,
p=.13. Adding CV manipulation to the baseline regression
model was not significant, βCV=.03, t (30)=.02, p>.5.

While these results suggest that VME and PME were
equally effective in terms of conceptual understanding, we
found differences in the use of experimentation strategies.
As shown in Table 2, participants in PME used inten-
tional CV strategies significantly more often, except for
ICV manipulations of the mass (ICVM), and were more
intentional overall.

We did not detect a direct effect of medium on conceptual
understanding despite differences in productive experimen-
tation strategies because of the large variation in strategies
within condition. We addressed this issue by clustering par-
ticipants as explained in Section “Target Concept and Inten-
tionality: Adapting Simple Measures of Experimentation
Strategies to more Complex Inquiry Tasks” (the measures
shown in Fig. 5b). Cluster analysis finds groups of partic-
ipants that look similar, i.e., that are close to each other in
the multidimensional space that characterizes experimental

3The regression equation was marginally significant, F(4, 29)=2.2,
p = .09, with an adjusted R2=.13.
4M is the mean and SD the standard deviation of the sample

manipulations. That way, cluster analysis can find regulari-
ties in the data despite the large variations in each variable
within condition.

The cluster analysis gave rise to two distinct clusters, a
Productive (n = 18) and a Non-Productive (n = 16) Clus-
ter (avg silhouette score = .47). The naming of clusters is
based on the test scores of each cluster. As shown in Fig. 5a,
the Productive Cluster had significantly a better concep-
tual understanding post activity, as confirmed by regressing
post-test scores on pre-test scores and cluster, βcluster=.13,
t (31)=2.6, p=.02.

Table 2 Study 1 mass and spring: experiment manipulations and
target concepts by ME

VME PME z Sig Eff

Mdn IQR Mdn IQR

Experiment manipulations [%]

CV 54.2 20.3 61.5 22.2 −0.5 .6 .2

ICV 29.7 22.4 56.5 24.3 −2.2 .02* .8

ICVS 21.4 11.9 33.3 30.6 −2.3 .02* .4

ICVM 10.5 20.0 14.3 20.0 −.3 .8 .05

Non-int. 17.7 28.6 0 16.7 2.6 .01* .4

Target concepts [%]

Spring 25.0 13.3 33.3 26.5 −1.9 .05* .3

Mass 21.4 19.0 14.3 20.0 1.8 .08† .3

Notes: †(p ≤.1), *(p ≤.05) , **(p ≤.01); ICV intentional CV, ICVS/M
intentional CV of spring/mass, Non-int. non-intentional, Mdn median,
IQR inter-quartile range; z = z-score of the Mann-Whitney U tests
between the samples—when the samples were normally distributed,
we report results of a t test instead, with 32 degrees of freedom (in
italic). Effect size is calculated by r = z/

√
n - Cohen’s guidelines for

r are .5 large effect, .3 medium effect, .1 small effect—when a t test is
used, we calculated the effect size as Cohen’s d
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Fig. 6 Study 1 Electric Circuits
Cluster Analysis: a Pre-test and
post-test by cluster and condition
of ME. Error bars indicate
standard error. b Box plot of all
manipulation types used to
calculate the clusters: Intentional
CV of the spring constant, or of
the mass, intentional
confounded, and non-intentional
manipulations. Numbers show
the proportions of all
manipulations per participant
that are of a manipulation type

Figure 5b shows that the Productive Cluster had sig-
nificantly more ICVS, z=4.3, p<.001, r=.7, and less
confounded manipulations, z=4.1, p<.001, r=.7. In par-
ticular, they had much less non-intentional manipulations,
z= − 3.3, p<.001, r=.6. Furthermore, the clusters differed
in the proportion of experiments that targeted the spring
constant (MProd.=46.3%, SD=19.5%; MNon-Prod. = 24.9%,
SD=10.2%), t (22.0)=3.9, p<.001, d=1.4, and in exper-
iments that targeted the mass constant (MedianProd.=
8.4%, IQR=22.7%; MedianNon-Prod.=21.4%, IQR=16.8%),
z=−2.4, p=.01, r=.4.

Finally, 82.3% of PME belonged to the Productive Cluster,
compared to 11.8% of VME, χ2(1, N=34)=17, p<.001.

Electric Circuits Activity

We excluded three participants due to perfect pre-test
scores, with 65 learners remaining for the analysis. We
found no measurable effect of POE on conceptual under-
standing: A one-way ANCOVA of instruction and medium
on post-test scores, controlling for pre-test scores, showed
no overall effect of instruction, F(1, 60)=0.1, and no
crossover effect, F(1, 60)=.2, p=.7. Similarly, we found
no effect of POE on experimentation strategies (see
Supplementary Materials S.2.1). Hence, we collapsed the
data along the intervention dimension.

Conceptual Understanding by Medium VME performed
significantly better than the PME, see Fig. 6a: Regress-
ing post-test scores on pre-test scores, medium and
their interaction revealed a significant main effect of
medium, βmedium=−.18, t (61)=−2.8, p=.006, and a
marginally significant interaction of medium and pre-test
scores, βmedium:pre=.49, t (61)=1.7, p=.1.5 This interaction

5The regression equation was significant, F(3, 61)=8.4, p<.001, with
an adjusted R2=.26.

suggests that participants with low prior knowledge ben-
efited more from the VME. Participants overall had
significantly lower prior knowledge on parallel circuits,
Mparallel=29.6% (SD=33.3%) than on series circuits,
Mseries=70.6% (SD=34.6%), paired t (64)=−7.5, d=−.4,
p<.001.

ConceptualUnderstandingandExperimentationStrategies
Measures of productive experimentation strategieswere signifi-
cant factors for conceptual understanding:Adding themeasures
to the baseline regression model, and controlling for the
number of circuits built, we find a significant effect for inten-
tional CV manipulations with at least one parallel circuit
(ICVP), βICVP=.61, t (58)=2.9, p=.005, but no effect
for ICV with no parallel circuit (ICVNP), βICVNP=−.05,
t (58)=−.3, p>.5. In contrast, overall CV was not a sig-
nificant predictor of post-test scores, βCV=.2, t (59)=1.2,
p=.2, similar to the mass and spring activity. For more
details, see Supplementary Materials S.2.7.

Experimentation Strategies by Medium In line with
the differences in conceptual understanding, VME and
PME differed also in productive experimentation strategies.
Table 3 shows that PME was significantly less intentional
overall, which is particularly reflected in the amount of
intentional CV. While there was no difference between con-
ditions in the proportion of parallel circuits, virtual ME
performed more ICVP.

Cluster Analysis of Experimentation Strategies Cluster-
ing participants based on the four different measures of
experimentation strategies, see Fig. 6b, we found two well-
defined clusters.6 Regressing post-test scores on pre-test
scores and cluster shows that participants in the Productive

6The average silhouette score was .37. Nevertheless, the clusters are
reasonably coherent in terms of experimentation strategies.
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Table 3 Study 1 Electric Circuits: experiment manipulations and
target concepts by ME

VME PME z Sig Eff

Mdn IQR Mdn IQR

Experiment manipulations [%]

CV 65.0 28.6 50.0 25.2 2.3 .02* .3

ICV 54.5 26.8 37.5 26.9 3.9 .0003** 1.

ICVP 18.8 32.7 6.6 14.4 2.6 .001** .3

ICVNP 33.3 20.4 25.0 27.8 1.6 .12 .4

Non-Int. 12.5 20.0 27.6 20.6 −2.8 .005** .3

Circuit configurations [%]

Parallel 33.3 26.3 18.8 46.8 .9 .4 .1

Series 61.9 24.8 74.6 38.8 −.8 .4 .1

Notes: †(p ≤.1), *(p ≤.05), **(p ≤.01); Mdn median, IQR inter-
quartile range, z = z-score of the Mann-Whitney U tests between
the samples- when the samples were normally distributed, we report
results of a t-test instead, with 63 degrees of freedom (in italic). Effect
size is calculated by r = z/

√
n - when a t-test is used, we calculated

the effect size as Cohen’s d; for more information see Table 2

Cluster (n=30) had on average a 19% higher score on
the post-test than the Non-Productive Cluster (n=35),
βcluster=.19, t (62)=2.9, p=.004, controlling for pre-test
scores, βpre=.49, t (62)=3.3, p=.002; the regression model
has an adjusted R2 = .24.

We see in Fig. 6b that the Productive Cluster performed,
proportionally, significantly more ICVP, z=4.7, p<.001,
r=.6, less ICVNP, t (58.9)=−4.2, p<.001, d=1.0, however
also more intentional confounded manipulations, z=4.0,
p<.001, r=.5. The Non-Productive Cluster performed sig-
nificantly more intentional manipulations overall, z=2.6,
p=.01, r=.3.

Accordingly, 61.3% of VME belonged to the Pro-
ductive Cluster, compared to only 32.4% of PME,
χ2(1, N=65)=5.5, p=.02.

The Productive Cluster built significantly more parallel
circuits (MedianProd.=40.0%, IQR=21.4%) than the Non-
Productive Cluster (MedianNon−Prod.=9.1%, IQR=21.3%),
z=4.7, p<.001, r=.6. 6.7% of the Productive Cluster did
not build any parallel circuit, compared to 45.7% of the
Non-Productive Cluster. For the remaining participants in
the latter cluster, the Median was 19.4% (IQR=27.5%).

As is to be expected, building parallel circuits improves
assessed conceptual understanding: Regressing post-test
scores on the proportion of parallel circuits, controlling
for other baseline factors,7 reveals a positive effect of
parallel circuits, βparallel=.25, t (59)=2.3, p=.03. But it

7Specifically, we controlled for pre-test scores, medium, their interac-
tion, and the number of circuits built.

Table 4 Pairwise correlations of the key experimentation strategies
between the two activities

M&S / EC Int. CV Parallel Int. CV Non-Par.

Int. CV Spring −.48** .27

Int. CV Mass .29† .07

Notes: †(p ≤.1), *(p ≤.05), **(p ≤.01); analysis based on 32
participants

cannot sufficiently explain the impact of ME on conceptual
understanding, as there is no difference in the proportion
of parallel circuits between media (see Table 3). Further-
more, the Productive Cluster built fewer circuits overall
(MedianProd.=11, IQR=6) than the Non-Productive Cluster
(MedianNon−Prod.=16, IQR=10), z=2.3, p=.02, r=.3.

Overall, the cluster analysis indicates that the impact of
medium on conceptual understanding relates to the impact
of medium on experimentation strategies. Further evidence
that experimentation strategies matter in understanding how
ME impact inquiry-based learning comes from the medi-
ation analysis in Supplementary Materials S.2.6, which
revealed partial mediation by ICVP of 33.9% of the total
effect of medium on post-test scores.

Experimentation Strategies Across Activities

We found that for both tasks, intentional control of vari-
able manipulations that targeted the less familiar variables
were significantly correlated with conceptual understand-
ing. However, while users of the PME had a higher pro-
portion of ICV in the first task, the opposite was true in
the second task. Accordingly, Table 4 shows there was a
significant negative correlation between the two relevant
manipulation types, ICV involving parallel circuits (ICVP)
and deliberate spring-only manipulations (ISO).8

This gives further support for the conclusion that the use of
productive experimentation strategies in either task was less
affected by domain-general characteristics of a participant than
by the design features of the ME that might have been more
or less conducive to the use of the productive strategies.

Discussion of Study 1

We set out with the hypothesis that the medium of ME
affects the experimentation strategies, and that differences
in strategy use can account for differences in conceptual
understanding. The results of study 1 provide evidence in
support of these hypotheses. As expected from the litera-
ture on inquiry strategies (Zimmerman 2000), higher use

8The correlations are based on a total of 32 participants, excluding
participants from POE and participants with perfect pre-test scores.
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of productive experimentation strategies led to higher con-
ceptual understanding, in both inquiry tasks. However, the
extent to which participants used productive experimenta-
tion strategies varied by medium of ME and by inquiry
task: In the mass and spring activity, participants working
with the PME were better in terms of strategy use than the
ones using the VME, but this relation reversed in the elec-
tric circuits task. Furthermore, the cluster analysis for both
activities confirm that strategy use could account for the
impact of MEmedium on conceptual understanding, at least
partially.

Similar to Finkelstein et al. (2005) and Zacharia and de
Jong (2014), we found that the physical equipment for elec-
tric circuits had detrimental effects on how participants went
about the task. And similar to Renken and Nunez (2013),
we found the opposite to be the true for the mass and spring
activity. But as was the case with these studies, we can-
not yet determine what affordances caused the differences
in experimentation strategies, as the manipulative environ-
ments in each activity differed in multiple ways, see Table 5.
We address this issue in study 2.

The results of study 1 hinge on the operationalization of
experimentation strategies. In both activities, overall control
of variable manipulation was neither significantly related to
conceptual understanding nor did it explain differences in
how participants went about the tasks. This is likely because
certain manipulations in the VME, such as changing the
spring constant simply by moving a slider, can be counted
as CV even if the participant did not intentionally decide to
control for variables.

By incorporating the dwell time between manipulations
as a simple classifier of intentionality, and by distinguish-
ing manipulations by the concepts they target, we found a
reliable measure of productive experimentation strategies.
Accordingly, intentional CV that target the less familiar
concepts was a significant predictor of conceptual under-
standing, and a significant differentiator of participants
across PME and the VME, in both activities.

However, it is not clear from Study 1 whether the time
between manipulations represents the time for analyzing
and reflecting on the experiment and inquiry, or whether
it simply represents the time for setting up an experiment
with the manipulative environment, or both. Study 2 sheds
more light on the meaning of intentionality: With the mea-
surement uncertainty as the only difference between the two
virtual MEs, we expect the time to set up experiments to be
the same for both. Thus, differences in time between manip-
ulations are more likely due to factors other than the time
for constructing and manipulating circuits. The Predict-
Observe-Explain intervention did not help resolve this issue,
as it did not have any measurable effect on participants.9

9We will discuss why POE did not show any effect in the section on
limitations of the studies.
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Study 2

In further analysis of the data for the electric circuits, we found
that the number of circuits learners built was on average the
same, but that participants working with the PME had a sig-
nificantly lower percentage of unique circuits, because they
did more repetitions and went back and forth between two
circuit configurations (see Supplementary Materials S.2.4).
We thought that one is more likely to engage in these types
of behaviors when there is random noise in the data, because
these behaviors allow learners to better discriminate the
impact of an experimental manipulation (signal) from ran-
dom noise. The noise existed only in the PME, and resulted
in clearly detectable fluctuations in data readings and light
bulb brightness. Thus, random noise decreased the clarity
of observation and increased the complexity of informa-
tion to be processed. We hypothesize that this accounted for
a significant portion of the differences in experimentation
strategies between MEs in Study 1.

System-inherent noise is generally seen as an important
differentiator between virtual and physical ME that influ-
ences the clarity of observations (Chen 2010; Olympiou and
Zacharia 2012; Renken and Nunez 2013), but the litera-
ture is ambiguous on its effect on learning outcomes. Some
research found data free of random noise to be more con-
ducive to conceptual understanding because they provide
clearer observations that better expose cognitive conflicts
between prior beliefs and observed evidence (Chinn and
Malhotra 2002a; Toth et al. 2009). Other research found that
VMEs free of noise might induce more “play”-like inquiry
behaviors (Renken and Nunez 2013) and “may direct stu-
dents to a naive thinking path that follows oversimplified
logic or hypothetico-deductive reasoning” (p.1127, Chen
2010).

Either way, random noise is a representational affordance
that changes the clarity of observation, which in turn likely
influences how participants engage in the inquiry task. In
study 2, we examine whether the presence or absence of
random noise in the VME induces differences in experimen-
tation strategies and conceptual understanding similar to the
differences seen in the electric circuits activity in study 1.

General Study Design

The study was designed similarly to the electric circuits
activity in study 1. Participants were assigned to one of the
two conditions: Clear condition, in which participants used
the unmodified version of the PhET Circuit Construction
Kit (see “Manipulative Environments”); the noise condi-
tion, in which participants used a modified version of the
same environment, where ammeter readings had some ran-
dom noise. Similar to Chien et al. (2015), we programmed
the random fluctuations in ammeter readings to match as

closely as possible the noise observed in the physical toolkit
used in Study 1.10 The sample consisted of 60 students of
the same community college as in study 1 (not the same
students), that were randomly assigned to one of the two
condition. The study was conducted individually.

Materials and Methods

Modifications in Procedure Compared to Study 1

Participants engaged in two activities about electric circuits.
The first activity was the same as in study 1. We created a
second activity in order to increase the potential impact of
noise by requiring participants to focus more on small dif-
ferences in ammeter readings. In that activity, participants
had to use exactly two, three or six resistors to build circuits
that matched either the highest or the lowest current they
found when using only one resistor. The dependent variable
in both activities was only the ammeter reading, and the
circuits contained no light bulb or voltmeter.

Participants followed online instructions from a sur-
vey designed on Qualtrics.11 This included videos that
explained how to modify variables and build circuits using
the VME, how to read the ammeter (without mentioning
noise), and how to build four basic electric circuits using
either a single resistor, two resistors in series, two resistors
in parallel or a combination thereof. We showed these con-
figurations again on the screen before starting the activity, as
examples of the most elementary configurations they could
build. Participants engaged in activity 1 for 12 min, followed
by a re-set of the VME to initiate activity 2, which lasted for
10 min. They were allowed to stop anytime.

Modifications in Materials Compared to Study 1

Conceptual Knowledge Questions The questions were
drawn from study 1, but extended to incorporate more
decisions participants had to make in order to provide a
more nuanced view of their conceptual understanding. We
additionally asked participants to rate their confidence in
their response. If participants indicated that they randomly
guessed their answer, the score for that question was set to
zero.

Noise-Related Question We included one question that
targeted learners’ interpretation of data in terms of range
and uncertainty. It was a modified version of an item in the

10Random noise was designed as Gaussian noise centered on the theo-
retically correct current value, and spanning a maximum range of about
10% of the current value, up to a maximum of about 0.6Amp.
11Copyright 2017 Qualtrics. http://www.qualtrics.com.

http://www.qualtrics.com
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Fig. 7 Study 2 Cluster analysis:
a Pre-test and post-test by cluster
and condition of ME. Error bars
indicate standard error. b Box
plot of all manipulation types
used to calculate the clusters:
Intentional CV with at least one
parallel circuit, or no parallel
circuit, intentional confounded,
and non-intentional
manipulations. Numbers show
the proportions of all
manipulations per participant
that are of a manipulation type

Physics Measurement Questionnaire (Buffler et al. 2001),
adapted to electric circuits. The question presented partic-
ipants with two noisy series of current readings of two
circuits, and they had to evaluate based on that data whether
the circuits were (1) the same, (2) probably the same, but
more data was needed, (3) different, or (4) probably dif-
ferent, but more data was needed. The series consisted of
six data points, and were designed such that their respective
means were within each other’s margins of error.

For more information on the assessment questions, see
Supplementary Materials S.3.

Results

We excluded four participants in total: Three participants
had perfect pre-test scores. One participant did not do the
second activity. This left us with 56 participants in total, 28
in the Clear and 28 in the Noise condition.

Conceptual Understanding by Condition We found no
differences in conceptual understanding between condi-
tions: participants of both conditions started out at the same
level of prior conceptual understanding, p=.4, and scored
similarly on the post-test, p=.5, improving on average by
28.2%, t (55)=7.8, p<.01 (see Fig. 7a).

Table 6 Noise question: % participants per condition that evaluated
the circuits being compared as either the same or different

Answers Pre-test Post-test

Clear Noise Clear Noise

The same /

Probably the same 39% 32% 25% 64%

Different /

Probably different 61% 68% 75% 36%

However, participants’ interpretation of noisy data
evolved differently between conditions, see Table 6: Prior
to the activity, there was no difference between conditions,
p>.5; post activity, more participants in Noise thought the
circuits were the same than in Clear, χ2(1, N=56)=8.7,
p=.003.

Conceptual Understanding and Experimentation
Strategies Similar to the analysis of the electric circuits
activity in study 1, we regressed post-test scores on inten-
tional control of variable manipulations that include at
least one parallel circuit (ICVP) or no parallel circuit at all
(ICVNP), with the baseline covariates of pre-test scores,
condition and number of circuits, F(5, 50)=5.7, p<.001,
with an adjusted R2 of .30. As in Study 1, ICVP was a signi-
ficant predictor of post-test scores, βICVP=.68, t (50)=2.1,
p=.04, but not ICVNP, βICVNP=−.28, t (50)=−1.1, p=.3.

Table 7 Study 2: evaluation of differences in experiment manipula-
tions and target variables by ME

Clear Noise t Sig Eff

M SD M SD

Experiment manipulations [%]

ICV 50.9 13.9 58.1 13.2 −2.3 .06† .5

ICVP 13.5 12.9 19.9 12.3 −2.0 .04* .3

ICVNP 37.4 18.1 38.2 17.1 −.2 .9 .1

Non-Int. 23.1 12.3 17.2 10.9 1.9 .07† .5

Circuit configurations [%]

Parallel 24.3 23.2 29.1 19.4 1.0 .3 .1

Series 75.7 23.2 70.9 19.5 1.1 .3 .1

Notes: †(p ≤.1), *(p ≤.05) , **(p ≤.01); M Mean, SD Standard
Deviation, t statistics from the two sample t test with 54 degrees of
freedom—when the samples were not normally distributed, we report
the z-score of the Mann-Whitney U tests (in italic). Effect size is cal-
culated by Cohen’s d (unless samples were not normally distributed,
see Table 2)
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Experimentation Strategies by Condition As shown in
Table 7, the Clear condition was less intentional overall,
with less intentional CV manipulations (ICV), and in partic-
ular less ICV with at least one parallel circuit (ICVP). There
was no significant difference neither in overall CV manipu-
lations, nor in the number of circuits per participant, p=.2,
nor in the types of circuits they built.

Cluster Analysis of Experimentation Strategies Simi-
lar to the mass and spring activity in study 1, despite the
differences in non-intentional manipulations and in ICVP,
conceptual understanding was the same across conditions.
Thus, we again expected cluster analysis to provide a more
nuanced picture of how the different conditions went about
the tasks.

The four key manipulation types shown in Fig. 7b
covered on average 96.7% of manipulations for each par-
ticipant. Clustering participants based on those manip-
ulations, we found two well-distinguished clusters (avg
silhouette=.48). As in the electric circuits activity in study
1, we found that Productive Cluster (n=26) scored bet-
ter on the conceptual tests than the Non-Productive Clus-
ter (n=30), see Fig. 7a. Regressing post-test scores on
pre-test scores, βpre=.31, t (53)=2.0, p=.05, and cluster
gives a significant main effect for cluster, βcluster=.26,
t (53)=4.4, p<.001. There was a marginally signifi-
cant difference in pre-test scores between the Produc-
tive Cluster (Median=34.6%, IQR=30.8%) and the Non-
Productive Cluster (Median=13.5%, IQR=30.8%), z=1.6,
r=.2, p=.1.

The difference in how the two conditions split across the two
clusters was marginally significant, χ2(1, N=56)=2.6,
p=.1: 57.1% of the Noise participants fell into the Produc-
tive Cluster compared to 35.7% of the Clear participants.

Figure 7b shows that the Productive Cluster performed
more ICVP than the Non-Productive Cluster, z=−6.0,
r=.8, p<.001, and less ICVNP, z=5.9, r=.8, p<.001; yet,
there was no difference in the proportion of non-intentional
manipulations, t (54)=.8, d=.1, p=.5.

The differences in experimentation strategies between
clusters are related to differences in the proportion of
parallel circuits the participants built: Participants in the
Productive Cluster generated significantly more parallel
circuits (Median=46.2%, IQR=25.0%) than in the Non-
Productive Cluster (Median=9.1%, IQR=16.9%), z=5.9,
r=.8, p<.001. 33.3% of the participants in the Non-
Productive did not build any parallel circuits; for the
remaining participants, the median of parallel circuits was
15.5% (IQR=10.2%). However, in contrast to the elec-
tric circuits activity in study 1, the Productive Cluster also
built more circuits overall (MedianProd.=36, IQR=16.8%)
than the Non-Productive Cluster (MedianNon-Prod.=28.5,
IQR=11.5%), z=2.2, p=.03, r=.3.

Discussion of Study 2

We have employed study 2 to evaluate how the presence or
absence of system-inherent noise affects how learners use a
virtual ME in inquiry-based learning.

While results confirmed that the amount of intentional
control manipulations with at least one parallel circuit was
the strongest factor for post-test scores (similar to study 1);
but we were not able to re-create the differences in con-
ceptual understanding and experimentation strategies found
between the virtual and physical ME in study 1. On the con-
trary, it seems that the noisy data readings did not harm
the learners as postulated by other studies (Olympiou et al.
2013; Renken and Nunez 2013). Results even suggest that
participants in the Noise condition performed better than in
the Clear condition when considering the quality of their
experimentation strategies.

On first sight, it might seem counter-intuitive that the
presence of noise had an impact on strategy use, because
noise only changes the signal-to-noise ratio in the data but
not the interactive possibilities of the ME. However, the fun-
damental difference in experimentation strategies between
the two conditions was not in the quality of experiments,
but in the intentionality of manipulations: Unlike Renken
and Nunez (2013), both conditions had the same overall
proportion of unconfounded experiments, but the propor-
tion of intentional, unconfounded experiments was higher
in the Noise condition. Systems in which variables can be
manipulated easily reduce the time between manipulations
by reducing the time to set up an experiment. This might
explain why in the electric circuits activity in study 1, users
of the VME were slower than users of the PME. However,
in study 2, the time it took to build a circuit configuration
was likely the same between the conditions, which sug-
gests that any difference in dwell time can be attributed
to different forms of engagement with the experiment. The
presence of noise might have acted as a decelerator, slowing
down participants because more time was needed to decide
what effect a manipulation had on the current. The lack of
noise in the clear VME however might have induced faster
manipulations because the result of each experiment was
immediately evident. Alternatively, the presence of noise
might have increased participants’ cognitive engagement
with the data, requiring them to be cognitively more active in
observing the experiments. In the present study, we cannot
disentangle the different mechanisms of how random noise
influenced participants’ experimentation strategies; but we
have clear indication that there was a cognitive effect,
because of the differences between conditions in the test
questions about random noise. Further studies are required
to see whether participants developed different strategies to
cope with fluctuating values during the activity, or whether
they just became more tolerant in assessing such uncertainty.
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Either way, the additional cognitive effort due to the noise
did not harm learners’ conceptual understanding, even if
drawing inferences from noisy data is considered to be more
difficult (Chinn and Malhotra 2002a; Toth et al. 2009).

General Discussion

In this paper, we presented a series of studies to address
two issues related to the use of manipulative environments
in inquiry-based learning. One issue involves a method-
ological argument about how to study the effectiveness of
manipulative environments. The other issue concerns the
relation between manipulative environments, their affor-
dances, experimentation strategies, and conceptual learning.
The results indicate that:

1. Manipulative environments affect experimentation
strategies (see Fig. 8).

2. Experimentation strategies mediate the effect of manip-
ulative environment on conceptual understanding. Par-
ticipants using the manipulative environment that
induced more productive experimentation strategies
were more likely to belong to the cluster of participants
with better conceptual understanding.

3. The effect of manipulative environments on experi-
mentation strategies depends on their affordances; for
example, the presence of noise in the data can induce
different experimentation strategies (see Fig. 8c).

The Importance of Experimentation Strategies when
Studying the Impact of Medium of ME on Conceptual
Understanding

One aim of this paper was to examine to what extent
accounting for students’ experimentation strategies can help
explain why they learn differently with different manipula-
tive environments, and not to show that systematic experi-
mentation facilitates learning in general, which has already
been known (Zimmerman 2000). We demonstrated that the
evaluation and comparison of manipulative environments
can be more informative and consistent if experimentation

strategies are measured together with conceptual under-
standing. There are multiple indications in support of this
argument:

First, in line with prior work (Zimmerman 2000), mea-
sures of productive experimentation strategies were strongly
and positively correlated factors of conceptual understand-
ing irrespective of the task domain and manipulative envi-
ronment. Differences in conceptual understanding were
related to differences in experimentation strategies, either
between conditions of MEs or between clusters of par-
ticipants across conditions. Notably in the electric circuits
task in study 1, experimentation strategies partially mediated
the effect of medium of ME on conceptual understanding.

Second, we found little consistency in strategy use within
learner across activities in study 1. This suggests that the
way participants went about the activity was influenced
not just by individual and task-related factors, but also by
characteristics of the manipulative environments, which is
supported by the results of study 2.

Finally, conditions that appeared to be the same based on
conceptual understanding alone turned out to be different
when considering participants’ experimentation strategies.
This was the case in both the mass and spring activity in
study 1, and the electric circuits task in study 2. In both
studies, participants developed on average a comparable
conceptual understanding of mass and spring resp. electric
circuits concepts. Based on that, we could have argued that
there was no difference in benefits of MEs for learning, in
line with previous research (Klahr et al. 2007; Olympiou
and Zacharia 2012; Pyatt and Sims 2011; Triona and Klahr
2003).

However, cluster analysis of experimentation strategies
revealed clear differences between the virtual and physical
MEs in each activity: Participants in the productive strate-
gies cluster consistently had higher learning outcomes in
all activities; in each activity, the proportion of participants
in the productive strategies cluster was different for each
ME; and the ME with more participants in the productive
strategies cluster tended to be better for learning outcomes.
The difference in split of participants across clusters did
not always translate into significant learning differences
because of the following reasons: 1. In the mass & spring

Fig. 8 Breakdown of conditions
by cluster of experimentation
strategies, for each inquiry
activity in studies 1 and 2. In
each case, the productive cluster
had higher learning outcomes

(a) (b) (c)
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activity in Study 1, significantly more participants using the
PME were in the productive strategies cluster, yet the sam-
ple size was too small to reduce the inter-subject variance in
experimentation strategies within each condition. Only very
few participants in each condition deviated from the others
(see Fig. 8). 2. In Study 2, the split of participants across
the clusters was only marginally significant because the dis-
tinction in only one affordance between the two MEs was
rather subtle. How a ME impacts the inquiry processes is
also influenced by the nature of activity; future research is
needed on the interaction of activity design and ME design
on experimentation strategies.

The advantage of cluster analysis compared to multiple
regression approaches is that it extracts regularities in learn-
ers’ experimentation strategies across multiple dimensions
simultaneously and thus increases the signal-to-noise ratio
in the data.

One might argue based on our analyses that the dif-
ference in learning between the Productive and Non-
Productive Clusters was more a matter of exposure to the
right experiment configurations rather than a matter of sys-
tematicity of the experimentation strategies. After all, the
proportion of parallel circuits participants built was a strong
predictor of conceptual understanding and differentiating
factor between the clusters, in both study 1 and study 2. It
makes sense that if you have never built a parallel circuit, for
example, you will likely not know what the impact of resis-
tor configuration is on an electric circuit. However, building
the “right” experiment configurations is not sufficient in
explaining the impact of MEs on learning outcomes in gen-
eral, as the findings from the electric circuits activities did
not translate into the mass and spring activity; the proportion
of manipulations targeting the spring constant or mass were
neither predictive of conceptual understanding nor strongly
differentiating factors between clusters. Systematic experi-
mentation strategies are more consistently related to positive
learning outcomes.

The Impact of Single Affordances on Students’
Experimentation and Learning in Inquiry-Based
Activities

The findings of study 2 about the beneficial effects of noise
on participants’ experimentation strategies and subsequent
reasoning indicate two things: (1) individual affordances
can influence how learners engage in and learn from inquiry
activities in ways that are not necessarily anticipated by a
priori analysis of MEs. Against our expectations, noisy data
increased participants’ use of intentional manipulations. (2)
the aggregate effect of all affordances of a manipulative
environment is not necessarily summative, but rather the
result of complex interactions between the affordances. This

could explain why in study 2 we found that participants used
more productive experimentation strategies in the presence
of noise, yet in study 1, where the MEs differed along mul-
tiple dimensions of affordance (see Table 5), participants
had worse strategy use when working with the physical ME,
which inherently had noisy data.

Therefore, approaches to determine post-hoc what affor-
dances caused differences between learners in comparisons
of physical and virtual MEs can be misleading, in particu-
lar in light of the many differences in affordances between
environments (de Jong et al. 2013). Rather, we propose
to consistently study the role of affordances in inquiry-
based learning by targeting single affordance, and compare
manipulative environments that differ only in the target
affordance. Further studies to examine what caused the
learning differences found in study 1 might need to employ
such a factorial design for every single affordance, such as
the ease of manipulation, and/or complexity of the models.

The Relevance of Intentionality in Finding Productive
Experimentation Strategies

We focused on the control of variable strategy because it
provides a simple yet robust enough measure of gener-
ally productive experimentation strategies to address our
research questions. However, operationalizing CVS as mere
frequency counts of CV manipulations proved insuffi-
cient to find relevant patterns in experimentation strategies
that were productive for learning. Rather, intentionality, as
defined by the time between manipulations, was a particu-
larly important characteristic of productive experimentation
strategies.

The relevance of intentional manipulations, i.e. of hav-
ing ”enough” time between manipulations stands in contrast
to previous work that considered fast manipulations to be
more beneficial for developing conceptual understanding
by exposing learners to more experiments, and by reducing
time to run experiments to free time for the conceptually
relevant aspect (Zacharia et al. 2008). One potential expla-
nation for this contradiction is that the number of possible
experimental configurations was significantly lower in ear-
lier work than in the current study; in these studies, learners
could cover the entire experimental space in a short amount
of time with even simple trial-and-error.

We think that intentionality is relevant in activities that
give learners more choices and more flexibility in their
exploration. When learners are free to choose how to go
about an activity, both in terms of what kind of the actions
to take and how to take them, time between manipula-
tions seems to capture cognitive aspects of the inquiry
process that are relevant for learning. A recent study by
Perez et al. (2017) confirms our findings. They analyzed
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action sequences of students in an inquiry task with elec-
tric circuits, and found that strategic use of pauses between
building and testing circuits was strongly associated with
successful learning. In their study, pauses are indicative of
active cognitive processes.

Intentionality also seems to capture how interactive and
representational affordances of MEs affect how learners
engage with them. In both activities of study 1, participants
in the Non-Productive Clusters were less intentional than
participants in the Productive Clusters. And in both activi-
ties, the MEs we considered as being easier to manipulate
were more conducive to non-intentional manipulations—
the VME for mass and spring allowed to change the spring
constant simply by using a slider, and the PME for elec-
tric circuits allowed to quickly change circuits by snapping
together magnetically connected pieces.

However, in study 2, where the ease of manipulation was
the same for both MEs, the clusters did not differ in terms of
overall intentional manipulations. Instead, the difference in
clarity of observation mainly impacted the intentional con-
trol of variable manipulations, but not the overall control
of variable manipulations. This indicates that the cognitive
engagement of participants was different with these more
informative experiments. As elaborated in section “Discussion
of Study 2”, further research is needed to understand the
mechanism of how clarity of observation impacted the
learning experiences.

Limitations and Future Research

A major limitation of our studies was the length of each
activity. Ten to 22 min is a short time span for inquiry activi-
ties, especially when there exist inaccurate prior beliefs. The
process of developing accurate conceptual understanding
ideally requires longer time spans with multiple iterations
of the discovery activities (Renken and Nunez 2013). Fur-
thermore, such short durations punish behaviors that might
be desired under other circumstances. For example, we
observed in study 1 that some participants using the phys-
ical toolkit for electric circuits explored the impact of wire
length on current and voltage; while this was irrelevant to
the learning objective of the task, it could be interpreted as
a sign of attentiveness and curiosity that eventually could
have led to a deeper understanding about electric circuits.
But in short tasks, any time spent on aspects irrelevant to
the learning goal leaves less time for goal-relevant ones. At
the same time, these short durations bear some ecological
validity, because active learning tasks in introductory col-
lege classes and recitation sessions are typically not much
longer than the activities in our study.

Another limitation was the implementation of the
Predict-Observe-Explain intervention in study 1. There are
many possible reasons for why the POE intervention did not
have any effect on learning outcomes, such as the difficulty
of transfer from the mass and spring to the electric circuit
activity. We think that a longer intervention might have been
more informative.

In both studies, the within-condition variabilities in par-
ticipants’ use of experimentation strategies were quite large.
The corresponding reduction in signal-to-noise ratio could
have been compensated for by larger sample sizes.

We think that for future research on how affordances
of MEs influence inquiry strategies, additional measures of
inquiry strategies than the ones used in this paper could
provide a more fine-grained picture. Our measures of exper-
imentation strategies represent average strategies that were
aggregated from all manipulations per participant, ignor-
ing the temporal dynamics of the inquiry behaviors. Recent
work used action sequence mining to reveal patterns of
actions that were associated with productive learning (Perez
et al. 2017), or sequence labeling of experimental con-
figurations to extract different styles of exploration in the
experiment space (Levy and Wilensky 2011). Additionally,
advanced sensing and artificial intelligence technologies
can be used to explore more complex dynamics and proper-
ties of inquiry behaviors (Worsley and Blikstein 2015).

Conclusions

“Are interactive simulations or physical manipulative envi-
ronments better for inquiry-based learning?” Although
research studies have been used to support both sides of this
debate, we believe that this is the wrong question to ask.

We have shown that whether or not a ME is effective
is likely a question of affordances rather than medium of
environment and that a ME is effective if it is conducive
to productive inquiry strategies. Using cluster analysis of a
multi-dimensional representation of experimentation strate-
gies, we found that differences in affordances can cause
participants to cluster differently based on strategy use, and
that the clusters correlate strongly with that the degree of
conceptual understanding. Even when ME seemed to be
equally conducive to learning in terms of learning outcomes,
we found differences in experimentation strategies between
the conditions; these differences were just not big enough to
show up in differences in learning outcomes.

To date, many design decisions for manipulative environ-
ments are made on a case-by-case basis, guided by heuris-
tics that stem from research contrasting virtual and physical
MEs. However, comparing manipulative environments at
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the level of medium is not sufficient for informing produc-
tive designs because MEs of the same medium can still vary
significantly in terms of their affordances (e.g., Electricity
Exploration Tool (Jaakkola and Nurmi 2008) versus PhET
Circuit Construction Kit (Perkins et al. 2005)). Affordances
are also not “hard-wired,” domain-general characteristics of
the medium of a ME, as new technologies allow us to imple-
ment in one medium affordances that were considered as
unique to the other. For instance, the affordance for fast
manipulations of variables, traditionally seen as inherent to
virtual manipulative environments, can be altered by turning
a simple drop-down menu into a more complex interaction
element.

We believe that this paper presents a type of analysis that
can contribute to developing a general framework of produc-
tive design principles for MEs that focuses on affordances
independent of medium. Such analysis will clear up many of
the apparent ambiguities and inconsistencies in the existing
literature, which did not look in detail at how manipula-
tive environments influence inquiry strategies, and what role
affordances play independent from the medium.
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