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Abstract

We study the emergent behaviors of an infinite number of Lohe Hermitian sphere oscillators
on the unit Hermitian sphere. For this, we propose an infinite analogue of the Lohe hermitian
sphere model, and present sufficient frameworks leading to collective behaviors in terms of
system parameters and initial data. Under some network topology, we show that practical
synchronization emerges for a heterogeneous ensemble, whereas exponential synchroniza-
tion can appear for a homogeneous ensemble. Furthermore we have also derived analogous
results for the infinite swarm-sphere model. For the sender network topology in which cou-
pling capacities depend only on the sender index number, we show that there are only two
possible asymptotic states, namely complete phase synchrony or bi-cluster configuration for
a homogeneous ensemble in a positive coupling regime.

Keywords Asymptotic behavior - Infinite particle system - Lohe Hermitian sphere model

Mathematics Subject Classification 34D05 - 34G20 - 70F45

1 Introduction

Collective behaviors of a complex system have received a significant attention due to its wide
range of applications in engineering and biological fields [9, 19, 33, 34, 37-39]. They include
several group behaviors such as aggregation of bacteria [37], flocking of birds [14], swarming
of fish [38] and synchronization of fireflies and neurons [33] etc. Among them, our interest
lies in synchronization of weakly coupled limit-cycle oscillators. In 1975, Japanese physicist
Yoshiki Kuramoto introduced a first-order particle model [28] following the work of Arthur
Winfree [41] to study a simple phase-transition like phenomenon describing synchronization
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among a finite number of phase oscillators. The Kuramoto model is also a nice model to
describe the synchronization of oscillators with constant period and it has been studied in
various researchers [1, 5, 7, 16, 18, 20, 35]. We refer to [1, 2, 4, 15, 17, 21, 33-35, 39, 42]
for a brief survey and introduction to collective dynamics. In this paper, we are interested in
the collective behaviors of oscillators on the unit Hermitian sphere embedded in C¥:

C‘=Cx---xC, [N]:={1,...,N}, N:={1,2,...}.
N —’
d times

To fix the idea, we begin with the Kuramoto model. Let 6; = 0; () be a real-valued phase of
the i-th oscillator. Then, the dynamics of 6; is governed by the following Cauchy problem:

. K .

bi=vi+y Z sin@; —6;), t>0,
) i€[N]

0;(0) =6/, ie[N],

where V = {v;};¢(n] and « are the collection of natural frequencies in R and nonnegatiye
coupling strength, respectively. Then the dynamics of the complex-valued function z; = '
satisfies K

Zi=ivizi + — Z (zj —(zj.zi)zi). i €l[N].

2N J€IN]

where (z;, z;) = Zjz;. This form can be generalized to the swarm sphere model on the unit
Euclidean sphere SY~! in R9.
Letx; = x; () € R? be a position of the i-th swarm sphere oscillator. Then, the dynamics
of x; is governed by the Cauchy problem to the swarm sphere (in short SS) model [29, 30,
32]:
X = Q;x; +% Z ((xi»xi>xj - (Xiaxj>xz‘), t>0,
. JjelN] (1.1)
xi(0) = x;", i €[N,

where @ := {2;};c[n] and « are the collections of d x d skew symmetric matrices, nonneg-
ative coupling strength, respectively, and (-, -) is the standard inner product in R?. Then, it
is easy to check that the modulus of x; is conserved along the swarm sphere dynamics (1.1).
Hence the unit sphere SY~! is a positively invariant set. Recently, Ha and Park introduced
a particle model for aggregation on C? using a finite-dimensional reduction from the Lohe
tensor model [24]. More precisely, let z; = z;(¢) be a state of the i-th Lohe hermitian sphere
oscillator on C?. Then it is governed by the following Cauchy problem to the Lohe hermitian
sphere (in short LHS) model:

i = Qizi + Ao Z ( (zi zi) zj —(z/-,z,')zl')
J€e[N]

+a Yy (z,,z] Z]7Zz>)zi» t>0, (1.2)
JEIN]

2i(0)=2", i€[N],
where Ao and A are nonnegative real numbers such that 1o + A1 = 1. Here (-, -) denotes the

standard inner product in C:

=G e, w=@' . . w) el (zw) Zz’ ,lzll ==z, 2).
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Then we can see that the modulus of z; is conserved along the LHS dynamics (1.2), and the
complex unit sphere(Hermitian sphere) HS?~! is a positively invariant set. That is why we
call this model as the LHS model. The Cauchy problems (1.1) and (1.2) have been extensively
studied in a series of works [8, 11-13, 23-27, 29-31, 36, 43].

In this paper, we are interested in the following two questions:

e (Q1): What is the infinite counterpart of the Lohe hermitian sphere model for an infinite
ensemble {z;}ien?

e (Q2): Once the infinite counterpart is proposed, under what conditions on system param-
eters and initial data, does the proposed model exhibit collective behaviors?

To describe the mean-field dynamics of an infinite number of Kuramoto oscillators, the
Kuramoto-Sakaguchi model was often studied via the corresponding kinetic model for
N > 1. More precisely, to describe the behavior of individual particles, the kinetic model
describes the entire configuration by approximating the overall averaged dynamics by a
probability density function. Recently, dynamical systems with infinite number of equations
have been used in the study of collective dynamics in [22, 40]. In particular, authors’ recent
work [22] highlights the distinction between the behavior of infinitely many particles and
the behavior of particles approximated by a kinetic model. One of motivations to deal with
an infinite particle system lies in the construction of measure-valued solutions to the corre-
sponding mean-field kinetic equations with unbounded spatial support. More precisely, in the
previous works on kinetic models for collective dynamics, we considered initial data which
are compactly supported in phase space. To construct a measure-valued solution with a com-
pact support, particle-in-cell method is often used. In this procedure, since the spatial support
is bounded, there are only finite number of cells for a given finite mesh size. Hence, a particle
system with a finite system size can be used in the construction of approximate solutions in the
form of an empirical measure. However, when the spatial support is bounded, we must have
an infinite number of cells for any finite mesh size. Therefore, we are forced to deal with par-
ticle model with an infinite system size. This is why we need to study infinite particle systems.

Throughout the paper, we provide answers for the above posed questions (Q1) and (Q2).
More specifically, our main results are two-fold. First, we propose an infinite counterpart of
the Cauchy problem to the LHS model (1.2) with an infinite network matrix (;;):

= Qizi+ o Y wij (i 2i) 2 — ()0 2i) 2i)
jeN
a1 Y kij((zinzj) = (ej.zi) 2. t>0, ieN, (1.3)
jeN
zi(0) = z}",
where the coupling matrix £ = (K,‘ j)i,j <y and a sequence of anti-Hermitian matrices € =
{2 }; ey satisfy the following conditions: for i, j € N,

Qf =-Qi, D@ := sup [ -], <00 Rllsc.ep:=supllllop < 0o,
i,jeN ieN
. (1.4)
kij >0, 0<|K|-c0,1 = inf ZKU < supZ/qj = Kllo,1 < 00.
ieN 4 ieN <
jeN jeN
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Here Qj is the Hermitian conjugate of €2;, and ||€2; ||op is the operator norm:

o ISl
”Qi”op ‘= sup .
xz0 llxll
Since ||k]loo,1 < 00, the infinite sum of right-hand side of (1.3) is well-defined. The global
well-posedness of the Cauchy problem (1.3) is presented in Appendix A.
Second, we study the emergent behaviors of (1.3) for the cases in which system parameters
and initial condition are given as follows.

Case A: € : anti-symmetric real matrix, z}“ e R4
Case B.1: «;; > 0,

Case B:  : anti-Hermitian, z}“ eC?, K ; satisfies
ase B.2: k;j = kj > 0.

Specially, for Case A, we obtain an infinite counterpart of the Cauchy problem to the SS
model (1.1) with an infinite network matrix (k;;):

J'CiZQixi+)»OZKij ((xivxi) xj — (xj, xi)x;), 1>0,
' jeN (1.5)
x(0)=x", i€eN,

where the coupling matrix £k = (K,‘ J')i.jeN and a sequence of anti-symmetric matrices £ =
{€2;}; ey Which satisfies conditions (1.4) inherited from the original infinite LHS model (1.3).

For Case A and Case B.1, we derive “practical synchronization” estimate for heteroge-
neous ensemble:

) D(R2)
lim sup |z;(¢*) —z;(t)| < O(1) ———
1=00; icN el —00,1

For Case B.2, we consider the Cauchy problem for a homogeneous ensemble with 2; = O:
gj =20 ((z)j-2j)ze = (ze 25)27) + 21 ({2 2¢) = {zen 2j))zj 120,

=2 [ =1 =Y wa (1.6)
leN

In Sect. 5, we investigate the roles of each term in the right-hand side of (1.6). More precisely,
for A1 = 0, if initial data satisfy

<1-56,

sup |1 — <z}n, zl;‘>
i,jeN ’

we have an exponential synchronization (see Theorem 5.1):

|1 —(zi(0).z; )| < )1 —<z§“,zij~"> -exp (=8 Rot) .

For the whole system (1.6), we show that possible asymptotic states are either one-point
cluster or bi-polar state (see Corollary 5.2).

The rest of this paper is organized as follows. In Sect. 2, we study basic properties of the
infinite LHS model and discuss its relation to other aggregation models. In Sect. 3, we study
emergent dynamics of the infinite SS model as a special case of model (1.3) in which initial
data and €; is anti-symmetric real matrix. In Sect.4, we study the emergent dynamics of
the model (1.3) for a homogeneous ensemble with the same €2;. In Sect. 5, we present a
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synchronization estimate for a special case in which the interaction capacity depends only on
the sender node, which is different from the presentation in Sect. 3. Finally, Sect. 6 is devoted
to a brief summary of our main results.

2 Preliminaries

In this section, we briefly review basic properties such as the conservation of £2-norm and a
global existence of the infinite LHS model and discuss relations with other existing aggre-
gation models such as the Kuramoto model and the Schrodinger-Lohe model.

2.1 The Infinite LHS Model

In this subsection, we briefly study several properties of the Cauchy problem (1.3)—(1.4).
First, we show that the unit Hermitian sphere is positively invariant.

Lemma2.1 Let Z = {z;};cn be a global solution to (1.3)—(1.4). Then the modulus of z; is a
conservative quantity:

lzi) = ||z"@)|. t=0, ieN.

Proof We take an inner product (1.3); with z; to find

d . .
o7 lai 12 = (zi, i) + (zis 22)
= <Qiz,', Zi> + <Zi, QiZi>

+ Ao ZKU( (zirzi)zj — <Zj, zi>zi, Zi> + Ao Zkij<zi, (zi, zi)zj — <Zj,Z,'>Zi>

jeN jeN 2.1
+ A1 ZKij<(<Zi,Zj) — (Zj,zi)>zi,Zi> + A1 ZKU<Z1‘, ((Zi,Zj) —{zj, zi))zi>
jeN jeN

6
=: ZI],‘.
i=1

Below, we estimate the terms Zj; one by one.

e Step A (Estimate of 711 + Z12): We use (1.3) and the skew-Hermitian property Qf=-Q
to get

In+In= <QiZi, Zi) + (Zi’ QiZi) = <Zi, sz;-} + (z,-, QiZi>

= —<Zi, Qizl'> + <Zi, Qm> =0.

e Step B (Estimate of 713 + Z14): We use the sesqui-linearity of (-, -) with (z,-, zj) = <zj, z,->
to obtain

<(Zi, zi)zj — (2. zi) zi, Zi> = (zi, 2i) (2> 2i) — (zir 2j) (zin 2i)

<Zi: (zirzi) 2j — {2 Zi>Zi> = (zi. 2i) (2> 2j) — (2j» 2i) (zin i) -
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These imply
T3+ Z14 = 0.

e Step C (Estimate of Z15 + Z;¢): Similar to Step B, we have
<((Zi, Zj) — (2, Zi))zis Zi> = ((Z/VZi) — {2, Zj)) (ziy i) »
<Zi» ((Zivzﬂ = (zj, Zi))2i> = ((Zi»Zj> —{zj, Zi)) (zi, zi) -

Thus, we have
Ti5+Zi6 = 0.

Finally in (2.1), we combine all the estimates in Step A—Step C to get the desired conservation
law:

d
Z ||Zl||2 =0, t>0.

Remark 2.1 Thanks to the result of Lemma 2.1, we can assume
lzill=1, t>0, ieN

without loss of generality.

Lemma 2.2 Let Z = Z(t) be a global solution to (1.3)—(1.4). Then we have the following
estimates:

< 1RMl0o.0p + 2 llkelloo,1 (Ao + A1)

(i) E(Zi _Zj) 52”9”oo,op+4”’c”oo,l (Ao + A1)
..o d 2

(iii) E ”Zi —Zj || <8 ”Sl“oo,op +16 ”K”oo,l (Ao + A1)
. d

v) | = lzi = zj]l| = 21R0c0.0p + 411K llco,1 (o +21) -

Proof (i) and (ii): It follows from (1.3) and the triangle inequality that

d
H% < IRl o,0p + Z’Q‘j (o |25 = (zj. zi) zi]| + A1 [ {ziv 25) — (25, z) )
jeN
< 182l o0,0p + ZKU (%o |25 ]| + 20 l{zj» zi)| Nzill + 21)
jeN

= 12l00,0p + 2 lllloo,1 (R0 + A1)
P

The second relation follows from the first relation directly:

d
” E (Zl

” de

H dz;
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(iii) and (iv): Note that

d d d
Sla-sP=2lfa -z 5 @)l <2021 | £ @-2)
<2-2- (211®R0c0,0p + 4l lloo,1 (oo +21))
=< 8|Rlloo,0p + 16l llo0,1 (o + A1) and
d 1 d 2 1 d
S la—zl|= la—al| 2 s (5 @ -2)-2)
N o g — P 2z =z Nar &
d
< ”E(Zifzj') < 2||Lllo,0p + 4 llkclloo,1 o+ A1)

[m}

Note that if we set A; = 0 in (1.3), it becomes the infinite complex swarm sphere model
[30]. Hence we can expect that (1.3) can be reduced to the infinite swarm sphere model as a
special case, if initial data and natural frequencies are real. This can be seen in the following
lemma.

Lemma 2.3 Let Z be a global solution to (1.3)—(1.4) satisfying the following two conditions:

(1) Initial data are purely real: '
Jm(zj") =0, ieN,
where Jm(z) is the imaginary part of z.
(i) R = {Q;};en is a sequences of d x d anti-symmetric matrices:
QeR™ @ =-Qf ieN
Then, we have

Im(zi(@®) =0, ieN, r>0.

Proof Since every calculation in the proof of Theorem A.1 can be applied for (1.5), we can
show the real counterpart of Theorem A.1 with solution curve X defined on the real Banach
space:

22 lloo2) = {y = itien 1 i €RY [ Vlloo2 == sup [lyill < OO} .
ieN
Then the real solution X can be considered as a unique solution of model (1.3) on the unit

Hermitian sphere HISY~!. O

Remark 2.2 Let Z be a real-valued solution to (1.3). Then the second term involving with A4
is zero:

ZM/((ZJ, Zj) — (Zj,Zi)>Zi =0.

jeN

Hence (1.3) has the same form as in the infinite swarm sphere model.

Next, we consider a finite truncation of (1.3). For a fixed positive integer N, we assume
that ‘
Kij=09 Zm=0, i>N-+1.

l
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Then, the Cauchy problem (1.3) becomes
zi = iz + Ao Z /cij((zi, 2i)2j — <Zj,zi>zi>
JEIN]
+A1 Z Kij
~JjelN]
zi(0) = zj".

((zi,z,')—(z,-,zi))zi, t>0, Viel, 2.2)

Lemma 2.4 Suppose that initial data satisfy
@' 1<i<N,
zi(0) =" -
/O L,izN+L
and let Z be a solution to (2.2). Then, we have
zi(t) =0, t>0, i>N+1.
Proof Since the proof is straightforward from Lemma 2.1, we omit its detailed proof. O

Consider a finite-dimensional analogue of (1.3) in which all the coupling strengths are
uniform over nonzero nodes and collectiions {€2;} are homogeneous:

Kij = N> le_. .v Q=Q, ieN, z,=0 i>N+1.
0 max(i,j) > N,

In this case, the system (1.3) can be rewritten as

7 = Qz; +K0(Zc(Zj,Zj> = zj{zc, Zj)) + A ((z,n Ze) — (Zc,Zﬂ)Zj, t >0, 23)
2j(0) =2, j €[Nl
Now, we also consider the homogeneous analogue of (1.3):
w; = Ao(wc(wj, wj) — wj(wc.wj)) +)\.1((U)j, we) — (we, wj)>wj, t>0, 2.4)
wj(0) =z, jelN],
where z. and w, are averages of {z1, z2, ..., zn} and {wy, wo, ..., wy} respectively:
1 1
Zc :NZ Zi, We :NZ w;j.
i€[N] i€[N]

In the following proposition, we study a relation between (2.3) and (2.4).

Proposition 2.1 (Solution splitting property) [24] Let Z = {z;} and W = {w} be solutions
to (2.3) and (2.4) with the same initial data {z’j”}, respectively. Then, one has

zj:eQ’wj, ]E[N]

Proof We first note that ;
(691) — (egt)fl.

Then % is unitary, and we introduce the variable w; such that

zj =eMw; forall j € [N]. (2.5)
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We substitute (2.5) into (2.3) to get

eQ’u')j + QeQ’wJ- = QeQ’w., + Ao((emwj, eQ’wq,‘)thwC — (eQ’wC, emwj)emwj)
+ a1 (e wj, e we) — (€M we, e we))e w;.

After simplification, one has

wj = Ap((wj, wj)we — (We, wjw;) + A ({wj, we) — {Wwe, wj)w.

Thus, we obtain the desired result. O

2.2 Reduction to Known Aggregation Models

In this subsection, we discuss three reductions from (1.3) to other related aggregation models.

2.2.1 The Swarm Sphere Model

Consider the finite-dimensional Lohe Hermitian sphere model:
2j = Qjzj + ro(ze(z), 2j) — 2j{2e-2j)) + A1z, 2e) — (ze2))zj- (2.6)

It follows from Lemma 2.3 that once initial data lies on the unit Euclidean sphere S9! then
we have
Zi € RY, ic [N].

In this case, the second coupling term in the right-hand side of (2.6) becomes zero:
(zjsze) —{zes 2) = 0.

Hence, for a real-valued function z;, the system (1.3) reduces to the swarm sphere model
[30]:
Xj=Qjx; +Xo(xc —xj(xc,xj)).

2.2.2 The Kuramoto Model

Now, we return to the complex Lohe sphere model (1.3) with d = 1, and explain how (1.3)
can be related to the Kuramoto model. For this, we set

Q; =0, z;= rjgi9j7 j €[N] and z¢:=ree®. @7
We substitute the ansatz (2.7) into (2.6) to see
Fje% +irjei6; = korjre(e? — @m0 ieyrire(e? — 79
=2(ho + k])rjz»rci sin(¢ — gj)eioj.

This yields )
Fj+iri; = 2(ko + K])irjz»rc sin(¢ — 6;). (2.8)

We compare the real and imaginary parts of the above relation (2.8) to get

Fi =0 and 6; = 2(ko + A1)rjresin(g — 6;).

@ Springer
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These yield
. . 2(A A
ri(t) = r}“, 0; = 7( O]\—;_ v Z rln ,‘(“ sin(Gx — 0;).
ke[N]
Now, we set

r}" =1, k:=20o+A1)

to get the Kuramoto model for identical oscillators:

. K .
b= > sin(; — 6).

JEIN]
2.2.3 The Schrodinger-Lohe Model

In this part, we follow the presentation from [23]. Let {1/} be the collection of N complex-
valued wave functions in C(R; L?(T?)) whose dynamics is governed by the coupled system
of nonlinear Schrodinger equations:

. iK
0y = Hy+ 1 O (Wl 0 — W vyy). @0 eRyx T 29)
ke[N]
where H = —%Ax + V is one-body Hamiltonian.
Let {¢x} and { E% } be a countable orthonormal basis consisting of eigenfunctions and their
corresponding eigenvalues respectively:
He¢p = Ex¢y, k€N

Then the standing wave solution ®g (¢, x) = e 1Bkt ¢x (x) satisfies the linear Schrodinger
equation:
10, Py = Hdy, keN.

Now we set ¥ to be the linear combination of {®y }ren:

vit.x) =Y KO, x), jelNL (2.10)

keN
Suppose that 1/; satisfies the Schrodinger-Lohe model (2.9) with |4 ]> = 1:

. ik
0 = HYj + 5 D (e = Wi ) v Q.11)
ke[N]
We use (2.10) to rewrite the left-hand side of (2.11) to see
ity = Y (hid@u+ 2hidy) = Y (AHO+ 0y = Hyy +i ) Ao 212)

keN keN keN
Next, we equate (2.11) and (2.12) to get

HYj i) = Hiy+ 2 3 (= (i ) 9)

keN le[N]

— Hyy+ % Z 3@ - v

N]keN
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This yields

Zi];q)k Z Z(Zl (W1, ¥ )25 Py

keN le[N keN

Since {®y} is an orthonormal basis, one has

de~ K
—F =5 2 @ =W v, LeIN] kel (2.13)
le[N]

For each j € [N], we set an infinite complex vector z; in (£%° N 62)(Z+) as follows:
_ 12
=(2j, 255+ )
Now, we use the definition of (-, -), (2.10) and (2.13) to get
(Y1, ¥j) = Z <zf‘<1>k, ZT‘I>m> = Z zf‘z;f’(d)k, q>m> Zz,z (z1,zj). (2.14)
k,meN k,meN keN

Finally, we combine (2.13) and (2.14) to derive the complex Lohe sphere model on (¢Z N
) (Zy):
Z (z1 — {21, zj)zj), J €[N

15 [N]

In the following three sections, we study emergent dynamics of the model (1.3) under the
following cases:

Case A: Qf =-Q;, VieN, z"eR?
CaseB.l:Qj:—Qi, VieNlN, z%ne(Cd, kij >0,
Case B2: @/ = —@;, VieN, Z"eC? u;=«;>0.

3 The Infinite Swarm Sphere Model

In this section, we provide a sufficient framework on the emergent dynamics of an infinite set
of LHS particles on the unit Euclidean sphere S?~!, and present a practical synchronization.

3.1 Preparatory Lemmas

In this subsection, we study an infinite analogue of the swarm sphere model on the Euclidean
unit sphere S¢~!. Let @ = {;};y be a sequence of d x d anti-symmetric real matrices:

Q' = —Q;, ieN,

1
and we consider the LHS model (1.3) defined on the following real Banach space:
€20 o) = {y = (idiew 13 € RY [ Vlloo2 := sup [lyi]l < oo} :
ieN

Thanks to Corollary 2.2 and Lemma 2.1, we can see that S~! is positively invariant along
(1.3). If we set
i = X G]Rd, VieN,
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then the system (1.3) is reduced to the infinite analogue of the swarm sphere model:

Xi = Qix; + ZKU (Xj —(xj,x,')x,') , >0,
jeN 3.1

xi0) =x"eR? VieN, xn.=[xnh el x| =1,

with structural conditions:

e = (i), ey € > D) <00, [Rllsgop < 00 (3.2)
We call this model as the infinite swarm sphere model(ISS). A global well-posedness of the
ISS model can be reduced from the well-posedness of LHS model as a special case.

Lemma3.1 Let X(t) = {x;(t)};ecn be a global solution to (3.1)—(3.2). Then one has the
following estimates.

(@)

dx;
dt

=< ||SZ||oo,0p +2”K”oo,l) “% (xi _xj)“ = 2||SZ||oo,op+4||K”oo,1~

.. 2
(i) % ”xi _-xj” = 8||9||oo,up+16”’c||oo,l’ |% ”X[ _xjH‘ §2||9”ooup+4”’c”oo,l
Proof Since the proof is similar to Lemma 2.2. we omit their proofs. O

Recall that the finite swarm sphere model and the finite LHS model exhibit the synchronous
behaviors on high-dimensional manifolds [24], and the following diameter functional

D(X(1) == sup |xi() —x; (1) (3.3)
i,jeN
plays a key role in the analysis of the emergent dynamics for (3.1). Let & = (kun)m nen be
a given coupling matrix. Then, we denote the i-th row {xi,},en bY ki, i.€.,

{cin} = {ki1, ki2, .. .}

Next we briefly discuss a sufficient framework (F4) for the emergent dynamics of the ISS
model:

e (Fal): There exists a positive constant § € (0, 1) such that

D(X") <v2=25 or inf (x".x)> 5.
i,je

J

o (F42): For a given coupling matrix £ = (Kun)m neN» denote the i-th row {«i;},en by
k;. Then there exists r, € (0, 1/6) such that

lei = kil < re (eilly + sl ). Vioj e N 34

e (F43): Positive constants § and r, satisfy
§ > 3r.
e (Fa4): The natural frequency 2 satisfies

D(R) < llkll_co1 (6 — 3r) DX™).
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Remark 3.1 Before we move on to technical lemmas, we briefly comment on the above
conditions on initial data and system parameters one by one.

1. Note that
i — 017 < 2% 12 + l1x1%) = 4, ie, D) <2.

Therefore, the condition on initial state diameter in (F41) is a certainly restriction on
initial data.

2. If we choose all rows of infinite coupling matrix to be close in £!-norm, then the condition
(3.4) can be achieved.

3. The condition in (F44) denotes that either the size of natural frequency set is sufficiently
small or the coupling strengths are large enough.

4. Tt follows that (Fal) - (Fa4) gives
) D(R)
*

= < D™ </2=25.
el —oo,1 (6 — 3ri)

Now, under the above framework (F4), we derive a differential inequality for ||x; — x; ||
and D(X) in (3.3).

Lemma 3.2 Suppose the framework (Fal) — (Fa4) holds, and let X = {x;};cn be a global

solution to (3.1). Then for i, j € N, the relative distance ||x; — x || near t = 0 satisfies

d

1
ail o =l = D@+ (it + el (-5

x;” — xj-" + 3rKD(Xi”)).

Proof We write X" = {x}“}ieN by X = {x;};cn only in this proof. We use (3.1) to get

1d

EE(M —Xj,Xi —xj>=(xi —xj,SZixi —ij]'>

Y = g ki O — G xi) xi) — s (1 — (x1, %) x;5))
IeN
=:Iy1 + I22.
Below, we estimate 751 and 75 separately.
e Step A (Bound of Z,1): For 7,1, we again use the skew-symmetry of €2; to obtain
I = <x,- —xj, Qix; — Qixj) + (x,- —Xxj, Qixj — ijj>
= (i —xj, Qi (i = x))) + (6 = xj, (2 — Q) %)
=0+ (v —xj. (2 — Q) x;) < D@ xi —x5] .

e Step B (Bound of Z;): We divide Z»; into two terms. Define 721 and Zp2, by

I = Z(xi — xjacir (o — (X)) xi) — ki (0 — (x x5) x))

leN
= Z(xi — xj. kit (X — (%1, Xi) X)) — Z<xi —xj. ki (%0 = (xr, xj) x;))
leN leN
== (ki o = Cexiy x)) = Y (i ke (0 = (x1, x) x5))
leN leN
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== ki {0 = v i) xa) + o (i x = (e xj) x)]
leN

I
= =5 2 (i +oej0) [ o — oty =+ (o = G, i) i
leN

1
=5 2 (e = weja) [ = G i) ) = i 3 = o, ) )

leN
=:Io1 + I

¢ Step B.1 (Bound of Z31): The term Z55; can be estimated as

1
Iy = —5 IZN: (ki + K j1) [(xi,xl — (i, xj)xj) + (xj, 0 — (xlvxi)xi>]
€

1
= =5 > (i k) [ty x0) = Gor, o) (e, )+ (5, 00) = G, i) (v, )

leN
1
=—3 % (it +kjo) (G, xi) + (xa xj)) (1= (i )
== (ki xjo) (1= (i, x7))
leN
1
+3 D (kir +xet) (2 = o xi) — (x, xg)) (1= (i, x5))
leN
2 2
i~ Xj 1 i~ Xj
= = (Ieilly +H'Cj”1)7ux ;JH +§(||'Ci||1+HICjH1)D(X)2~7HX ;’”

¢ Step B.2 (Bound of Z35>): For the summand of Z557, one has

[ = G xa) i) = (i = (o) x5 )|
= |fn —axjox = (o)) = (g = xx = o, x) x)|
= f(xi
(1= (e ) (i = 2 x7) = (1= s xi)) (xi — x5
< 2D(X) |lxi — x| + [frr, i — ) (xi — x|

1 3
= 2D() [xi = x| + 5 [xi =]

—xj, 0 — xj) 4 (xi — xj, % — x;)]

This gives

1
;= _EZ(’Q’Z — K1) [(xi,xz — (x, xj)xj) = (xj X — (xl’xi>xi>:|

leN

1
< Y len =l [P0 s =35+ 4 s =

leN

1
<o Uil + e ) [ 260 s =+ s =]
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e Step C: We combine estimate for Z»1, Z>>1 and Z; in Step A and Step B to get

1 d [ =5,
3o = < D@ =] = (et + s ) B
! I -
45 (Il + o ) D S
e alh + s 1) [P0 1 =5+ 5 b =,

With (F4 1), this implies

— I =]
|xi =]
2
|xi — x|
2
|xi — %]
2

<D @) — (lleilly + [« ],)

1
43 il + i ) P e il + e 1) [P0 + ¢ -]

=D @ = (Ikills + [x,,) 2 e+ ) =
3
+ 57 (il + [ ]) D).
m}

Thanks to Lemma 3.2, we can study the local behavior of D(X'(¢)) in the following lemma.

Lemma 3.3 Suppose that we can replace X™ in framework (Fal) - (Fa4) with X (tg) for
to > 0, and let X = {x;};en be a global solution to (3.1). Then there exists a positive constant
ts such that

D()
el ot 0= 3r) ~

<DX() <v2—28, Vtel,to+1s1. (3.5

*

Proof We use Lemma 3.1 to get
i (1) = x; @) || < |[xi(t0) — xj(t0) | +2L1 (t —19), Vi, j €N,

for
Li = Rlloc,op + 2 llKlloo,1 -

This yields the Lipschitz continuity of the following functions near #y:
t> |xi() —xj®)| and 1 DX®)).
Then we define 75 by

D(R)
el —oo.1 (8 —3re)’

so that the relation (3.5) holds (Fig. 1). ]

15 = %min{D(Xin) - V2 =25 — D(x'™) } (3.6)
1
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D, +---

Fig.1 Schematic diagram for f5

3.2 Emergence of the Quasi-Steady State

In this subsection, we consider the following setting:
Q; =0, ieN and |k|_, =0.

Under the above setting, we study the emergence of a “quasi-steady state”, which is a non-
constant state with a fixed diameter over time. Similar to authors’ recent work [22] for the
infinite Kuramoto model, we can observe a distinguished phenomenon compared to finite-
dimensional particle models. Furthermore, it justifies that the condition

)l —o,1 >0

in Sect. 1 is necessary to guarantee exponential synchronization for ahomogeneous ensemble.
By the continuity of r — D(X(t), we can see that the set

S:={t €[0,00): D(X (1)) < D™} (3.7

is relatively closed subset in R.. Since the set S contains 0, it is nonempty. Furthermore, in
the following lemma, we show that S is in fact relatively open.

Lemma 3.4 Suppose that the framework (Fal) - (Fa4) holds, and D(R) = 0, and let
X = {xi};en be a global solution to (3.1). Then there exists two positive constant t| such that

D(X(1)) < DX™), te€]0,1).

Proof By Lemma 3.2, if we can replace X i in framework (F4 1) - (Fa4) with X (1) for
to > 0, we have

< 50 = 2] <+ (sl + s I,) (=8 [|xi (t0) — x;(t0)]| + 3reD(X (20))) -
2

dt|,—,
(3.8)
By (Fal), there exists €1 > 0 such that

DA™ < /2225 —¢y.

Hence by Lemma 3.1,

€1
< 0
4 kel oo, 1

DX(t) <~2—25, 0<t
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and (3.8) holds for r € [O ) Furthermore, we can see that

el
> Al

r [xi(t) — x| <0

1=tpy

= =5 |xi(to) — x;(t0)| + 3reD(X(10)) < O (3.9

3
= |xi0) — x| > %D(X(to))

By using two constants #; and ¢ defined by

3r¢ -l 3r¢ .
= <4 llrelloo, 1 (2 + T)) <1 - T) D(XM),
3.\ 7! 3 .
&= 4 kllooy 1 = (Hi) (1 = VK)D(X‘“),

we can show that for each (i, j) e N x N,

|xi () —x; | < DA™, 1e(0,1).

e Case A: Let (i, j) € N x N be the pair of indexes such that

D™ — e < ‘x}“ — x}n ,
By Lemma 2.2, we have
D™ = 4lkloo,1 1 < DX(@) < DAX™) +4lieloo 1 1. (3.10)
and ) .
DA™ — & — 4kl t < [xi(0) —x;@)| < DA™ +4lklloo1 1, (3.11)
From (3.10), we also have
3r 3r, . 12r,
(SK DX () < TKD(X'") + 8K llielloo,1 2- (3.12)
On the other hand, we can observe that the following relation

12r,

5
3 3 A
= 4llklle, <1 + %) ' < (1 _ %) DM — ¢

holds for r < #;. Hence we can combine (3.11) and (3.12) to conclude that

37
5

K lloo,1 t < DX™) — & — 4 kel ¢

3 .
%D(X"‘) ¥

DX (1) < |xi(@) —x;®)|. 1€[0,n).

This and (3.9) imply

- |xi @) —x;@)] <0, t€[0,1).

e Case B: Let (i, j) € N x N be the pair of indexes such that

xin _ xin

D™ — ¢ > ’ A
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In this case, Lemma 2.2 implies that

in in
)Ci — Xj

xlm — xin

f . 1e[0,n).

— et 4kl t < |

[xi () —x; )] <
O

Remark 3.2 Thanks to the result of Lemma 3.4, the set S in (3.7) is open, and we can prove
that the diameter D(X'(¢)) is globally non-increasing.

Proposition 3.1 Suppose that the framework (Fal) - (Fa4) holds, and D(R) = 0, and let
X = {xi};en be a global solution to (3.1). Then we have

DX(@) <DX™, te[0,t), Vtel0,o00).

Proof Thanks to Lemma 3.5 and continuity of the map t — D(X(t)), the set S in (3.7) is a
nonempty relatively open and closed subset of R... Hence, we have

S = [0, 00).
O

Finally, we are ready to show the existence of quasi-steady state. More precisely, for some
well-prepared initial data, we have a non-constant state with a fixed diameter.

Proposition 3.2 Suppose that the framework (Fal) - (Fa4) holds, and D(R) = 0, and let
X = {xi}ien be a global solution to (3.1). If there exists two non-overlapping increasing
sequence {in},en and { ju},en of N such that

in
In

— D(Xin)_

Jm, e,

1 =0, ,,11,120 1, “1 =0, ,,121;0

in
Yin ™ X

Then '
DX (@) =DX"™), t>0.

Proof Foreachi, j € N, we use

0 =50l =[5l o -0
dt "' ! dr V"™ !

2(xi(0) = x; (1), % (1) = %;0) | _ :
_ A . — >s|\xi<r>—x,~(r)u
2y %@ = x; 0]

and
| () =20 | < 15Ol + |50 < 2leilly +2 k],
to conclude that 4
‘E [EAG) —x,»(r)||‘ <2lkilly + 2w, -

Hence, for each t > 0, we have

in in
=X

in Jnll = (2 ”’Cin

[xi, @) = x;, (0| = ||x

1 + 2 ”chn

)t

Now, we take the limit » — oo to get

D) = lim [, (0) —x;,(0) | = DEA™).
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D(X(to)) T---
llzi(to) — 2;(to)ll b —
y=D(to) - =5

2

D(X(to)) —e(to) 1---

I
| t
to to + so

Fig.2 Upper bound of [|x; — x|l near D(X (19))

D(X(t)) 1---#---=--=--=---oo-e- .

| y = Ditg) — <2

D(X(t0)) —e(to) 1---
l|lzi(to) — x5 (to)ll +---

to to + so
Fig.3 Upper bound of |lx; — x| far from D(X (9))

By Proposition 3.1, we have

DX () = DX™), t>0.

3.3 Local Behavior of the Relative Distances

In this subsection, we study the local behavior of the relative distances in the time interval
near t = fo appearing in the previous subsection (see Lemma 3.3.). To set up the stage, we
first introduce an auxiliary function &(¢) to be used in the sequel (see (3.16) for motivation):

1 D ()
ety == —-3r)DX(@) — ———— ) > 0. (3.13)
28 el — 00,1
Then for each t € [ty, fo + ts], the positivity of £(¢1) is guaranteed by (3.5). With this &(zy),
we can also set sg as follows:

(3.14)

)

e(fo) 1 Se(to) }

S0 := min { z5, ,
{ 4Ly 28|lell—co1 2(8 = 3rc) Ly

In what follows, we find that a local upper bound of ||x; (t) — x;(#)|| depends on whether the
llx; (¢) — x; ()]l is close or far from D(X(¢)) for ¢ in the time interval [z, fo + so] (see Figs.
2 and 3).

More precisely, we claim the following two assertions in Proposition 3.3:

* If the distance ||x; (#) — x; (¢)|| is close to D(X(¢)) for ¢ € [to, to + so], it is in decreasing
mode for t € [tg, to + so].

@ Springer



115  Page 20 of 50 S.-Y.Ha, E. Lee

* If the distance ||lx; (t) — x;(¢)]| is far away from D(X(¢)) for ¢ € [to, to + so], it lies in
some Lipschitz cone for ¢ € [tg, to + o]

Lemma 3.5 Suppose that we can replace X™ in framework (Fal) - (Fa4) with X (to) for
to > 0, and let X = {x;};cn be a global solution to (3.1). Then, the following assertion holds.
If there exists a time interval [t1, t2] C [to, to + so] such that

DX (1) —e(t) < |xi() —x; )|, 1 €ln, 0], (3.15)

then we have

t
|xi (@) = xj @) < [xitr) = xj )| =8 llell—o,1 / e(s)ds, teln, nl
1
Proof By Lemma 3.2, (3.15) and (3.13), for t € [t1, t], we have
d
o 5]
1
D@+ (leilly + licj]l,) (=8 [[xi @) — x; @) | + 3reD(X (1))

1
=D+ 5 (il + licj],) (=6 =3r) D(X@)) + 8e(t))

(3.16)
1 1
< 3 (D(SZ) ~3 (lleilly + | Hl) (G 3r’()D(X(I))>
1
< 5 (D@ = Ikl co,1 6 = 3r0) DX )))
= =3 |kl 00,1 £().
This implies
t
i =201 = bt — 0] =l 1 [ erts 1 =v =
f
o

In the next lemma, we show that the diameter is nonincreasing in the time interval [#g, 7o+ so]-

Lemma 3.6 Suppose that we can replace X in framework (Fal) - (Fad) with X(ty) for
to > 0, and let X = {x;};cn be a global solution to (3.1). Then there exist positive constants
&(ty), ts and Ly such that D(X(t)) is nonincreasing for t € [to, to + so].
Proof Let C;; (1) be the condition depending on X' () = {x; (t)};en:
Cij(t)holds <= D(X (1)) — () < |xi(t) — x;(1)] -

For each (i, j) € N x N, there are three cases:

Case A: C;;(¢) holds for all t € [fo, to + so].

Case B: C;j(t) holds for t = to, but there exists a f € [, fo + so] such that

Cij(t1) not holds.
Case C: C;(tp) does not hold.

3.17)

In what follows, we show that ||xi ) —x;@®) || is decreasing for Case A. On the other hands,
we show that H xi (1) — x;(t) H cannot exceed D (X (ty)) — # for Case B and Case C. Finally,
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by combining Case A - Case C, we conclude that D(X (¢)) is nonincreasing for ¢ € [tg, to+so]-

e Case A: Note that by (3.15), we have
d
27 i@ =x;@Of = =8Il o1 6 < 0. 1 € l10, 10 + s0]- (3.18)

This implies that ||x,- () —x;@®) || is decreasing for [#g, o + So].
o Case B: We define the first entrance time #; ; such that
ti,j = inf {t € [to, to + s0] : DX (1)) —e(t) = [x; () —x; D)} (3.19)
Then we use Lemma 3.1 and (3.19) to get
|xi (1) = x; || < |xitij) —xj @) +2L1@ = tij)

< D(/Y(tij)) —e(tij) + 2Ly (1 — 1))

1 D(R)
(8+3rK)D(X(t,J))+ ———— + 2L (t — t;j).
28 |kl —o0,1
Next, we claim that the right-hand side of (3.20) is smaller than D(X (¢p)). This can be seen

as follows:

(3.20)

_28

1 D)

DY) = 35 6350 DOXUy) = 35 o = 2Lt —1y)
= 2L (Do) — D) + D@ ) — 5 HD”(S:] —2Li( -1
> 5 —;53@ 2Ly (1o — tij) + £(to) + 2L 1 (tij — 1) > £(fo) — 2L 1o > %
where we used Lemma 3.1 in the first inequality.
e Case C: For (i, j) such that
D(X (1)) — £(to) > ||xi(10) — x;
we use Lemma 3.1, the above inequality and (3.14) to estimate
|xi(5) = x; ()| < D(X(t0)) — &(to) + 2L (t — tg) < D(X(t9)) — @

Now we combine Case A - Case C to derive the local non-increasing property of the diameter.
Tosee this, let? € (o, fo+so] and P be the set of pair (i, j) satisfying C;; (t) fort € [tg, to+s0].
Then we use (3.18) to see

"d
w50 =50] = s |0 =]+ [ 5w -] ds
,J)EP o 48

@, ))e

t
< sup [”x,'(to) —x; (1) +/

@i,))eP to

=01kl —o0.1 8(S)d5]

< sup |xi(to) — x;(t0)| < D(to).

@i,j)eP
(3.21)
On the other hand, for (i, j) € P¢, Case B and Case C imply
sup ”x, ) —x;0)| < DX 1)) — > (3.22)

@i,j)eP
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By (3.21) and (3.22), we have
o<t =<tfo+s = D@X)) =DEX(q)).
Furthermore, we perform similar procedure as above to see

ln<t=s=<itp+s = DWX({) =DX(s)).

Now we are ready to quantify a decrement of D(X'(¢)) in the following proposition.

Proposition 3.3 Suppose that we can replace X™ in framework (F1) - (Fa4) with X (o)
forty > 0, and let X = {x;};cn be a global solution to (3.1). Then we have

8
DX (@) = DX () = 5 IKll—o,1 (t = t0) £(t0). 1 € lt0. f0 + S0]-

Proof Below, we use the same classification in (3.17) in Lemma 3.6.

For the pairs in Case B or Case C, we have

(1)
%) = ;)] = DXG0) = =, 1 € Mo, 1o + 0] (3.23)
On the other hand, for the pairs in Case A, we have
t
|xi ) — x; )| < DXW)) = 8 1Ko / s(s)ds, 1€l fo+s0l.  (3.24)
fo

By the definition of £(¢) in (3.13), &(¢) is non-increasing for t € [tg, fo + so], since (¢) is a
linear function of D(X(¢)) and D(X(¢)) is non-increasing. Hence we have
! e(ty)
Sl 0,1 | €@)ds <8 lkcll —oo,1 (0 — 10)e(t0) < 8 Ikl 00,1 €(F0)SO < — (3.25)

fo

where we used the definition of sq in the last inequality [see (3.14)].

We combine (3.23)—(3.25) to have

t
D(X (1)) = D(X (1)) — IIKllfoo,lf e(s)ds, t € [1g, 10+ so0l. (3.26)

fo

Meanwhile, by nonincreasing property of (¢), we have

/l e(s)ds > (t — ty)e(t). (3.27)
1o

Now, we use the defining relation of £(¢) in (3.13) and the Lipschitz constant of D(X(¢)) is
2L to find that

Lipschitz constant of &(¢)

3 §-3 8 —3ro)L
= 28 T, (Lipschitz constant of D(X(¢))) = % s 2L = %

This implies

— 31 8 —3r,
S2L4(t —ty) > e(tg) —
25 1t — 10) = e(to)

)
e(t) = e(ty) —

1
-L1-s9 > 5800)' (3.28)

@ Springer



Emergent Behaviors of the Infinite Set... Page230f50 115

Finally, we combine (3.26), (3.27) and (3.28) to get the desired estimate:

t

D(X(1)) = D(X(10)) — 8 |kl —00.1 / &(s)ds = D(X(10)) —

o

8 [l ll—00,1

> e(t0)(t — 1p).

3.4 Practical Synchronization

Now, we are ready to show “practical synchronization” of our model (3.1). Our result means
that each oscillator x; can be confined within a small region of SY~! by increasing the coupling
strength ||k || —c0,1 in this subsection.

Theorem 3.1 Suppose that the framework (Fal)-(Fa4) holds, and let X = {x;};cy be a
global solution to (3.1). Then D (X) satisfies

limsup D (X (¢)) < D&
t—00 (6 —3r) ”K”—oo,l ’

Proof Note that our framework (F44) admits the existence of £; <« 1 such that
: D (R
6 —3r)D(aim — 28
el — 00,1

For such £; > 0, we define

D(R)
Tey :=17 €[0,00) 1 (6 =3r) D(X(t)) — W >¢e, Vrel0,1)¢,
—00,1
and
- . €1 1 581
s(e1) == min {t5, —, s .
4Ly 28kl o1 2(8 — 3rc) Ly

Here, the definition of § is motivated by that of sg in (3.14). Then we have
0e7Z,, and 5(e(to)) = 0.

Now, we claim that
inf Tg‘] < 0. (3.29)

Proof of (3.29): By Lemma 3.6, we have

{to, t0 + 5(e1)} C T,
= DXt +5(c1)) <DX() <D(X(%)), 1€ lto, to+5(e1)]
=4 [to,t0+§(81)] C 7Ty

If we have {t) +n - 5(e1)}pen C Z¢,, then Tz, = [19, 00) and

1
DX+ (n+1)-5(1)) = DXt +n-5))) =, lellco,15(€1) - €1, n = 1.

This yields that

D(X(tg +n - 5(e1))) = D(X(10)) — [%”’5”700,15(81) -81] ‘n — —00 as n — 0.
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This contradicts to D(X (¢)) > 0. Thus, we have (3.29). Now, we set
too 1= inf 7] < o0.
Note that o is the first departure time of the set 7, and it should satisfy

D () n €1
(6 —3ry) ”’C”—oo,l 8_371(.

D(X (o)) =

If there exists #1 € (f0, 00) such that f; € 7, then by Lemma 3.3, the diameter func-
tion D(X (t)) decreases in the time interval [fo, ts0 + 5(€1)]. Hence the intermediate value
theorem provides the existence of 7, 1 such that

D(X(too)) = D(X(leo,1)),  loo,1 € [foo +5(€1), 11].

We can continue this process to construct the sequence {too, k} such that

keN
D(X(too)) = D(X(too,k))s oo+l € ltook +5(61), t1], k€N,

This contradicts to the finiteness of ¢;. Therefore such #; does not exist and

. D () 3
limsup D(X (1)) <
t—00 (0 —3r) ”K”foo,l 8 —3ry
for arbitrarily small €. Finally, we take 1 — 0 to find the desired result. m]

Remark 3.3 Note that our practical synchronization result can cover the case
D(X™) < D..

If X (1) satisfies
o)

DX (1) <Dy = ————,
1Kl —oo.1

>0,

then the oscillators {x;};cn are already confined in a small arc with diameter D,.

On the other hand, if there exists some #y > O such that
D(X(to)) > Dx,
then by the Lipschitz continuity of D(X' (7)), we can assume the existence of #, such that
t, == inf {t > 0 D(X(19)) < D(X(1)) < m} .
Then we have D(X (t,)) = D(X(t9)) and our Theorem 3.1 can control X' (¢) for t > t,.
As a corollary, we have exponential synchronization for a homogeneous ISS ensemble.

Corollary 3.1 Suppose that the framework (Ful) - (Fa4) holds, and D () = 0, and let
X = {xi};en be a global solution to (3.1). Then, one has asymptotic zero convergence:

lim D (X(t)) = 0.
—00
Proof We define two function ¢, s : R>g — R by

e(t) = % (8 = 3r) D(X(1))
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e() I se()
(1) _mm{D(X(t)) V2 =25 — DX (1)), , , }
4Ly 28 el 0,1 2(8 — 3re) Ly
. 3rK e(t) 1 Se(t)
- 0, V2 =25 — e(t), —2, , .
mm{a— ¢, “O 3L 2Tl 2(5—3rK>L1}
For
c . 28 1 5 i 1
=mn{——, —, — —— an _
! 5 —3r. 4L, 2(8 —3ro)L; T P
we have

5(t) = min {Cla(t), Cor, V2 —25— s(t)} =: min {§1(¢), 52(t), 53(¢)}.

8 —3r,

We can see that s5(¢) attains 5 (¢) or §3(¢) implies that the diameter is sufficiently large. More
precisely, one has

26C,

51(1) < 52(1) &= D(X (1)) < G630 Dy,
§1() < 3(1) = DX (1) < V2 =25 - <% (5 — 3r0) + 1)_1 —.p, (330
52() < 5H() <= DX (1) <V2-25-Cy =
This yields
sit) =50t) = DWX@)) =Dy, (3.31)

5(t) =53(t) = D(X(t)) > max {D», D3}.

We divide the remaining proof into two steps. First we claim that the configuration X’
shrinks into an arc with diameter min{D;, D} in finite time if initial diameter is greater than
D or max{D,, D3}. Next, we prove exponential decay of the diameter.

e Step A (Decay for large initial diameter): Let {#};<n be a sequence defined by
tey1 =t +5(r), k>0.
We first claim that assuming
s(tr) =52(t), k=0 or s(t)=35), k=0, (3.32)
will leads to contradiction.
o Step A.1: Suppose that (3.32);. By Proposition 3.3, we have

1 §—
D(X (tr41)) < (1 -

T
1 25 )D(X(tk)), k> 0.

Hence the sequence {D(X (tx)) }xen should decay exponentially, which contradicts to (3.32);.

¢ Step A.2: Suppose that (3.32),. In this case, we apply Proposition 3.3 to get

8 —3r,
D(X (te41)) < (1 - ”"”“"*‘4( re) (v2=25- D(rk))> DX (1)), k=0,
(3.33)

and
D(X(tk+1)) < D(X (%)), k=0. (3.34)
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Now we combine (3.33) and (3.34) to conclude

1 (6 =31
mxmﬂnso—”m ‘; '”-@@—2—Dm0)mxm» k>0,

which gives a similar contradiction to Step A.1.

e Step B (Decay for small initial diameter): Suppose that for some 7y > 0, the state diameter
satisfies
D(X(tp)) < min {Dy, D1},

where D; and D, are defined in (3.30). Then we combine Lemma 3.3 together with (3.13)
to derive the existence of some positive constants C3(k), C4(k) such that

DX (1)) < (1 = C3(t —10)) D(X(10)), 1o <t =<1+ C4D(X(0)).
Define a sequence {#; };<y by the following recursive relation:
lk+1 := i + C3D().
Then we have

D(X(tx41)) = (1 = C3C4D(X (1)) D(X (1))

C3C 1
= pamo = D@ T 1= eGnmay = by T O
By induction on k, we have
DX < —— 4 < L logk.
IEED) +k-C3Cy C3
This yields the exponential decay of D(X(t)). ]

4 The Infinite LHS Model A
In this section, we study the emergent behaviors of the infinite Lohe Hermitian sphere model.
The overall structure of this section is parallel to those given in Sect. 3, but the difference

comes from extra perturbative terms included in the infinite LHS model. Hence, we propose
a different framework (Fp) compared to (F4) to control bad terms.

4.1 Preparatory Lemmas

We introduce a new Banach space:
2
UE - Nloo2) = {y = {yitien ¥ €CY Vo2 = sup |yl < 00}.
ieN

For each i € N, let z; (1) € C? be the position of the i-th particle at time .
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Suppose that Z(¢) = {z;(¢)};cn belongs to Z%O’z. Then the dynamics of Z := {z;};cy 1S
given by the LHS model:

zi = iz —{—)»()ZK,’j((Z[,Z[)Zj — (Zj, Zi)Zi)

jeN
+)»1ZM/((Zi,Zﬂ—(ZJ‘,Zi))Zi, t>0, VieN, 4.1)
) jeN
2(0) = 2
For a homogeneous ensemble, we may set 2; = 0. Next, we state the second sufficient

framework (Fp) compared with the sufficient framework (F4) for the ISS model:

(Fp0): Nonnegative constants Ao and A are assumed to be proportional to each other:

M =rirg for 0<r <.

(Fp1): There exists a § € (0, 1) such that

m 1—8
D(2 )<—2 .

(Fp2): Then there exists r, € (0, 1) such that

lei —rejlly < re (reilly + Jlesll,) . ij €N, 0 <likll_or, 4@re+r) <8
“4.2)

(Fg3): The natural frequencies satisfy
D(R) < ko llll_oo,1 (6 =4 (e +r1)) D(E™).

Note that the framework (Fp) seems to be very restricted compared to the framework (F,4)
for the ISS model. After we prove Lemma 4.1, we will identify which term in the LHS model
prevents synchronization and explain how to deal with these “bad” terms.

Lemma 4.1 Suppose the framework (Fg0) - (Fp3) holds, and let Z = {z;};cn be a global
solution to (4.1). Then ||z — z'| and D (Zi”) satisfy

d

| e =2l = D@ = Sa0 (il + s ],) (1= 2D (27)) <" — 2
Ili=o 2

+220 ki — ki |, DE™ + 24 (il + [k5],) DE™.

Proof We write Zi" = {Zi'n}ieN by Z = {z;};en only in this proof. We use (4.1) to get

1

d
E(Zi_Zj,Zi - zj)
= (2 — 2j. Qizi — Qzj)+ o (e — 2j. i @1 — (a2 20) — ki (21 = (210 25) 25))
leN
+MZ —zj, kit (zi, ) — (a2 zi — kg (270 20) = (a0, 2j) 2j) + ec
leN

=: 7131 4+ AoZ32 + A1Z33 4+ c.c.

Here c.c denotes the complex conjugates of the preceding terms.
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Next, we deal with 731, Z3; and Z33 with their complex conjugates, respectively.
e Step A (Bound for Z31 + c.c): By direct calculation,
I3 +cc=(z — zJ, Qizi — Qizj)+ (zi — zj. Qizj — Qjzj) +cc
={ai — =)+ (e — 2 (2 = Qj) zj) + e
=(zi —2j, Qz (Z: = 2j)) +(Qi (2 = 2j) 2 — 2)
+ (e =2 (2 = Q) 2) + (2 = @) 7). 2 = 2
=0+ 2%Re(z — zj, (% — Q) zj)
=20@) |z -z,
where PRe(z) denotes the real part of the complex number z.

e Step B (Bound for Z3; + c.c): We divide Z3; into two terms by

I3 +cc= Z(Zi —zj, kit (21 — (. 2i) 2i) — kji (20 — (21, 2j) 25)) + cc

leN
= [kulzi —zjozu =z 2 zi) = iz — 2j. 2 — (21, 25) 2))] + e
leN
1
=52 (ki +x0) [lai = 2o 2 = e zid zi) = (e = 2j 2 = (21 2) )]
leN

1
+5 > (ki = k) (e — 20z =z zi) i) + (@i — 20 20— (2. 25) 25)] + e
leN
=: 131 + 132 + c.C.

Below, we estimate 73,1 + c.c and Z3p3 + c.c separately.

¢ Step B.1 (Bound of 7351 + c.c): We rewrite Z37; as

I = %Z(K,’[ + 1) [z — zj, 21 = (o zi) i) = (zi — 2, 2 — (a1, 2j) ) + cc] .
< 4.3)
Then, we can reform the summand in Z3; as
(e —zjpz— (@ ) ) = (= zj, u = (@, 2j) 7)) + ec

=(zi — zj, (@1, 2j) 2j — (@, zi) zi) + cc

=(zi —zj. (z. 25) (zj — 20)) + (@i — 2js (2 2j) 2 — (@ zid i) + ec
—(a z) |z = 2|7 + oz =z (@ — 2 z) e

==z = 2i1” +{ej — 2 ) |z — 27 + (o — 2, 25 — 2 (@ — 2> @)
+(Zi,Zj —zi)<zi —Zj,Z[>+C.C

<2z -z P +2D@) |z — 2> +2D (@) |z — 2| +0.

This gives
T < — (il + s ],) =20 @) |z — 2| (4.4)
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o Step B.2 (Bound of 7335 + c.c): Recall Z322 + c.cis

1
I =5 > ki —wi) [(zi = 2oz = (@ zi) zi) + (5 — 2. 21 — (@ 25) 25)] + e
leN

Then, we use the inequality

(zi — zj, 21 — (2, 2i) 2|
<\zi —zj 2 — @) + |1 =z, zi) (@i — 2. 2i))|
=|(zi — zj, 22 — @i)| + (@ — zi, zi) (2 — 2, zi))|
<2z —zj| D)
to estimate
1
Tz < Ezy,q, —kji| 8|z —2j|| D2) =4 i — k||, |zi —zj| D). @5)
leN
Now we combine (4.4) and (4.5) to obtain

T = = (il + e ) (1 =20 @) i = 2]” +4 i = ] [z = 2] 2.
e Step C (Bound of Z33 + c.c): Note that the Z33 + c.c term is given by
I33 +cc= Z(Zi —zj. kit (zir 21) = {zs zi) zi — ki (20 21) — (210 2j)) 2j) + c.c.
leN
Then, we use
Z<Zi — zj. kit (zir 21) — (21, 2i)) 2i)
leN

<D (ai—zjocu (zioz — 2 + (@ — 2, 2)) )
leN

< >z = 2] o Uz =zl + llzi = 221D

leN
<2z —zj| kil D(2)

to get
Tz +ce <4 (leilly + ||xj],) ||z — 2| D).

e Step D (Bound of % ||z,~ —Zj ||): We combine all the estimates in Step A to Step C to find

%(Zi — 2.2 — 2j) 2D (R) |z — zj| = 2o (il + ||| ;) A =2D (@) |zi — 2 ||2
+4ao ki =i |z = 2] D@
+an1 (leilly + i j]ly) |z — 2| DC2).

This yields

d 1
Tl =2l =D @ = Jho (il + [ [) (1= 2D (2)) i = )]
+2x0 i — k||, D2) + 221 (llkeilly + i j]|,) D(2).

m}
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Remark 4.1 (i) Among 731, Z31, Z320 and 733, only Z3p; contains the term making
% ||z,~ —Zj || be decreasing. Furthermore, we impose (Fp2) to control Z3; term.

(i1) For a finite ensemble, the authors in [23] derived the Kuramoto model with frustration
which contains Z33 only:
i = 29U R (o, — 6 0
=N ijsm(j—,-+aj,-), t >0,
j=1
6;(0)=0, ie€l[N].

We cannot expect the term Z33 can contribute to decrement of diameter. Hence we just
supressed the effect of Z33 term with (Fp0) and (Fp2).

Following the arguments in the proof of Lemma 4.1, we show that the diameter is decreas-
ing for our configuration Z near ¢t = t#p. In the sequel, we briefly sketch the proof of
nonincreasing property of diameter. Let L be a constant appearing in Lemma 2.2, which
has the form

Ly = ®lsoop + 2 1Kl G+ 21)-

We define 15, £(¢), and so motivated by (3.6), (3.13) and (3.14), respectively:

1 . { in D(ﬂ) 16 in }
ts :== —— min { D(X™) — , -D(2ZM ¢,
2Ly Ao llell —oo,1 (6 —4(re +r1)) 2
o(t) = . & <(5 4 +r)DEW) — — 2 )
T2 R 2okl —oon /)
. { &(to) de(to) 1 }
o := min { s, , , .
4Ly 200 =4 (re +r))Ly 26h0 Ikl 0,1

Lemma 4.2 Suppose that we can replace Z™ in the framework (Fp0) - (Fg3) with X (o)
forty >0, and let Z = {z;};cn be a global solution to (4.1). Then we have

1)
D(Z(t)) < D(Z2(tp)) — Elo el 00,1 (& — t0) (t0), t € [t0, o + s0]-

Proof We estimate ”z,- ) —z;(@) H for two groups of oscillators.
e Case A: We choose (i, j) such that
|zi(t) = z; )| = DZ@) — (), 1 € [to. to + s0].
Then for such index pair (i, j), we have
d
o |zi@®) —z; @)
<D () + %7»0 (Ieilly + e ] ,) (=8 |z @) = 2@ | +4 (e + 1) DEQ@)))
<D @)+ 220 (il + 5],) (6 — 4 G+ ) D(Z(a0) +560)

1 1
=5 (D (@) = S0 (lleilly + [ ]}) (6 =40 + rl))D(Z(t)))>
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< =820 [l ll—00,1 £(r) <O.

Hence, we have

t
|zi () = z; || < ||zi () — zj(t0) | —/ 3o llKcll—oo,1 £(s)ds, ¢ € [t0, 10 + 15].
f0

e Case B: Again we choose an index pair (i, j) such that
|zi(t)) — zj ()| < D(Z (1)) — e(tr) for some 11 € [19, 10 + so].
For such (i, j), we have

|zi () — z; ()| < D(Z(t)) — @ t € [to, to + o).

Finally, for ¢ € [19, to + sol, we combine Case A and Case B to obtain

t
Jz:0) =250 = st = 250 = min (522 830 el [ 2205
1

0
8o K ll o0, 1

2 e(to) (t — o) .

< |zi(o) —zj(t0)| —

Now we are ready to provide our second main result in the next subsection.

4.2 Practical Synchronization

In previous subsection, we have studied several basic lemmas to be used in the following
practical synchronization estimates.

Z = {zi}ien be a global solution to (4.1). Then D (Z(t)) satisfies the following practical
synchronization estimate:

limsup D(Z(1)) < D =0 ( : )
o O S Rk et G = 4Gt Kl et )

Theorem 4.1 Suppose that the framework (Fp0) - (Fp3) holds for to > 0, and let

Proof The proof is similar to the ISS model case (see the proof of Theorem 3.1). Here we
need to define

{ Eeeill
Tey =41 €[0,00): (6 =4 (rc +r))D(Z(1) — ———— = €1,

Ao ll#ell —oo, 1

and our framework (Fp) allows the existence of &1 < 1 such that 7;;, 5 0. By Lemma 4.2,
we have
{to,to +5(e1)} € Te;, = lto, 0 +5(e)] C Ty,

for

’

3! deq 1 }

s(ey) = min{tg, — )
4Ly 200 =4 (e +r))Ly 2840 Kl —o0,1
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We can see
. D(L2) €]
limsupD(Z2(t)) < +
1—00 rollell—oo1 B —4(re +11)) 8 —4(rc +11)
by a similar method in the proof of Theorem 3.1. Finally, we take the limit ¢y — 0 to obtain
the desired result. o

As on can see in the proof, we can apply the same steps with the proof of Theorem 3.1.
Furthermore, the proof of LHS counterpart of Corollary 3.1 is the same. Hence, we can state
the result without a detailed proof.

Corollary 4.1 Suppose the framework (FpO0) - (Fp3) holds for ty > 0, and let Z = {z;};cn
be a global solution to (4.1) with D () = 0. Then D (Z(t)) decays to zero exponentially
fast.

Proof Since the proof is almost the same as in the proof of Corollary 3.1, we omit its details.
O

5 The Infinite LHS Model B

In this section, we study the emergent behavior of the infinite LHS model on some special
network, namely, a “sender network" in which interaction capacities depend only on sender
nodes.

5.1 Order Parameter and Collision Avoidance

Consider a network topology in which the interaction capacity «;; froms the j-th node to the
i-th node is solely determined by the j-th sending node:

kij=+kj >0, i,jeN and Y ;=] <oo. (5.1)
jeN
Then, it is clear to see that this network satisfies the condition (4.2). Hence, the practical
synchronization estimate in Theorem 4.1 can be applied for this special case. However,
for this special case, we can infer more detailed asymptotic dynamics as can be see in the
remaining parts of this section (see Theorem 5.1, Corollary 5.2 and Proposition 5.4). For
given state {z;} and a sender network (k;), we define a complex order parameter z. as a
weighted sum of z;:
Zc = ZKiZi. 5.2)
ieN
Then, by (5.1), it is well-defined and the square of the modulus of z. will play the key role
in the asymptotic dynamics of the infinite LHS ensemble. For this type of network topology,
we can rearrange the homogeneous LHS model as

zi = ho ((zis 2i) ze — (2Ze» 2i) i) + M@0y ze) — (2es ziDzi, =0, 53
70 =z" |"|=1. ieN :

For the simplicity of presentation, we set

el =1, do+2r1=1 (5.4)
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by rescaling time if necessary. We first introduce the basic properties of (5.3).

Lemma 5.1 Let Z = Z(t) be a global solution to (5.3). Then we have

@ llzell =1, Nzill =2, lzell <2, NZcll < 12.
d2

<4, d2

|4
(i1) ‘Eki,zj‘) < < 32.

d
<4’ - \Ki» <¢ Ccs &c
< ‘dt (zi» 2¢) (zes 2¢)

Proof (i) For the first estimate, we use (5.2) and (5.4) to get

Doz <= Y owillzll =) k=1 (5.5)

lzell =

ieN ieN ieN
Again, it follows from (5.5) and (5.3) that
IZill = Ao (zis zi) 2e = (2e» zi) 2+ A1 1z 2e) — (Zes 2i D)2
< 2o (llzell + llzell - ||Zi||2) + A1 (llzell lzilI* + llzell ||Zi||2) (5.6)

=20+ A0 lzell = 2lkelly = 2.
Now, we use (5.5) and (5.6) to find

el < 3wy 2] < 2l =2,

jeN
IZel < Y nj 5] <20 Dok e = (s 2j) 25 = (zes 27) 25 = (zes 27) 25) |
JjeN jeN
+2-0 ZKJ' ||<Z'C,Zj>Zj +(Zc,ij)Zj +<Zc,Zj>ZjH
jeN
<A K420+ A +2 A Y Kk (3200 + A1)
jeN jeN
=120+ A1) =

(ii) We use the estimates in (i) to get the following set of estimates:

d

Szl = NGzl + [ ) = iz + 1z 2] < 4,
d
’dt (zivzed| < Wzis ze)l + zis 2e) < 4 (o + 1) =4,
dZ
dt2 (Ze, 2e)| < 2UZe, z2e)l + 2 {Zes 2e)l <2 - 12 (Ao +)\1)2 +2@2 (o +)hl))2 =

[m]
In the next lemma, we present the collision avoidance property for a solution to system (5.3).

Lemma5.2 Let Z = Z(t) be a global solution to system (5.3). Then, for (i, j) € N x N, the
following dichotomy holds.

() Ifzi" # z;", then one has
zi(t) #zj(t), t>0.
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(i) Ifzi" = z’}”, then one has
zi() =z;(1), t>0.
Proof Suppose that z; and z; collides at some positive time z,. Now we consider a temporal

set and its infimum.
fo:=inf{r>0: z(t) =z;(1)} < oo (5.7

By (5.3), we have

d i (fo) = d i (f0)
FTRARRPTAA

Inductively one can see that

n

dt"

n

dm

zj(to), n=>2.
=ty

zi(f) =
1=ty

Since z; — z; is analytic at ¢ = #( as the solution of (5.3), there exists § > 0 such that
zi(t) = z;(1), te€(to—38,10+9)
which is contradictory to the choice of #( in (5.7).
(ii) Note that the set
T := {1 €[0,00) zi(1) — z;(t) =0}
is nonempty closed set. At the collision time #y such that
zi (to) = z (t0),

there exists an open set (o — §, o + §) containing 7o by similar argument to (i). Hence 7 is
anopen setand 7 = R... O

As briefly mentioned before, the roles of mean-field coupling terms
({2j-2i)ze = fee 2zj)2j)  and ((zj.ze) = (ze. 2j))2; (5.8)

are somewhat different. In fact, the first term (5.8); is mainly responsible for the collective
behavior of model (4.1), whereas the second term (5.8), can be regarded as a perturbation.
More precisely, in order to see the role of each term, we first focus on the collective behaviors
of each subsystem

tj =z, 2j)ze = fze 2j)z)) . 120,

Subsystem A : . .
Yy {ZJ(O) = len, ”ZIJnH =1,
and

&=z ze) = fee 2j)) 2j» £20,
O =2 || =1

Subsystem B : {

In what follows, the main tool is Barbalat’s lemma stated as follows.

Lemma 5.3 (Barbalat [3]) Let f : [0,00) — R be a continuously differentiable function
satisfying the following two properties:

3 lim f(t) and f' is uniformly continuous.
—00
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Then, f' tends to zero, ast — 0o:
lim f'(t) = 0.
—00

In the following two subsections, we study the emergent dynamics of Subsystem A and
Subsystem B separately.

5.2 Subsystem A

Consider the Cauchy problem to the following Subsystem A:

zi = ({2, 2i) Ze — (265 2i) 2i)» £ 20,

(0 =2" ||z"| =1, ieN (59)

This corresponds to the special case (g, 21) = (1, 0) in (5.3). In next proposition, we show
that the two functionals:

2
lzel® and Y wikjIn |1 — (2. 2]
i,jeN

are monotone along the dynamics (5.9).

Proposition 5.1 Let Z = Z(t) be a global solution to Subsystem A. Then the following
assertions hold.

(1) The order parameter ||z.|| is nondecreasing:

I?>0, ¢>0.

d
E llze

(ii) Ifzé” # z;"fori # J, the functional Zi,jeN KkiKkjIn |1 — (zi, ZjH is nonincreasing.

Proof (i) It follows from (5.2) and (5.9) that

dzc
—_— _ZKJZJ ZK] Zc,Z] Zj =2c — ZK] anZ]

jeN jeN jeN
This yields
dllzc|
o =z e =D kilee g)eg )+ {ze = Dok fee 2] e

jeN jeN

=2 ”ZC“z - ZKJ (ZC* Zj)z - ZKJ (Zj’ ZC‘)Z (5.10)
jeN jeN ’

=2 llzl? - ijfﬁe ((zc, Zj>2>

jeN

On the other hand, by the Cauchy-Schwarz inequality, we have
2 2 2
(zj ze)|” < (27, 2)) (zer 2e) » ‘%e(zc, zj) ’ < (zes )7 = (zen ze) - (5.11)
Finally, we combine (5.10) and (5.11) to derive

2
dllzcll

> 0.
dt ~
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(ii) By Lemma 5.2, the function In |1 — (z;, z;)| is globally well-defined. Again, we use (5.9)
to find

d
o (=i 2j) = = [fee = e z) 2o 2] + i ze = (26 25) 2]
= —[(ze> 2j) = (2> 26) (zr ) + (i 20) — (2 23} (i 7)) ©12)
= —[{zir z¢) + (2. 2j)] [1 = (zir 25)] -
Now, we use (5.12) to obtain
d
=2l = =l + 2 2) ooz + 2 1= (i)
This implies
d 1
s |1 —(zi, 25)| = ~3 [(zi +2j. 2¢) + (zer 20 +25)] - (5.13)
Thus, the desired estimates follows from (5.13):
d 1
= > kikjIn[1= (7, zj)|= - 3 > iy (5 4 2 ze) + (zer 2+ 2j)] = =2 llzell* <O0.
i,jeN i,jeN
[m]
Theorem 5.1 Let Z = Z(t) be a global solution to (5.3) with
sup |1 — (Z;I”, z?l) <1-8, forsomes e (0,1). (5.14)
i,jeN
Then we have
1= (a0, 20| = |1 = (a0, 22)| - exp(-260), ¥izo0.
Proof Since the proof is rather lengthy, we leave proof in Appendix B. O
5.3 Subsystem B
Consider the Cauchy problem to the following Subsystem B:
Zi = ({2ir 2¢) = (2e» 2iDzin 120, (5.15)
40 =z | =1 '

In the following proposition, we show that the time-derivative of z; vanishes asymptotically.
Proposition 5.2 Let Z = Z(t) be a global solution to (5.15). Then we have
t1_1>nolo |zi(®)| =0, VieN.
Proof We split the proof into two steps.
e Step A: We will use the Babalat lemma to derive the desired estimate. For this, we set

f) = (ze(t), ze(0) = |z, >0,
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and we claim
(1) 3 lim (z.(2), zc(2)).
—00

d (5.16)
(ii) E(zc, Z¢) is uniformly continuous.
Below, we check the assertions in (5.16).
(1) First, we show that
d 2
g ez = = 2w ez = (e ze) ) > 0 (5.17)
ieN
Proof of (5.17): we use
Zc = Z’Q((Zi; Ze) — (Ze, 2i))Zi
ieN
to find the desired estimate (5.17):
d
o (zev2e) = ZKi((zc, zZi) (zi, 2¢) — (ziy 2c) (ZisZc>>
ieN
+Zki((zc,z,')<z,',zc) - (ZmZi)(ZmZi)) (5.18)
ieN
= ZKt {ze, zi) 1™ — (z¢, Zi>2 —{zi, ZC>2) > 0.
ieN
On the other hand, we use |(z;, zj)| < llzill |z;] =1 to see
(zerzed = | Y ik (zin2))| < D Kikj =1 < o0. (5.19)
i,jeN i,jeN

By (5.18) and (5.19), we have
3 tl_i)Igo(Zc(t),zc(t)%

(ii) It follows from Lemma 5.1 that

< 32.

d2
‘ (Zes 2e)| <

dt?

This implies the uniform continuity of %(zc, Z¢). Then, by the Babalat lemma and (5.17),
we have

lim L), 20y =0, ie. lim ((zc(t),zi(t)) - (z,'(t),zc(t))> =0, ieN.
t—o00 dt t—00

(5.20)
o Step B: It follows from (5.20), that
lim z;(¢) = lim ((z;(?), zc(1)) — (zc (), zi () z:(t) =0, i €N,
—>00 —00
where we use ||z;|| = 1. O

So far, we have studied collective behaviors of two submodels of (5.3) one by one. In next
subsection, we study the collective behavior of the full model for a homogeneous ensemble.
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5.4 Asymptotic State-Locking

In this subsection, we consider the Cauchy problem to the full infinite LHS model:

{ij = o (ze = (ze.25)2) + M((z)0 2) = (2er 220 1> 0 521)

zj(0) =2, Hzij“ =1, jeN

For a special case with 1oy = 0, in the course of proof of Proposition 5.2, we have shown that
. d >
Jlim 2 (0)]]* = 0.
In the next proposition, we show that the above estimate holds in full generality.

Proposition 5.3 Let Z = Z(t) be a global solution to the full model (5.21). Then we have
. 2 . d 2
3 lim |lz.()II* and lim — [zc(®)||” = 0.
t—00 t—o0 dt

Proof We basically follow the same strategy employed in the proof of Proposition 5.2.
(i) (Derivation of the first estimate): We split the derivation into two steps.

e Step A: We first claim:

7 (2er 2e) = Mo Zki (2 llzell* = (zes 20)* = (210 26)?)

ieN (5.22)
+ XA ZKi (2 1z, zi) 1> = (zey 20)% — (210 26)?) -

ieN

Proof of (5.22): Note that

G o) = )+ )

= (Ao (ze — (zes 2i) i) + M1 (2is 2) — (Zes 2i)) 200 2j)
+ {2, 2o (2e = (ze 25} 27) + 2 ({27 2¢) = {ze 2)) 25)

= 2o ({ze. 2j) = (@i ze) {zin 7)) + 21 (zes 2i) = (@i 2e) (zi 25)
+ 20 ({20 2e) = (zer 2j) (200 7)) = A1 ({260 25) = (250 2e)) (2 2) -

(5.23)
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We sum up (5.23) over all i and j to get the desired estimate (5.22):

d
(zes ze) Z K,K]d (zi, 2j)
i,jeN
= > kikiro ((ze2j) = (@i zed zin 7)) + Y wircjha (zes zi) = (zin 2e)) (20 25)
i,jeN i,jeN
+ Z wikciho ({zis 2e) — (zes 2)(zis 25)) Z witcih ((zes 25) — (25, ze)) (i 2)
i,jeN i,jeN
= 2o lzel® =20 Y ki (@i 2e)* + Y kiki Wz, zidP = Y ki (2, 2)
ieN ieN ieN
20 llzell® =20 )i (zes ) + Y kit Hze, 2P = Y kika (e, )
ieN ieN ieN
=202k (2lzel® = (e 200 = (zi 2?) 21 Y i (202 i) P = (2es 2 = (zin ze)?)
ieN ieN

(5.24)

where we used ) ; ki = L.

e Step B: We show that the summand in (5.24) are nonnegative. For this, we use the identity
2+ = (Re(@) +10m(2)? + Re(2) — iIm(2)? = 2((Re(2)? — 3m(z))2) <2Jzl%,
the Cauchy-Schwarz inequality and ||z;|| = 1 to find

21z l? = 2z 1217 = 2 1zes )1 = (20 2007 + (20 207 -
This implies the nonnegativity of the right-hand side of (5.24):

d
a1 (z¢» ze) = 0. (5.25)
On the other hand, we have
(zerze) < 1 (5.26)

Finally, it follows from (5.25) and (5.26) that
3 lim (z¢, z¢).
—00

(ii) (Derivation of the second estimate): We apply the Babalat’s lemma with f(f) =
(z¢(), z¢(1)). Since we have already shown that

3 lim £(t).
1—00

we need to show that f’ is uniformly continuous. Thus, it suffices to show that | f”(¢)| is
uniformly bounded. This is obvious from Lemma 5.1 that

d2
H dr? (Zc, Zc) < 32.
Finally, we can apply Lemma 5.3 to show
_d
Jim 2 ze]* =0

m}
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As a corollary of Proposition 5.3, we have asymptotic behavior of the angle between z; and
Ze-

Corollary 5.1 Let Z = Z(t) be a global solution to the full model (5.3). Then we have

lim (Ilzc(t)ll2 — [{zc (1), zi(t))lz) =0 and lim TJm(z.(¢),z;(t)) =0 fori e N.
—>00 1—00
Proof We use (z¢, zi) = (zi, z.) and further rearrange the estimate (5.22) as

d
—(zer2e) = 2o Y i (21zel® = (zir 2} = (260 7))

dt ieN
+ XA Zki (2 Wzes 201> = (zes 20)* — (201 26)7)
ieN
=240 Y _ i (Izel* = Re (20 26)?)) + 201 D ki (1zes 200 1* — Re (20 2e)?))
ieN ieN
=200 ki (lzell* = Re (21, 2) + Im (2, 20))?)
ieN
+201 ) ki (162, 2P — Re (i, 260)” + Im (1, 26)?)
ieN
=240 Y _ i (Izell* = Re ({zin 2e0)* = Tm (20, 2e)* +29m (24 2)?)
ieN
201 ) ki (20 9m (@10 2)?)
ieN
=20 ) ki (lzell* = 1(zi, 2) 1) +4 (o +21) D ki [Tm (2, 2D -
ieN ieN

This clearly shows that % (Zc, z¢) 1s the sum of nonnegative terms. Finally, by Proposition
5.3, we obtain the desired result. O

So far, we do not show the convergence of our solution Z(¢) as ¢t 1 oo, but we can derive an
information for how the asymptotic configuration Z° in unit Hermitian sphere.

Corollary 5.2 Suppose that for each i € N, z; converges to z7°. Then we have
(e, 2%) e 11, =13
Proof By the first part of Proposition 5.3 and ||z; || = 1, one has
0= tim ((llze@IP=Ie@. @ )= 222~z 22 = |2 it~ =2

Thus, the asymptotic configuration {zfo }l. o satisfies the equality condition of the Cauchy-
Schwarz inequality. Hence we have

77 =aiz, i€eN,
for some a; € C with |a;| = 1. On the other hand, by the second part of Corollary 5.1,
Im(z2°, z°) = 0.

Therefore a; € {1, —1}. O
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Remark 5.1 The result of Corollary 5.2 shows that the possible asymptotic configuration is
either completely synchronized state or bi-polar state.

In next proposition, we show that z; becomes stationary asymptotically (see Proposition
5.2 for Subsystem B).

Proposition 5.4 Let Z = Z(t) be a global solution to (5.3). then we have
lim |z;(t)] =0, ieN.
=00
Proof We use (5.21) to see
(Zi,Zi) = |>»o|2<zc — (2e, 2i) Zir Ze — (2o 2i) Zi>

+ Aor ((ze, zi) — (zi, zc))<zc —{z¢, 7i) 2 Zi>

(5.27)
+ Mro((ze, zi) — (zis ZC>)<Zis Ze — {2es 2i) Zi>
+ M1 (zes zi) — (2 ze) 1
Om the other hand, it follows from Corollary 5.2 that
(zes 2i) = (2is 2e) = (e 2i) — {2e» 2i) = 21Tm((z¢, 2i)) — 0, ast —>o00.  (5.28)
By (5.27) and (5.28), one has
lim (2, 2) = Tim [hol(ze — (@ 2i) 21,2 — {2, 200 ) (5.29)
—00 1—00

Again, we use Corollary 5.1 to see

(ze = (z¢, 2i) Zis 2e — (2> 2i) i)
= llzell® = (ze» 2i)? — {ziv 26)* + Nzes 201 (5.30)
= llzel® = Hze» 20)1* 4+ 2 1zes 2i) 12 = (zer 20)? = (21, 26)? = 0,

as t 1 oo. Finally, we combine (5.29) and (5.30) to get the desired estimate. O

6 Conclusion

In this paper, we have studied the collective behaviors of infinitely many Lohe oscillators on
the unit Hermitian sphere in d-dimensional complex Euclidean space. For this, we proposed
a new synchronization model governing the dynamics of an infinite set of Lohe Hermitian
sphere oscillators and we have also presented several sufficient framework leading to practical
and complete synchronization estimates. The proposed model extends author’s recent work
[22] on the infinite set of Kuramoto oscillators to the infinite set of Lohe Hermitian sphere
oscillators in a higher-dimensional setting. In our infinite model with an infinite coupling
matrix (KU), we cannot find such an average quantity with a similar role as z. in Sect. 5. That
makes our analysis in Sects.3 and 4 be more delicate. The presented results of this paper
can be summarized as follows. First, we presented a sufficient framework for the collective
behaviors of the ensemble of infinite oscillators defined on higher-dimensional ambient space
with a network topology. Our sufficient framework is given in terms of system parameters
and admissible initial data. Second, we have demonstrated how the analysis in [23] can be
extended to an infinite ensemble over the sender network. In the previous works, the tool
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employed to analyze the finite-dimensional swarm sphere model over network topology is the
spectral theory of adjacent matrices. However, we use a direct nonlinear functional approach
based on the state diameter as a suitable Lyapunov functional.

Acknowledgements The work of S.-Y. Ha was supported by National Research Foundation of Korea (NRF-
2020R1A2C3A01003881). The work of E. Lee was supported by the National Research Foundation of Korea
(NRF) (No. 2022R1A2C1010537).

Data Availibility We do not analyze or generate any datasets, because our work proceeds within a theoretical
and mathematical approach.

Declarations

Conflict of interest The authors have no affiliation with any organization with a direct or indirect financial
interest in the subject matter discussed in the manuscript.

Appendix A Well-Posedness of the Infinite LHS Model

In this appendix, we present a global well-posedness of the infinite LHS model. For this,
we study a local well-posedness using the Cauchy-Lipschitz theorem on a suitable Banach
space.

A.1 A Local Well-Posedness

We first recall the Cauchy-Lipschitz theorem. Let E be a Banach space, and U C E. Let
F : U — E bealocal Lipschitz map and let / = [0, T*) be an interval contained in R where
T* € (0, oo].

Lemma A.1 (Cauchy-Lipschitz) [6, 10] The Cauchy problem:

{;’,‘; = Fu@®)), >0,

gy = 0.

has a unique local solution u in the time interval I.

To apply Lemma A.1 for the infinite LHS model, we need to introduce E and U. We
introduce the Banach space Z%O’Z:

(€E°’2, - lloo,2) := {y = (itien 1 9 € CYL [ Vlloo,2 = sup [lyill < 00}.

ieN

Theorem A.1 (Local existence) The Cauchy problem (1.3)—(1.4) admits a local unique
smooth solution Z : [0, tg) — Z%o’zfor some ty > 0.

Proof We define F : 6%0’2 — Z(%o’z as
F@) ={fi@}ien, z={zi}ien,
fi(@) = Qizi +)\02Kij ((Zi, Zi)Zj — <Zj,zi>zi) + A1 Zkij<(zi,1j) —(zj, Zi))Zi-

JjeN jeN
(A1)
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We outline the proof strategy in four steps:

(Step A): Find a local bound of F depending on ||z]|» for z € K(%O’z.

(Step B): Find a local Lipschitz constant of F' depending on ||z || 2-

(Step C): Prove a local existence of integral solution to the infinite LHS model.

(Step D): Prove Z is a classical solution of LHS model.

In what follows, we perform the above steps one by one.

¢ Step A (Local boundedness of F): We use (Al) to see

I @I < Izl + 2o Y kij [{zir zid 2j = (e zi) zi | + A1 Y ij (@i 20 = (20| il
JjeN jeN

3 3
< 1R1ss.0p Nzlloo2 + 220 Y i llzlle o + 221 Y i llzll3 »
jeN jeN

< 11Rllo,0p I1zlloo,2 42 (o + A1) liellog, 1 1213 2 -
This yields
sup 1 fi @)l = IF @)ooz < 1Rllov,0p I12lloo.2 +2 (o + 41) 1K lloo,1 121130 2

ieN
o Step B (Local Lipschitz continuity of F): For Z, Z € Z(%O’Z, we have

|Fz) -F(2)|, = SUp |2 op 1 = il

+ Ao sup ZKU (zivzidzj —(zj. zi)zi) — (G20 25 — (25, 2) Zi) )
ieN jeN

+ A1 sup ZKU[(ZHZ, (Zj,Zi))Zi—((Zi,ij)—(fj,ii))ii}
ieN jeN

=:T41 + roZa2 + A1 Z243.

In the sequel, we show thateach term Z41, Z4> and Z43 can be controlled by O(1) || Z—Z H 02

o Step B.1 (Estimate of Z41): Note that
Zat < 1®Rlso0p [ 2 = 2 .

o Step B.2 (Estimate of Z4,): By direct calculation, one has

Ty = sup ZKU (zivzidzj — 2y, zi)zi) — (G 200 25 — (25, 2) Zi) )
ieN jeN
< sup ZKU <||Zi||2Zj - ||Zi||2§j) + sup ZKU‘ () zi)zi — (27, 2i)2)
ieN jeN ieN jeN
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=:Z421 + 4.

Then for each i € N, we have
2 ~ 2z
> i (N2 2 = 1207 2))
jeN
2 ~ 2 =~ 12 ~
= Yy Nzl 2 = 25+ Yk (12l = 12:02)

jeN jeN

< Mlloot 121302 |2 = 2]l son + D ki Uzl + 120D 12 1z = Zi1
JEN

< lrelloo,1 (||Z||?>o,2 T 1202 ”2”002 + ”2”;2) Iz~ Z~||oo,2’
and

Y wij(zjozi)z — (5, %) %)

jeN

< Zkij(z,',zl')(z;—zl Z"U zj.zi —Zi)Zi) ZKU =, %) %)

JjeN JjeN jeN
< D |zl zill lze =2l 4+ ) g 2]z = 2l Wzl + i 1z = 25 02012
jeN jeN jeN

< Ielloe,t (121202 + 120002 | 2l oo + 12020 2) 12 = 2.z

These give upper bounds of 7471 and Z425.

o Step B.3 (Estimate of Z43): Note that

T43 = sup ZK’/ {( Ziy2j) — <Zj,Zi)>Zi - ((Zi,Zj) - (Z/,Zi))fi}
ieN jeN
= supZK” H (zi,zj)z (Zir 7)) | +SUPZKU ” (zj,zi)zi — (Z],Zz)zz”
jGN N]eN
=: T431 + 1437.

For each i and j, we use
I(zi, zj)zi — (Ziv 202 |
<z zjzi — (zin 2z | + |(ziv 202 — (@in 2021 | + [|€zin 207 — (Zi, 207
< (1210 + 120z |2+ 1212 2) 12 - 2]
to get
2 5 112 5
Tiar = Wlloo (12122 + 120002 [ 2] oy + 12 ]22) 12 = 2

Similarly we have

Tuns < Melloo,t (12022 + 12 00c2 [ o + 1215,) 12— 21

@ Springer



Emergent Behaviors of the Infinite Set... Page450f50 115

Finally, we combine estimates for Z41, Z42 and Z43 to obtain

I @) - F(2)

oo

= (101sc.0p +2 G+ 20 Wt (12122 + 120002 [ o0 + [ 2]22)) 12 = 2.
(A2)

¢ Step C (Local existence of an integral equation): We integrate the infinite LHS model to

see ;
X(1) =Xin+/ F (X(s))ds.
0

Then, the solution to this integral equation is given as a fixed point of the operator:
t
®:C(Cipr) = C(Cror) (@) (1) :=Z"+ / F (Z(s))ds (A3)
0
for suitable Banach space C (Cy,,) to be defined below. We set

1
L =27 (1Rl s0,0p +2 (ho + A1) I llo,1) s f0 < I
' ' ' (A4)
B (2") =y e |y 2", = v} Covi=10.00] x B (27).
Then, we define a normed space and the associated norm as follows.

C(Cp2) :={f:10,10] > B> (Zi“) | fis continuous}, [Z], = sup 2]z -

0<r<ty
For X € C(Cjy,2) we have
IZOlloo2 < 2@ = 27 5 + [ 27, < 3-

Then, we use (A3) and (A4). to see that the functional ¢ defined in (A3) satisfies
. t
[0z =20, = [ 1F EODlnads
’ 0
t
< /0 120l 00,0p 12 llo,2 + 2 o + A1) 1K llog 1 12()112, > ds

t
< /0 31Rsc.0p + 54 (o + 21) Kloc, 1 ds

= (31Rll0o,0p + 54 (o + A1) K llog 1) 1
<2, fort < 1.

We combine (A2) and (A4) gives
I1F(Z:1@) — F (22 o2 < L1122(0) = 21Dl 2, 1 = t0-

Hence we have

1o
DX, — DXan, < /0 IF (X1()) — F (2()) 2 ds

0]
< L/ |X2(s) — X1(5) o2 ds
0

<Lyplx—Xl..
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Since 1y < %, the relation implies that @ is a contraction mapping. Then, by the Banach
fixed point theorem, we obtain the existence of integral solution X (¢) € C (C ,0_2).

e Step D (Local existence of solution): Next, we show that the fixed point X (¢) is differen-
tiable: for each r, s € [0, #1],

[X(1) = X(s) = (1 =) F (X($))loo 2 =

t
/ F (X(v)) — F (X(s))dt

00,2
t T
< L/ 120 = X0 loadr =1 [ | [*F (X@ndo| dr
< L/ / I F (X (o) dodt < L2/ / dodt = — (t —5)2.
This gives
NxX@) = X)) — =) F (X)) oo,
lim =0.
t—s |[ — s|
Therefore, the fixed point X is the desired solution in the time interval [0, #p):
d X(@) = F(X(@))
dt N ’
Furthermore by Lemma A.1, this local solution is unique. O

A.2 A Global Well-Posedness

In this part, we provide a global well-posedness by extending the local solution which was
constructed in the previous subsection. More precisely, our global well-posedness can be
stated as follows.

Theorem A.2 (A global existence) For any T € (0, 00), the Cauchy problem (1.3)—(1.4)
admits a global unique smooth solution Z : [0, T) — Z(%o

Proof By Theorem A.1, we have a local solution Z : [0, tp) — 2(%0’2 where 7y depends on
the parameters k, 2, A1 and A; in our model. We proceed by induction on n > 1 to prove the
existence of solution Z in the time interval [0, ntp). The initial step has already verified in
Theorem A.1. For the inductive step, it sufficies to check how the domain can be extended
by [0, 2#p). Since our local solution Z : [0, fy) — Z(%O’z defined as the fixed point of operator

. t
D :C(Ch2) = C(Ch2), (@2)(1)=2" +/0 F (Z(s))ds,

where .
Ciy,2 == 0, 10] { Yy - Zm”oo,Z = 2}’

Z cannot blow up at t = fg. Therefore Z is defined at [0, fo]. By Lemma 2.1, we can consider
Z(to) as new initial data, and we can apply Theorem A.1 to extend the local solution to the
interval [7g, 27], since the estimates in Step C of Theorem A.1 depends on the estimate:

|22 =1

00,2

In this way, we have the solution in the time interval [0, 27g]. ]
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Appendix B Proof of Theorem 5.1
In this appendix, we provide the lengthy proof of Theorem 5.1 in several steps.

e Step A (A dynamical system for two-point correlation function): We set
hij = (Zl‘, Zj), R,‘j = i)ﬁieh,-j, I,'j = Cimh,-j.
We use (5.9) to see
dh;j
dt

= (z¢ — (2e» 2i) 2is 2j) + (2 2e — (261 25) 2) B1)

= ((zes 2j) = (ziv 2¢) (zis 25) + (ziv 2¢) — (2e0 2j) (@i 25)) -
Then, we take the real and imaginary parts of (B1) to find
dRij
dt

= R¢j = RicRij + Ric — RejRij + liclij + Icj1ij

= (1= Rij) (Rej + Ric) + Lij (ic + Ij) (B2)
dl;j

dt

=1I¢j — licRij — Riclij + Lic — I¢j Rij — Rejlij

= (1= Rij) (Iej + Iic) = 1ij (Ric + Rej) -
For notational simplicity, we also use the following handy notation in (B2):
Ric == Re(zi, z¢) Zmiﬁe ziv2)s e :=NRe (zi, z¢) Zkziﬁe Zi» 2)
leN leN

Similarly we can define R.; and I.;. Since we are looking for a sufficient framework in which
R;; approaches to one asymptotically, it would be nice to work with 1 — R;; instead of R;;.
Hence, we set

Hij=1-Rij, Hi:=Y r(1—Re(z.2) =1- Re.
leN

Then the system (B2) can be rewritten as

dHj
dtlj = _Hlj (2 — HC] — Hic) - ]lj (IiC + ICJ) ’
d;] = Hjj (ch +I,~C) — I (Z—Hic—ch)-

This is equivalent to
d | H;; —aij —Bij | [ Hij
all = , B3
dt |:Iij Bij —aij || Lij ®9)
where «;; and B;; in (B3) are given by
@jj :=2— Hej — Hic, pij:=lic + 1.
Now we use (B3) to find the Gronwall-type inequality for Hizj + Iizj:

d

7 (H2 +12) = 2H,'jHij +21ijiij

= 2H;j (—oijHij — Pijlij) + 21Lij (Bij Hij — euijlij) (B4
= —2u;; (H,.’j + 11.21.) .
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() = sup JH (1) + I7(0).
i)

l

We define

Then the assumption (5.14) implies
A0) <1-34.
o Step B (Estimation of |1 — (z; (), z; (1))|): By a direct calculation, for each s < 1,
|Hej (1) — Hej ()] <Y sy [Hj(6) = Hp ()] <k |hju(6) = hju(s)| < 8(t —s),
leN leN

since we can see that /;; = (z,-, Z j) is Lipschitz:

d
Szl = NG )l + e ) = Mzl ] + =l 23] < 16.
Here we obtain local bound
a;ij(t) = a;j(0) —t-16 > 4, O§t<18—6 (BS)

of a;; from
@;j(0) =2lklly — Hej — Hie = 2lcclly — 2 Ikl (1 — ) = 28,
| (1) — i ()| < |Hej (1) — Hej ()| + | Hic(t) — Hie(s)] < 16(1 — ).

Then we use (B4) and (B5) to obtain

d 2 2 2 2 8 .
- (H20+120) = =25 (HFO + 2©), 0=1< ==t

This yields
HA() + I2(1) < (H,% ©) + 12 (0)) exp(=281), 0<t1 <t

By induction on n, we can prove that Hl%. H+1 ,'2]' (¢) isexponentially decreases for0 < ¢ < nfg
with exponential decay rate 2§. For the inductive step, we can consider Z(nt() as new initial
data. Then, we have

Anty) <1 =3,

and we can prove that Hl%. 1) + Il.zj (t) is exponentially decrease with decay rate 2§ for

nty <t < (n + 1)tp by a similar argument as in the initial step (n = 1).
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