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Abstract
We study the emergent behaviors of an infinite number of Lohe Hermitian sphere oscillators
on the unit Hermitian sphere. For this, we propose an infinite analogue of the Lohe hermitian
sphere model, and present sufficient frameworks leading to collective behaviors in terms of
system parameters and initial data. Under some network topology, we show that practical
synchronization emerges for a heterogeneous ensemble, whereas exponential synchroniza-
tion can appear for a homogeneous ensemble. Furthermore we have also derived analogous
results for the infinite swarm-sphere model. For the sender network topology in which cou-
pling capacities depend only on the sender index number, we show that there are only two
possible asymptotic states, namely complete phase synchrony or bi-cluster configuration for
a homogeneous ensemble in a positive coupling regime.

Keywords Asymptotic behavior · Infinite particle system · Lohe Hermitian sphere model

Mathematics Subject Classification 34D05 · 34G20 · 70F45

1 Introduction

Collective behaviors of a complex system have received a significant attention due to its wide
range of applications in engineering and biological fields [9, 19, 33, 34, 37–39]. They include
several group behaviors such as aggregation of bacteria [37], flocking of birds [14], swarming
of fish [38] and synchronization of fireflies and neurons [33] etc. Among them, our interest
lies in synchronization of weakly coupled limit-cycle oscillators. In 1975, Japanese physicist
Yoshiki Kuramoto introduced a first-order particle model [28] following the work of Arthur
Winfree [41] to study a simple phase-transition like phenomenon describing synchronization
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among a finite number of phase oscillators. The Kuramoto model is also a nice model to
describe the synchronization of oscillators with constant period and it has been studied in
various researchers [1, 5, 7, 16, 18, 20, 35]. We refer to [1, 2, 4, 15, 17, 21, 33–35, 39, 42]
for a brief survey and introduction to collective dynamics. In this paper, we are interested in
the collective behaviors of oscillators on the unit Hermitian sphere embedded in Cd :

C
d = C × · · · × C

︸ ︷︷ ︸

d times

, [N ] := {1, . . . , N }, N := {1, 2, . . .}.

To fix the idea, we begin with the Kuramoto model. Let θi = θi (t) be a real-valued phase of
the i-th oscillator. Then, the dynamics of θi is governed by the following Cauchy problem:

⎧

⎪
⎨

⎪
⎩

θ̇i = νi + κ

N

∑

i∈[N ]
sin(θ j − θi ), t > 0,

θi (0) = θ ini , i ∈ [N ],
where V = {νi }i∈[N ] and κ are the collection of natural frequencies in R and nonnegative
coupling strength, respectively. Then the dynamics of the complex-valued function zi = eiθi

satisfies

żi = iνi zi + K

2N

∑

j∈[N ]

(

z j − 〈

z j , zi
〉

zi
)

, i ∈ [N ],

where 〈z j , zi 〉 = z̄ j zi . This form can be generalized to the swarm sphere model on the unit
Euclidean sphere Sd−1 in R

d .
Let xi = xi (t) ∈ R

d be a position of the i-th swarm sphere oscillator. Then, the dynamics
of xi is governed by the Cauchy problem to the swarm sphere (in short SS) model [29, 30,
32]:

⎧

⎪
⎨

⎪
⎩

ẋi = �i xi + κ

N

∑

j∈[N ]

(

〈xi , xi 〉 x j − 〈

xi , x j
〉

xi

)

, t > 0,

xi (0) = x ini , i ∈ [N ],
(1.1)

where � := {�i }i∈[N ] and κ are the collections of d × d skew symmetric matrices, nonneg-
ative coupling strength, respectively, and 〈·, ·〉 is the standard inner product in R

d . Then, it
is easy to check that the modulus of xi is conserved along the swarm sphere dynamics (1.1).
Hence the unit sphere Sd−1 is a positively invariant set. Recently, Ha and Park introduced
a particle model for aggregation on C

d using a finite-dimensional reduction from the Lohe
tensor model [24]. More precisely, let zi = zi (t) be a state of the i-th Lohe hermitian sphere
oscillator onCd . Then it is governed by the following Cauchy problem to the Lohe hermitian
sphere (in short LHS) model:

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

żi = �i zi + λ0
∑

j∈[N ]

(

〈zi , zi 〉 z j − 〈

z j , zi
〉

zi

)

+λ1
∑

j∈[N ]

(
〈

zi , z j
〉 − 〈

z j , zi
〉
)

zi , t > 0,

zi (0) = zini , i ∈ [N ],

(1.2)

where λ0 and λ1 are nonnegative real numbers such that λ0 + λ1 = 1. Here 〈·, ·〉 denotes the
standard inner product in C

d :

z = (z1, . . . , zd) ∈ C
d , w = (w1, . . . , wd) ∈ C

d , 〈z, w〉 :=
d
∑

i=1

ziwi , ‖z‖ := √〈z, z〉.
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Then we can see that the modulus of zi is conserved along the LHS dynamics (1.2), and the
complex unit sphere(Hermitian sphere) HS

d−1 is a positively invariant set. That is why we
call this model as the LHSmodel. The Cauchy problems (1.1) and (1.2) have been extensively
studied in a series of works [8, 11–13, 23–27, 29–31, 36, 43].

In this paper, we are interested in the following two questions:

• (Q1): What is the infinite counterpart of the Lohe hermitian sphere model for an infinite
ensemble {zi }i∈N?

• (Q2): Once the infinite counterpart is proposed, under what conditions on system param-
eters and initial data, does the proposed model exhibit collective behaviors?

To describe the mean-field dynamics of an infinite number of Kuramoto oscillators, the
Kuramoto-Sakaguchi model was often studied via the corresponding kinetic model for
N � 1. More precisely, to describe the behavior of individual particles, the kinetic model
describes the entire configuration by approximating the overall averaged dynamics by a
probability density function. Recently, dynamical systems with infinite number of equations
have been used in the study of collective dynamics in [22, 40]. In particular, authors’ recent
work [22] highlights the distinction between the behavior of infinitely many particles and
the behavior of particles approximated by a kinetic model. One of motivations to deal with
an infinite particle system lies in the construction of measure-valued solutions to the corre-
spondingmean-field kinetic equations with unbounded spatial support. More precisely, in the
previous works on kinetic models for collective dynamics, we considered initial data which
are compactly supported in phase space. To construct a measure-valued solution with a com-
pact support, particle-in-cell method is often used. In this procedure, since the spatial support
is bounded, there are only finite number of cells for a given finite mesh size. Hence, a particle
systemwith a finite system size can be used in the construction of approximate solutions in the
form of an empirical measure. However, when the spatial support is bounded, we must have
an infinite number of cells for any finite mesh size. Therefore, we are forced to deal with par-
ticlemodel with an infinite system size. This is whywe need to study infinite particle systems.

Throughout the paper, we provide answers for the above posed questions (Q1) and (Q2).
More specifically, our main results are two-fold. First, we propose an infinite counterpart of
the Cauchy problem to the LHS model (1.2) with an infinite network matrix (κi j ):

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

żi = �i zi + λ0
∑

j∈N
κi j

(〈zi , zi 〉 z j − 〈

z j , zi
〉

zi
)

+λ1
∑

j∈N
κi j

(〈

zi , z j
〉 − 〈

z j , zi
〉)

zi , t > 0, i ∈ N,

zi (0) = zini ,

(1.3)

where the coupling matrix κ = (

κi j
)

i, j∈N and a sequence of anti-Hermitian matrices � =
{�i }i∈N satisfy the following conditions: for i, j ∈ N,

�
†
i = −�i , D (�) := sup

i, j∈N

∥

∥�i − � j
∥

∥

op < ∞, ‖�‖∞,op := sup
i∈N

‖�i‖op < ∞,

κi j > 0, 0 < ‖κ‖−∞,1 = inf
i∈N

∑

j∈N
κi j ≤ sup

i∈N

∑

j∈N
κi j := ‖κ‖∞,1 < ∞.

(1.4)
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Here �
†
i is the Hermitian conjugate of �i , and ‖�i‖op is the operator norm:

‖�i‖op := sup
x 	=0

‖�i x‖
‖x‖ .

Since ‖κ‖∞,1 < ∞, the infinite sum of right-hand side of (1.3) is well-defined. The global
well-posedness of the Cauchy problem (1.3) is presented in Appendix A.
Second, we study the emergent behaviors of (1.3) for the cases in which system parameters
and initial condition are given as follows.
⎧

⎪
⎨

⎪
⎩

Case A: � : anti-symmetric real matrix, zini ∈ R
d

Case B: � : anti-Hermitian, zini ∈ C
d , κi j satisfies

{

Case B.1: κi j > 0,

Case B.2: κi j = κ j > 0.

Specially, for Case A, we obtain an infinite counterpart of the Cauchy problem to the SS
model (1.1) with an infinite network matrix (κi j ):

⎧

⎪
⎨

⎪
⎩

ẋi = �i xi + λ0
∑

j∈N
κi j

(〈xi , xi 〉 x j − 〈

x j , xi
〉

xi
)

, t > 0,

xi (0) = x ini , i ∈ N,

(1.5)

where the coupling matrix κ = (

κi j
)

i, j∈N and a sequence of anti-symmetric matrices � =
{�i }i∈N which satisfies conditions (1.4) inherited from the original infinite LHSmodel (1.3).

For Case A and Case B.1, we derive “practical synchronization” estimate for heteroge-
neous ensemble:

lim
t→∞ sup

i, j∈N
|zi (t) − z j (t)| ≤ O(1)

D(�)

‖κ‖−∞,1
.

For Case B.2, we consider the Cauchy problem for a homogeneous ensemble with � j = O:
⎧

⎨

⎩

ż j = λ0
(〈

z j , z j
〉

zc − 〈

zc, z j
〉

z j
) + λ1

(〈

z j , zc
〉 − 〈

zc, z j
〉)

z j , t ≥ 0,

z j (0) = zinj ,

∥

∥

∥zinj

∥

∥

∥ = 1, zc =
∑

l∈N
κl zl .

(1.6)

In Sect. 5, we investigate the roles of each term in the right-hand side of (1.6). More precisely,
for λ1 = 0, if initial data satisfy

sup
i, j∈N

∣

∣

∣1 −
〈

zini , zinj

〉∣

∣

∣ < 1 − δ,

we have an exponential synchronization (see Theorem 5.1):
∣

∣1 − 〈

zi (t), z j (t)
〉∣

∣ ≤
∣

∣

∣1 −
〈

zini , zinj

〉∣

∣

∣ · exp (−δR0t) .

For the whole system (1.6), we show that possible asymptotic states are either one-point
cluster or bi-polar state (see Corollary 5.2).

The rest of this paper is organized as follows. In Sect. 2, we study basic properties of the
infinite LHS model and discuss its relation to other aggregation models. In Sect. 3, we study
emergent dynamics of the infinite SS model as a special case of model (1.3) in which initial
data and �i is anti-symmetric real matrix. In Sect. 4, we study the emergent dynamics of
the model (1.3) for a homogeneous ensemble with the same �i . In Sect. 5, we present a
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synchronization estimate for a special case in which the interaction capacity depends only on
the sender node, which is different from the presentation in Sect. 3. Finally, Sect. 6 is devoted
to a brief summary of our main results.

2 Preliminaries

In this section, we briefly review basic properties such as the conservation of �2-norm and a
global existence of the infinite LHS model and discuss relations with other existing aggre-
gation models such as the Kuramoto model and the Schrödinger-Lohe model.

2.1 The Infinite LHSModel

In this subsection, we briefly study several properties of the Cauchy problem (1.3)–(1.4).
First, we show that the unit Hermitian sphere is positively invariant.

Lemma 2.1 Let Z = {zi }i∈N be a global solution to (1.3)–(1.4). Then the modulus of zi is a
conservative quantity:

‖zi (t)‖ = ∥

∥zin
i (t)

∥

∥ , t ≥ 0, i ∈ N.

Proof We take an inner product (1.3)1 with zi to find

d

dt
‖zi‖2 = 〈żi , zi 〉 + 〈zi , żi 〉
=
〈

�i zi , zi

〉

+
〈

zi ,�i zi

〉

+ λ0
∑

j∈N
κi j

〈

〈zi , zi 〉 z j − 〈

z j , zi
〉

zi , zi

〉

+ λ0
∑

j∈N
κi j

〈

zi , 〈zi , zi 〉 z j − 〈

z j , zi
〉

zi

〉

+ λ1
∑

j∈N
κi j

〈(

〈zi , z j 〉 − 〈z j , zi 〉
)

zi , zi

〉

+ λ1
∑

j∈N
κi j

〈

zi ,
(

〈zi , z j 〉 − 〈z j , zi 〉
)

zi

〉

=:
6
∑

i=1

I1i .

(2.1)

Below, we estimate the terms I1i one by one.

• Step A (Estimate of I11 + I12): We use (1.3) and the skew-Hermitian property �† = −�

to get

I11 + I12 =
〈

�i zi , zi

〉

+
〈

zi ,�i zi

〉

=
〈

zi ,�
†
i zi

〉

+
〈

zi ,�i zi

〉

= −
〈

zi ,�i zi

〉

+
〈

zi ,�i zi

〉

= 0.

• Step B (Estimate of I13 + I14): We use the sesqui-linearity of 〈·, ·〉 with 〈zi , z j
〉 = 〈

z j , zi
〉

to obtain
〈

〈zi , zi 〉 z j − 〈

z j , zi
〉

zi , zi

〉

= 〈zi , zi 〉 〈z j , zi 〉 − 〈

zi , z j
〉 〈zi , zi 〉 ,

〈

zi , 〈zi , zi 〉 z j − 〈

z j , zi
〉

zi

〉

= 〈zi , zi 〉 〈zi , z j 〉 − 〈

z j , zi
〉 〈zi , zi 〉 .

123
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These imply
I13 + I14 = 0.

• Step C (Estimate of I15 + I16): Similar to Step B, we have

〈(

〈zi , z j 〉 − 〈z j , zi 〉
)

zi , zi

〉

=
(

〈z j , zi 〉 − 〈zi , z j 〉
)

〈zi , zi 〉 ,

〈

zi ,
(

〈zi , z j 〉 − 〈z j , zi 〉
)

zi

〉

=
(

〈zi , z j 〉 − 〈z j , zi 〉
)

〈zi , zi 〉 .

Thus, we have
I15 + I16 = 0.

Finally in (2.1), we combine all the estimates in StepA–StepC to get the desired conservation
law:

d

dt
‖zi‖2 = 0, t > 0.

�

Remark 2.1 Thanks to the result of Lemma 2.1, we can assume

‖zi‖ = 1, t ≥ 0, i ∈ N

without loss of generality.

Lemma 2.2 Let Z = Z(t) be a global solution to (1.3)–(1.4). Then we have the following
estimates:

(i)

∥

∥

∥

∥

dzi

dt

∥

∥

∥

∥
≤ ‖�‖∞,op + 2 ‖κ‖∞,1 (λ0 + λ1) .

(ii)

∥

∥

∥

∥

d

dt

(

zi − z j
)

∥

∥

∥

∥
≤ 2 ‖�‖∞,op + 4 ‖κ‖∞,1 (λ0 + λ1) .

(iii)
d

dt

∥

∥zi − z j
∥

∥
2 ≤ 8 ‖�‖∞,op + 16 ‖κ‖∞,1 (λ0 + λ1) .

(iv)

∣

∣

∣

∣

d

dt

∥

∥zi − z j
∥

∥

∣

∣

∣

∣
≤ 2 ‖�‖∞,op + 4 ‖κ‖∞,1 (λ0 + λ1) .

Proof (i) and (ii): It follows from (1.3) and the triangle inequality that
∥

∥

∥

∥

dzi

dt

∥

∥

∥

∥
≤ ‖�‖∞,op +

∑

j∈N
κi j

(

λ0
∥

∥z j − 〈

z j , zi
〉

zi
∥

∥ + λ1
∥

∥〈zi , z j 〉 − 〈z j , zi 〉
∥

∥

)

≤ ‖�‖∞,op +
∑

j∈N
κi j

(

λ0
∥

∥z j
∥

∥ + λ0
∣

∣

〈

z j , zi
〉∣

∣ ‖zi‖ + 2λ1
)

≤ ‖�‖∞,op + 2 ‖κ‖∞,1 (λ0 + λ1) .

The second relation follows from the first relation directly:
∥

∥

∥

∥

d

dt

(

zi − z j
)

∥

∥

∥

∥
≤
∥

∥

∥

∥

dzi

dt

∥

∥

∥

∥
+
∥

∥

∥

∥

dz j

dt

∥

∥

∥

∥
.
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(iii) and (iv): Note that

d

dt

∥

∥zi − z j
∥

∥
2≤ 2

∣

∣

∣

∣

〈

zi − z j ,
d

dt

(

zi − z j
)

〉∣

∣

∣

∣
≤ 2

∥

∥zi − z j
∥

∥ ·
∥

∥

∥

∥

d

dt

(

zi − z j
)

∥

∥

∥

∥

≤ 2 · 2 · (2 ‖�‖∞,op + 4 ‖κ‖∞,1 (λ0 + λ1)
)

≤ 8 ‖�‖∞,op + 16 ‖κ‖∞,1 (λ0 + λ1) and

∣

∣

∣

∣

d

dt

∥

∥zi − z j
∥

∥

∣

∣

∣

∣
=
∣

∣

∣

∣

∣

∣

1

2
√

∥

∥zi − z j
∥

∥
2

d

dt

∥

∥zi − z j
∥

∥
2

∣

∣

∣

∣

∣

∣

≤ 2 · 1

2
∥

∥zi − z j
∥

∥

∣

∣

∣

∣

〈

d

dt

(

zi − z j
)

, zi − z j

〉∣

∣

∣

∣

≤
∥

∥

∥

∥

d

dt

(

zi − z j
)

∥

∥

∥

∥
≤ 2 ‖�‖∞,op + 4 ‖κ‖∞,1 (λ0 + λ1) .

�
Note that if we set λ1 = 0 in (1.3), it becomes the infinite complex swarm sphere model

[30]. Hence we can expect that (1.3) can be reduced to the infinite swarm sphere model as a
special case, if initial data and natural frequencies are real. This can be seen in the following
lemma.

Lemma 2.3 Let Z be a global solution to (1.3)–(1.4) satisfying the following two conditions:

(i) Initial data are purely real:
Im(zin

i ) = 0, i ∈ N,

where Im(z) is the imaginary part of z.

(ii) � = {�i }i∈N is a sequences of d × d anti-symmetric matrices:

�i ∈ R
d×d , �i = −�T

i , i ∈ N.

Then, we have
Im(zi (t)) = 0, i ∈ N, t > 0.

Proof Since every calculation in the proof of Theorem A.1 can be applied for (1.5), we can
show the real counterpart of Theorem A.1 with solution curve X defined on the real Banach
space:

(�∞,2, ‖ · ‖∞,2) :=
{

Y = {yi }i∈N : yi ∈ R
d , ‖Y‖∞,2 := sup

i∈N
‖yi‖ < ∞

}

.

Then the real solution X can be considered as a unique solution of model (1.3) on the unit
Hermitian sphere HS

d−1. �
Remark 2.2 Let Z be a real-valued solution to (1.3). Then the second term involving with λ1
is zero:

∑

j∈N
κi j

(

〈zi , z j 〉 − 〈z j , zi 〉
)

zi = 0.

Hence (1.3) has the same form as in the infinite swarm sphere model.

Next, we consider a finite truncation of (1.3). For a fixed positive integer N , we assume
that

κi j = 0, zini = 0, i ≥ N + 1.

123
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Then, the Cauchy problem (1.3) becomes
⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

żi = �i zi + λ0
∑

j∈[N ]
κi j

(

〈zi , zi 〉z j − 〈

z j , zi
〉

zi

)

+λ1
∑

j∈[N ]
κi j

(

〈zi , z j 〉 − 〈z j , zi 〉
)

zi , t > 0, ∀ i ∈ N,

zi (0) = zini .

(2.2)

Lemma 2.4 Suppose that initial data satisfy

zi (0) =
{

zin
i , 1 ≤ i ≤ N ,

0, i ≥ N + 1,

and let Z be a solution to (2.2). Then, we have

zi (t) = 0, t ≥ 0, i ≥ N + 1.

Proof Since the proof is straightforward from Lemma 2.1, we omit its detailed proof. �

Consider a finite-dimensional analogue of (1.3) in which all the coupling strengths are
uniform over nonzero nodes and collectiions {�i } are homogeneous:

κi j =
{

1
N , i, j ≤ N ,

0 max(i, j) > N ,
�i = �, i ∈ N, zi = 0, i ≥ N + 1.

In this case, the system (1.3) can be rewritten as
{

ż j = �z j + λ0

(

zc〈z j , z j 〉 − z j 〈zc, z j 〉
)

+ λ1

(

〈z j , zc〉 − 〈zc, z j 〉
)

z j , t > 0,

z j (0) = zinj , j ∈ [N ].
(2.3)

Now, we also consider the homogeneous analogue of (1.3):
{

ẇ j = λ0

(

wc〈w j , w j 〉 − w j 〈wc.w j 〉
)

+ λ1

(

〈w j , wc〉 − 〈wc, w j 〉
)

w j , t > 0,

w j (0) = zinj , j ∈ [N ],
(2.4)

where zc and wc are averages of {z1, z2, . . . , zN } and {w1, w2, . . . , wN } respectively:

zc := 1

N

∑

i∈[N ]
zi , wc := 1

N

∑

i∈[N ]
wi .

In the following proposition, we study a relation between (2.3) and (2.4).

Proposition 2.1 (Solution splitting property) [24] Let Z = {z j } and W = {w j } be solutions
to (2.3) and (2.4) with the same initial data {zin

j }, respectively. Then, one has

z j = e�tw j , j ∈ [N ].
Proof We first note that

(

e�t)† = (e�t )−1.

Then e�t is unitary, and we introduce the variable w j such that

z j = e�tw j for all j ∈ [N ]. (2.5)
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We substitute (2.5) into (2.3) to get

e�t ẇ j + �e�tw j = �e�tw j + λ0(〈e�tw j , e�tw j 〉e�twc − 〈e�twc, e�tw j 〉e�tw j )

+ λ1(〈e�tw j , e�twc〉 − 〈e�twc, e�twc〉)e�tw j .

After simplification, one has

ẇ j = λ0(〈w j , w j 〉wc − 〈wc, w j 〉w j ) + λ1(〈w j , wc〉 − 〈wc, w j 〉)w j .

Thus, we obtain the desired result. �

2.2 Reduction to Known AggregationModels

In this subsection, we discuss three reductions from (1.3) to other related aggregationmodels.

2.2.1 The Swarm Sphere Model

Consider the finite-dimensional Lohe Hermitian sphere model:

ż j = � j z j + λ0(zc〈z j , z j 〉 − z j 〈zc.z j 〉) + λ1(〈z j , zc〉 − 〈zcz j 〉)z j . (2.6)

It follows from Lemma 2.3 that once initial data lies on the unit Euclidean sphere Sd−1, then
we have

zi ∈ R
d , i ∈ [N ].

In this case, the second coupling term in the right-hand side of (2.6) becomes zero:

〈z j , zc〉 − 〈zc, z j 〉 = 0.

Hence, for a real-valued function z j , the system (1.3) reduces to the swarm sphere model
[30]:

ẋ j = � j x j + λ0

(

xc − x j 〈xc, x j 〉
)

.

2.2.2 The Kuramoto Model

Now, we return to the complex Lohe sphere model (1.3) with d = 1, and explain how (1.3)
can be related to the Kuramoto model. For this, we set

� j = 0, z j = r j e
iθ j , j ∈ [N ] and zc := rceiφ. (2.7)

We substitute the ansatz (2.7) into (2.6) to see

ṙ j e
iθ j + ir j e

iθ j θ̇ j = κ0r2j rc(e
iφ − ei(2θ j −φ)) + κ1r2j rc(e

iφ − ei(2θ j −φ))

= 2(λ0 + λ1)r
2
j rci sin(φ − θ j )e

iθ j .

This yields
ṙ j + ir j θ̇ j = 2(κ0 + κ1)ir

2
j rc sin(φ − θ j ). (2.8)

We compare the real and imaginary parts of the above relation (2.8) to get

ṙ j = 0 and θ̇ j = 2(λ0 + λ1)r j rc sin(φ − θ j ).
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These yield

r j (t) = r inj , θ̇ j = 2(λ0 + λ1)

N

∑

k∈[N ]
r inj r ink sin(θk − θ j ).

Now, we set
r inj = 1, κ := 2(λ0 + λ1)

to get the Kuramoto model for identical oscillators:

θ̇i = κ

N

∑

j∈[N ]
sin(θ j − θi ).

2.2.3 The Schrödinger-Lohe Model

In this part, we follow the presentation from [23]. Let {ψ j } be the collection of N complex-
valued wave functions in C(R+; L2(Td))whose dynamics is governed by the coupled system
of nonlinear Schrödinger equations:

i∂tψ j = Hψ j + iκ

N

∑

k∈[N ]

(

ψk〈ψ j , ψ j 〉 − 〈ψk, ψ j 〉ψ j

)

, (t, x) ∈ R+ × T
d , (2.9)

where H = − 1
2�x + V is one-body Hamiltonian.

Let {φk} and {Ek} be a countable orthonormal basis consisting of eigenfunctions and their
corresponding eigenvalues respectively:

Hφk = Ekφk, k ∈ N.

Then the standing wave solution k(t, x) := e−iEk tφk(x) satisfies the linear Schrödinger
equation:

i∂tk = Hk, k ∈ N.

Now we set ψ j to be the linear combination of {k}k∈N:

ψ j (t, x) =
∑

k∈N
zk

j (t)k(t, x), j ∈ [N ]. (2.10)

Suppose that ψ j satisfies the Schrödinger-Lohe model (2.9) with ‖ψ j‖2 = 1:

i∂tψ j = Hψ j + iκ

N

∑

k∈[N ]
(ψk − 〈ψk, ψ j 〉ψ j ). (2.11)

We use (2.10) to rewrite the left-hand side of (2.11) to see

i∂tψ j =
∑

k∈N

(

zk
j i∂tk + żk

j ik

)

=
∑

k∈N

(

zk
j Hk + żk

j ik

)

= Hψ j + i
∑

k∈N
żk

jk . (2.12)

Next, we equate (2.11) and (2.12) to get

Hψ j + i
∑

k∈N
żk

jk = Hψ j + iκ

N

∑

l∈[N ]
(ψl − 〈ψl , ψ j 〉ψ j )

= Hψ j + iκ

N

∑

l∈[N ]

∑

k∈N
(zk

l − 〈ψl , ψ j 〉zk
j )k .
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This yields
∑

k∈N
żk

jk = κ

N

∑

l∈[N ]

∑

k∈N
(zk

l − 〈ψl , ψ j 〉zk
l )k .

Since {k} is an orthonormal basis, one has

dzk
j

dt
= κ

N

∑

l∈[N ]
(zk

l − 〈ψl , ψ j 〉zk
l ), l ∈ [N ], k ∈ N. (2.13)

For each j ∈ [N ], we set an infinite complex vector z j in (�∞ ∩ �2)(Z+) as follows:

z j = (z1j , z2j , . . .).

Now, we use the definition of 〈·, ·〉, (2.10) and (2.13) to get

〈ψl , ψ j 〉 =
∑

k,m∈N

〈

zk
l k, zm

j m

〉

=
∑

k,m∈N
zk

l zm
j

〈

k,m

〉

=
∑

k∈N
zk

l zk
j = 〈zl , z j 〉. (2.14)

Finally, we combine (2.13) and (2.14) to derive the complex Lohe sphere model on (�2 ∩
�∞)(Z+):

ż j = κ

N

∑

l∈[N ]
(zl − 〈zl , z j 〉z j ), j ∈ [N ].

In the following three sections, we study emergent dynamics of the model (1.3) under the
following cases:

⎧

⎪
⎨

⎪
⎩

Case A: �T
i = −�i , ∀ i ∈ N, zini ∈ R

d ,

Case B.1: �†
i = −�i , ∀ i ∈ N, zini ∈ C

d , κi j > 0,

Case B.2: �†
i = −�i , ∀ i ∈ N, zini ∈ C

d , κi j = κ j > 0.

3 The Infinite Swarm SphereModel

In this section, we provide a sufficient framework on the emergent dynamics of an infinite set
of LHS particles on the unit Euclidean sphere Sd−1, and present a practical synchronization.

3.1 Preparatory Lemmas

In this subsection, we study an infinite analogue of the swarm sphere model on the Euclidean
unit sphere Sd−1. Let � = {�i }i∈N be a sequence of d × d anti-symmetric real matrices:

�T
i = −�i , i ∈ N,

and we consider the LHS model (1.3) defined on the following real Banach space:

(�∞,2, ‖ · ‖∞,2) :=
{

Y = {yi }i∈N : yi ∈ R
d , ‖Y‖∞,2 := sup

i∈N
‖yi‖ < ∞

}

.

Thanks to Corollary 2.2 and Lemma 2.1, we can see that Sd−1 is positively invariant along
(1.3). If we set

zi = xi ∈ R
d , ∀ i ∈ N,
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then the system (1.3) is reduced to the infinite analogue of the swarm sphere model:
⎧

⎪
⎨

⎪
⎩

ẋi = �i xi +
∑

j∈N
κi j

(

x j − 〈

x j , xi
〉

xi
)

, t > 0,

xi (0) = x ini ∈ R
d , ∀i ∈ N, X in := {

x ini
}

i∈N ∈ �∞,2,
∥

∥x ini
∥

∥ = 1,
(3.1)

with structural conditions:

κ = (

κi j
)

i j∈N ∈ �
∞,1
+ , D (�) < ∞, ‖�‖∞,op < ∞. (3.2)

We call this model as the infinite swarm sphere model(ISS). A global well-posedness of the
ISS model can be reduced from the well-posedness of LHS model as a special case.

Lemma 3.1 Let X (t) = {xi (t)}i∈N be a global solution to (3.1)–(3.2). Then one has the
following estimates.

(i)
∥

∥

∥

dxi
dt

∥

∥

∥ ≤ ‖�‖∞,op + 2 ‖κ‖∞,1,
∥

∥
d
dt

(

xi − x j
)∥

∥ ≤ 2 ‖�‖∞,op + 4 ‖κ‖∞,1.

(ii) d
dt

∥

∥xi − x j
∥

∥
2 ≤ 8 ‖�‖∞,op + 16 ‖κ‖∞,1,

∣

∣
d
dt

∥

∥xi − x j
∥

∥

∣

∣ ≤ 2 ‖�‖∞,op + 4 ‖κ‖∞,1.

Proof Since the proof is similar to Lemma 2.2. we omit their proofs. �
Recall that the finite swarm sphere model and the finite LHS model exhibit the synchronous
behaviors on high-dimensional manifolds [24], and the following diameter functional

D (X (t)) := sup
i, j∈N

∥

∥xi (t) − x j (t)
∥

∥ (3.3)

plays a key role in the analysis of the emergent dynamics for (3.1). Let κ = (κmn)m,n∈N be
a given coupling matrix. Then, we denote the i-th row {κin}n∈N by κ i , i.e.,

{κin} := {κi1, κi2, . . .}.

Next we briefly discuss a sufficient framework (FA) for the emergent dynamics of the ISS
model:

• (FA1): There exists a positive constant δ ∈ (0, 1) such that

D
(

X in) <
√
2 − 2δ or inf

i, j∈N

〈

x ini , x inj

〉

> δ.

• (FA2): For a given coupling matrix κ = (κmn)m,n∈N, denote the i-th row {κin}n∈N by
κ i . Then there exists rκ ∈ (0, 1/6) such that

∥

∥κ i − κ j
∥

∥

1 ≤ rκ

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

, ∀ i, j ∈ N. (3.4)

• (FA3): Positive constants δ and rκ satisfy

δ > 3rκ .

• (FA4): The natural frequency � satisfies

D (�) < ‖κ‖−∞,1 (δ − 3rκ )D(X in).
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Remark 3.1 Before we move on to technical lemmas, we briefly comment on the above
conditions on initial data and system parameters one by one.

1. Note that
‖xi − x j‖2 ≤ 2(‖xi‖2 + ‖x j‖2) = 4, i.e., D(X ) ≤ 2.

Therefore, the condition on initial state diameter in (FA1) is a certainly restriction on
initial data.

2. If we choose all rows of infinite couplingmatrix to be close in �1-norm, then the condition
(3.4) can be achieved.

3. The condition in (FA4) denotes that either the size of natural frequency set is sufficiently
small or the coupling strengths are large enough.

4. It follows that (FA1) - (FA4) gives

D∗ := D(�)

‖κ‖−∞,1 (δ − 3rκ )
< D(X in) <

√
2 − 2δ.

Now, under the above framework (FA), we derive a differential inequality for
∥

∥xi − x j
∥

∥

and D(X ) in (3.3).

Lemma 3.2 Suppose the framework (FA1) − (FA4) holds, and let X = {xi }i∈N be a global
solution to (3.1). Then for i, j ∈ N, the relative distance ‖xi − x j‖ near t = 0 satisfies

d

dt

∣

∣

∣

∣

t=0+

∥

∥xi − x j
∥

∥ ≤ D (�) + 1

2

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)
(

− δ

∥

∥

∥xin
i − xin

j

∥

∥

∥ + 3rκD(X in)
)

.

Proof We write X in = {

x ini
}

i∈N by X = {xi }i∈N only in this proof. We use (3.1) to get

1

2

d

dt

〈

xi − x j , xi − x j
〉 = 〈

xi − x j ,�i xi − � j x j
〉

+
∑

l∈N

〈

xi − x j , κil (xl − 〈xl , xi 〉 xi ) − κ jl
(

xl − 〈

xl , x j
〉

x j
)〉

=: I21 + I22.

Below, we estimate I21 and I22 separately.

• Step A (Bound of I21): For I21, we again use the skew-symmetry of �i to obtain

I21 = 〈

xi − x j ,�i xi − �i x j
〉 + 〈

xi − x j ,�i x j − � j x j
〉

= 〈

xi − x j ,�i
(

xi − x j
)〉 + 〈

xi − x j ,
(

�i − � j
)

x j
〉

= 0 + 〈

xi − x j ,
(

�i − � j
)

x j
〉 ≤ D (�)

∥

∥xi − x j
∥

∥ .

• Step B (Bound of I22): We divide I22 into two terms. Define I221 and I222 by

I22 =
∑

l∈N

〈

xi − x j , κil (xl − 〈xl , xi 〉 xi ) − κ jl
(

xl − 〈

xl , x j
〉

x j
)〉

=
∑

l∈N

〈

xi − x j , κil (xl − 〈xl , xi 〉 xi )
〉 −

∑

l∈N

〈

xi − x j , κ jl
(

xl − 〈

xl , x j
〉

x j
)〉

= −
∑

l∈N

〈

x j , κil (xl − 〈xl , xi 〉 xi )
〉 −

∑

l∈N

〈

xi , κ jl
(

xl − 〈

xl , x j
〉

x j
)〉
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= −
∑

l∈N

[

κil
〈

x j , xl − 〈xl , xi 〉 xi
〉 + κ jl

〈

xi , xl − 〈

xl , x j
〉

x j
〉]

= −1

2

∑

l∈N

(

κil + κ jl
) [〈

xi , xl − 〈

xl , x j
〉

x j
〉 + 〈

x j , xl − 〈xl , xi 〉 xi
〉]

− 1

2

∑

l∈N

(

κil − κ jl
) [〈

x j , xl − 〈xl , xi 〉 xi
〉 − 〈

xi , xl − 〈

xl , x j
〉

x j
〉]

=: I221 + I222.

� Step B.1 (Bound of I221): The term I221 can be estimated as

I221 = −1

2

∑

l∈N

(

κil + κ jl
)

[

〈

xi , xl − 〈

xl , x j
〉

x j
〉 + 〈

x j , xl − 〈xl , xi 〉 xi
〉

]

= −1

2

∑

l∈N

(

κil + κ jl
) [〈xi , xl〉 − 〈

xl , x j
〉 〈

xi , x j
〉 + 〈

x j , xl
〉 − 〈xl , xi 〉

〈

x j , xi
〉]

= −1

2

∑

l∈N

(

κil + κ jl
) (〈xl , xi 〉 + 〈

xl , x j
〉) (

1 − 〈

xi , x j
〉)

= −
∑

l∈N

(

κil + κ jl
) (

1 − 〈

xi , x j
〉)

+ 1

2

∑

l∈N

(

κil + κ jl
) (

2 − 〈xl , xi 〉 − 〈

xl , x j
〉) (

1 − 〈

xi , x j
〉)

≤ − (‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

∥

∥xi − x j
∥

∥
2

2
+ 1

2

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

D (X )2 ·
∥

∥xi − x j
∥

∥
2

2
.

� Step B.2 (Bound of I222): For the summand of I222, one has

∣

∣

〈

x j , xl − 〈xl , xi 〉 xi
〉 − 〈

xi , xl − 〈

xl , x j
〉

x j
〉∣

∣

= ∣

∣

〈

xi − x j , xl − 〈

xl , x j
〉

x j
〉 − 〈

x j − xi , xl − 〈xl , xi 〉 xi
〉∣

∣

≤ ∣

∣

〈

xi − x j , xl − x j
〉 + 〈

xi − x j , xl − xi
〉∣

∣

+ ∣

∣

(

1 − 〈

xl , x j
〉) 〈

xi − x j , x j
〉 − (1 − 〈xl , xi 〉)

〈

xi − x j , x j
〉∣

∣

≤ 2D(X )
∥

∥xi − x j
∥

∥ + ∣

∣

〈

xl , xi − x j
〉 〈

xi − x j , x j
〉∣

∣

≤ 2D(X )
∥

∥xi − x j
∥

∥ + 1

2

∥

∥xi − x j
∥

∥
3
.

This gives

I222 = −1

2

∑

l∈N

(

κil − κ jl
)

[

〈

xi , xl − 〈

xl , x j
〉

x j
〉 − 〈

x j , xl − 〈xl , xi 〉 xi
〉

]

≤
∑

l∈N

∣

∣κil − κ jl
∣

∣

[

D(X )
∥

∥xi − x j
∥

∥ + 1

4

∥

∥xi − x j
∥

∥
3
]

≤ rκ

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

[

D(X )
∥

∥xi − x j
∥

∥ + 1

4

∥

∥xi − x j
∥

∥
3
]

.
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• Step C: We combine estimate for I21, I221 and I222 in Step A and Step B to get

1

2

d

dt

∥

∥xi − x j
∥

∥
2 ≤ D (�)

∥

∥xi − x j
∥

∥ − (‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

∥

∥xi − x j
∥

∥
2

2

+ 1

2

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

D (X )2 ·
∥

∥xi − x j
∥

∥
2

2

+ rκ

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

[

D(X )
∥

∥xi − x j
∥

∥ + 1

4

∥

∥xi − x j
∥

∥
3
]

.

With (FA1), this implies

d

dt

∥

∥xi − x j
∥

∥

≤ D (�) − (‖κ i ‖1 + ∥

∥κ j
∥

∥

1

)

∥

∥xi − x j
∥

∥

2

+ 1

2

(‖κ i ‖1 + ∥

∥κ j
∥

∥

1

)D (X )2 ·
∥

∥xi − x j
∥

∥

2
+ rκ

(‖κ i ‖1 + ∥

∥κ j
∥

∥

1

)

[

D(X ) + 1

4

∥

∥xi − x j
∥

∥
2
]

≤ D (�) − (‖κ i ‖1 + ∥

∥κ j
∥

∥

1

)

∥

∥xi − x j
∥

∥

2
+ 1 − δ

2

(‖κ i ‖1 + ∥

∥κ j
∥

∥

1

) ∥

∥xi − x j
∥

∥

+ 3

2
rκ

(‖κ i ‖1 + ∥

∥κ j
∥

∥

1

)D(X ).

�

Thanks to Lemma 3.2, we can study the local behavior of D(X (t)) in the following lemma.

Lemma 3.3 Suppose that we can replace X in in framework (FA1) - (FA4) with X (t0) for
t0 ≥ 0, and let X = {xi }i∈N be a global solution to (3.1). Then there exists a positive constant
tδ such that

D∗ = D(�)

‖κ‖−∞,1 (δ − 3rκ )
≤ D(X (t)) ≤√

2 − 2δ, ∀ t ∈ [t0, t0 + tδ]. (3.5)

Proof We use Lemma 3.1 to get
∥

∥xi (t) − x j (t)
∥

∥ ≤ ∥

∥xi (t0) − x j (t0)
∥

∥ + 2L1 (t − t0) , ∀i, j ∈ N,

for
L1 := ‖�‖∞,op + 2 ‖κ‖∞,1 .

This yields the Lipschitz continuity of the following functions near t0:

t �→ ∥

∥xi (t) − x j (t)
∥

∥ and t �→ D(X (t)).

Then we define tδ by

tδ := 1

2L1
min

{

D(X in) − D(�)

‖κ‖−∞,1 (δ − 3rκ )
,
√
2 − 2δ − D(X in)

}

(3.6)

so that the relation (3.5) holds (Fig. 1). �
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Fig. 1 Schematic diagram for tδ

3.2 Emergence of the Quasi-Steady State

In this subsection, we consider the following setting:

�i ≡ 0, i ∈ N and ‖κ‖−∞,1 = 0.

Under the above setting, we study the emergence of a “quasi-steady state”, which is a non-
constant state with a fixed diameter over time. Similar to authors’ recent work [22] for the
infinite Kuramoto model, we can observe a distinguished phenomenon compared to finite-
dimensional particle models. Furthermore, it justifies that the condition

‖κ‖−∞,1 > 0

in Sect. 1 is necessary to guarantee exponential synchronization for a homogeneous ensemble.
By the continuity of t �→ D(X (t), we can see that the set

S := {

t ∈ [0,∞) : D(X (t)) ≤ D(X in)
}

(3.7)

is relatively closed subset in R+. Since the set S contains 0, it is nonempty. Furthermore, in
the following lemma, we show that S is in fact relatively open.

Lemma 3.4 Suppose that the framework (FA1) - (FA4) holds, and D(�) = 0, and let
X = {xi }i∈N be a global solution to (3.1). Then there exists two positive constant t1 such that

D(X (t)) ≤ D(X in), t ∈ [0, t1).

Proof By Lemma 3.2, if we can replace X in in framework (FA1) - (FA4) with X (t0) for
t0 ≥ 0, we have

d

dt

∣

∣

∣

∣

t=t0

∥

∥xi (t) − x j (t)
∥

∥ ≤ 1

2

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

) (−δ
∥

∥xi (t0) − x j (t0)
∥

∥ + 3rκD(X (t0))
)

.

(3.8)
By (FA1), there exists ε1 > 0 such that

D(X in) ≤ √
2 − 2δ − ε1.

Hence by Lemma 3.1,

D(X (t)) <
√
2 − 2δ, 0 ≤ t <

ε1

4 ‖κ‖∞,1
,
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and (3.8) holds for t ∈
[

0, ε1
4‖κ‖∞,1

)

. Furthermore, we can see that

d

dt

∣

∣

∣

∣

t=t0

∥

∥xi (t) − x j (t)
∥

∥ < 0

⇐⇒ −δ
∥

∥xi (t0) − x j (t0)
∥

∥ + 3rκD(X (t0)) < 0

⇐⇒ ∥

∥xi (t0) − x j (t0)
∥

∥ >
3rκ

δ
D(X (t0)).

(3.9)

By using two constants t1 and ε defined by

t1 :=
(

4 ‖κ‖∞,1

(

2 + 3rκ

δ

))−1 (

1 − 3rκ

δ

)

D(X in),

ε := 4 ‖κ‖∞,1 t1 =
(

2 + 3rκ

δ

)−1 (

1 − 3rκ

δ

)

D(X in),

we can show that for each (i, j) ∈ N × N,
∥

∥xi (t) − x j (t)
∥

∥ ≤ D(X in), t ∈ [0, t1).

• Case A: Let (i, j) ∈ N × N be the pair of indexes such that

D(X in) − ε ≤
∥

∥

∥x ini − x inj

∥

∥

∥ ,

By Lemma 2.2, we have

D(X in) − 4 ‖κ‖∞,1 t ≤ D(X (t)) ≤ D(X in) + 4 ‖κ‖∞,1 t . (3.10)

and
D(X in) − ε − 4 ‖κ‖∞,1 t ≤ ∥

∥xi (t) − x j (t)
∥

∥ ≤ D(X in) + 4 ‖κ‖∞,1 t, (3.11)

From (3.10), we also have

3rκ

δ
D(X (t)) ≤ 3rκ

δ
D(X in) + 12rκ

δ
‖κ‖∞,1 t . (3.12)

On the other hand, we can observe that the following relation

3rκ

δ
D(X in) + 12rκ

δ
‖κ‖∞,1 t ≤ D(X in) − ε − 4 ‖κ‖∞,1 t

⇐⇒ 4 ‖κ‖∞,1

(

1 + 3rκ

δ

)

t ≤
(

1 − 3rκ

δ

)

D(X in) − ε

holds for t ≤ t1. Hence we can combine (3.11) and (3.12) to conclude that

3rκ

δ
D(X (t)) ≤ ∥

∥xi (t) − x j (t)
∥

∥ , t ∈ [0, t1).

This and (3.9) imply
d

dt

∥

∥xi (t) − x j (t)
∥

∥ < 0, t ∈ [0, t1).

• Case B: Let (i, j) ∈ N × N be the pair of indexes such that

D(X in) − ε >

∥

∥

∥x ini − x inj

∥

∥

∥ .
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In this case, Lemma 2.2 implies that
∥

∥xi (t) − x j (t)
∥

∥ ≤
∥

∥

∥x ini − x inj

∥

∥

∥ − ε + 4 ‖κ‖∞,1 t ≤
∥

∥

∥x ini − x inj

∥

∥

∥ , t ∈ [0, t1).

�
Remark 3.2 Thanks to the result of Lemma 3.4, the set S in (3.7) is open, and we can prove
that the diameter D(X (t)) is globally non-increasing.

Proposition 3.1 Suppose that the framework (FA1) - (FA4) holds, and D(�) = 0, and let
X = {xi }i∈N be a global solution to (3.1). Then we have

D(X (t)) ≤ D(X in), t ∈ [0, t1), ∀ t ∈ [0,∞).

Proof Thanks to Lemma 3.5 and continuity of the map t → D(X (t)), the set S in (3.7) is a
nonempty relatively open and closed subset of R+. Hence, we have

S = [0,∞).

�
Finally, we are ready to show the existence of quasi-steady state. More precisely, for some

well-prepared initial data, we have a non-constant state with a fixed diameter.

Proposition 3.2 Suppose that the framework (FA1) - (FA4) holds, and D(�) = 0, and let
X = {xi }i∈N be a global solution to (3.1). If there exists two non-overlapping increasing
sequence {in}n∈N and { jn}n∈N of N such that

lim
n→∞

∥

∥κ in

∥

∥

1 = 0, lim
n→∞

∥

∥κ jn

∥

∥

1 = 0, lim
n→∞

∥

∥

∥xin
in

− xin
jn

∥

∥

∥ = D(X in).

Then
D(X (t)) = D(X in), t ≥ 0.

Proof For each i, j ∈ N, we use
∣

∣

∣

∣

d

dt

∥

∥xi (t) − x j (t)
∥

∥

∣

∣

∣

∣
=
∣

∣

∣

∣

d

dt

√

∥

∥xi (t) − x j (t)
∥

∥
2
∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

2
〈

xi (t) − x j (t), ẋi (t) − ẋ j (t)
〉

2
√

∥

∥xi (t) − x j (t)
∥

∥
2

∣

∣

∣

∣

∣

∣

≤ ∥

∥ẋi (t) − ẋ j (t)
∥

∥

and
∥

∥ẋi (t) − ẋ j (t)
∥

∥ ≤ ‖ẋi (t)‖ + ∥

∥ẋ j (t)
∥

∥ ≤ 2 ‖κ i‖1 + 2
∥

∥κ j
∥

∥

1

to conclude that ∣

∣

∣

∣

d

dt

∥

∥xi (t) − x j (t)
∥

∥

∣

∣

∣

∣
≤ 2 ‖κ i‖1 + 2

∥

∥κ j
∥

∥

1 .

Hence, for each t > 0, we have
∥

∥xin (t) − x jn (t)
∥

∥ ≥
∥

∥

∥x inin
− x injn

∥

∥

∥ − (

2
∥

∥κ in

∥

∥

1 + 2
∥

∥κ jn

∥

∥

1

)

t .

Now, we take the limit n → ∞ to get

D(X (t)) ≥ lim
n→∞

∥

∥xin (t) − x jn (t)
∥

∥ ≥ D(X in).
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Fig. 2 Upper bound of ‖xi − x j ‖ near D(X (t0))

Fig. 3 Upper bound of ‖xi − x j ‖ far from D(X (t0))

By Proposition 3.1, we have

D(X (t)) = D(X in), t ≥ 0.

�

3.3 Local Behavior of the Relative Distances

In this subsection, we study the local behavior of the relative distances in the time interval
near t = t0 appearing in the previous subsection (see Lemma 3.3.). To set up the stage, we
first introduce an auxiliary function ε(t) to be used in the sequel (see (3.16) for motivation):

ε(t) := 1

2δ

(

(δ − 3rκ )D(X (t)) − D (�)

‖κ‖−∞,1

)

> 0. (3.13)

Then for each t ∈ [t0, t0 + tδ], the positivity of ε(t1) is guaranteed by (3.5). With this ε(t0),
we can also set s0 as follows:

s0 := min

{

tδ,
ε(t0)

4L1
,

1

2δ ‖κ‖−∞,1
,

δε(t0)

2(δ − 3rκ )L1

}

. (3.14)

In what follows, we find that a local upper bound of ‖xi (t) − x j (t)‖ depends on whether the
‖xi (t) − x j (t)‖ is close or far from D(X (t)) for t in the time interval [t0, t0 + s0] (see Figs.
2 and 3).

More precisely, we claim the following two assertions in Proposition 3.3:

∗ If the distance ‖xi (t) − x j (t)‖ is close toD(X (t)) for t ∈ [t0, t0 + s0], it is in decreasing
mode for t ∈ [t0, t0 + s0].
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∗ If the distance ‖xi (t) − x j (t)‖ is far away from D(X (t)) for t ∈ [t0, t0 + s0], it lies in
some Lipschitz cone for t ∈ [t0, t0 + s0].

Lemma 3.5 Suppose that we can replace X in in framework (FA1) - (FA4) with X (t0) for
t0 ≥ 0, and let X = {xi }i∈N be a global solution to (3.1). Then, the following assertion holds.
If there exists a time interval [t1, t2] ⊂ [t0, t0 + s0] such that

D(X (t)) − ε(t) <
∥

∥xi (t) − x j (t)
∥

∥ , t ∈ [t1, t2], (3.15)

then we have

∥

∥xi (t) − x j (t)
∥

∥ ≤ ∥

∥xi (t1) − x j (t1)
∥

∥ − δ ‖κ‖−∞,1

∫ t

t1
ε(s)ds, t ∈ [t1, t2].

Proof By Lemma 3.2, (3.15) and (3.13), for t ∈ [t1, t2], we have
d

dt

∥

∥xi (t) − x j (t)
∥

∥

≤ D (�) + 1

2

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

) (−δ
∥

∥xi (t) − x j (t)
∥

∥ + 3rκD(X (t))
)

≤ D (�) + 1

2

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

(− (δ − 3rκ )D(X (t)) + δε(t))

≤ 1

2

(

D (�) − 1

2

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

(δ − 3rκ )D(X (t))

)

≤ 1

2

(

D (�) − ‖κ‖−∞,1 (δ − 3rκ )D(X (t))
)

= −δ ‖κ‖−∞,1 ε(t).

(3.16)

This implies

∥

∥xi (t) − x j (t)
∥

∥ ≤ ∥

∥xi (t1) − x j (t1)
∥

∥ − δ ‖κ‖−∞,1

∫ t

t1
ε(s)ds, t1 ≤ t ≤ t2.

�
In the next lemma, we show that the diameter is nonincreasing in the time interval [t0, t0+s0].
Lemma 3.6 Suppose that we can replace X in in framework (FA1) - (FA4) with X (t0) for
t0 ≥ 0, and let X = {xi }i∈N be a global solution to (3.1). Then there exist positive constants
ε(t0), tδ and L1 such that D(X (t)) is nonincreasing for t ∈ [t0, t0 + s0].
Proof Let Ci j (t) be the condition depending on X (t) = {xi (t)}i∈N:

Ci j (t) holds ⇐⇒ D(X (t)) − ε(t) <
∥

∥xi (t) − x j (t)
∥

∥ .

For each (i, j) ∈ N × N, there are three cases:
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

Case A: Ci j (t) holds for all t ∈ [t0, t0 + s0].
Case B: Ci j (t) holds for t = t0, but there exists a t1 ∈ [t0, t0 + s0] such that

Ci j (t1) not holds.

Case C: Ci j (t0) does not hold.

(3.17)

In what follows, we show that
∥

∥xi (t) − x j (t)
∥

∥ is decreasing for Case A. On the other hands,

we show that
∥

∥xi (t) − x j (t)
∥

∥ cannot exceedD(X (t0))− ε(t0)
2 for Case B and Case C. Finally,
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by combiningCaseA -CaseC,we conclude thatD(X (t)) is nonincreasing for t ∈ [t0, t0+s0].
• Case A: Note that by (3.15), we have

d

dt

∥

∥xi (t) − x j (t)
∥

∥ ≤ −δ ‖κ‖−∞,1 ε(t) < 0, t ∈ [t0, t0 + s0]. (3.18)

This implies that
∥

∥xi (t) − x j (t)
∥

∥ is decreasing for [t0, t0 + s0].
• Case B: We define the first entrance time ti, j such that

ti, j := inf
{

t ∈ [t0, t0 + s0] : D(X (t)) − ε(t) ≥ ∥

∥xi (t) − x j (t)
∥

∥

}

. (3.19)

Then we use Lemma 3.1 and (3.19) to get
∥

∥xi (t) − x j (t)
∥

∥ ≤ ∥

∥xi (ti j ) − x j (ti j )
∥

∥ + 2L1(t − ti j )

≤ D(X (ti j )) − ε(ti j ) + 2L1(t − ti j )

≤ 1

2δ
(δ + 3rκ )D(X (ti j )) + 1

2δ

D (�)

‖κ‖−∞,1
+ 2L1(t − ti j ).

(3.20)

Next, we claim that the right-hand side of (3.20) is smaller than D(X (t0)). This can be seen
as follows:

D(X (t0)) − 1

2δ
(δ + 3rκ )D(X (ti j )) − 1

2δ

D (�)

‖κ‖−∞,1
− 2L1(t − ti j )

= δ + 3rκ

2δ

(D(X (t0)) − D(X (ti j ))
) + δ − 3rκ

2δ
D(X (t0)) − 1

2δ

D (�)

‖κ‖−∞,1
− 2L1(t − ti j )

≥ δ + 3rκ

2δ
· 2L1

(

t0 − ti j
) + ε(t0) + 2L1(ti j − t) ≥ ε(t0) − 2L1s0 ≥ ε(t0)

2
,

where we used Lemma 3.1 in the first inequality.

• Case C: For (i, j) such that

D(X (t0)) − ε(t0) ≥ ∥

∥xi (t0) − x j (t0)
∥

∥ ,

we use Lemma 3.1, the above inequality and (3.14) to estimate

∥

∥xi (t) − x j (t)
∥

∥ ≤ D(X (t0)) − ε(t0) + 2L1(t − t0) ≤ D(X (t0)) − ε(t0)

2
.

Nowwe combine Case A - Case C to derive the local non-increasing property of the diameter.
To see this, let t ∈ (t0, t0+s0] andP be the set of pair (i, j) satisfyingCi j (t) for t ∈ [t0, t0+s0].
Then we use (3.18) to see

sup
(i, j)∈P

∥

∥xi (t) − x j (t)
∥

∥ ≤ sup
(i, j)∈P

[

∥

∥xi (t0) − x j (t0)
∥

∥ +
∫ t

t0

d

ds

∥

∥xi (s) − x j (t0)
∥

∥ ds

]

≤ sup
(i, j)∈P

[

∥

∥xi (t0) − x j (t0)
∥

∥ +
∫ t

t0
−δ ‖κ‖−∞,1 ε(s)ds

]

≤ sup
(i, j)∈P

∥

∥xi (t0) − x j (t0)
∥

∥ ≤ D(t0).

(3.21)

On the other hand, for (i, j) ∈ Pc, Case B and Case C imply

sup
(i, j)∈Pc

∥

∥xi (t) − x j (t)
∥

∥ ≤ D(X (t0)) − ε0

2
. (3.22)
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By (3.21) and (3.22), we have

t0 ≤ t ≤ t0 + s0 �⇒ D(X (t0)) ≥ D(X (t)).

Furthermore, we perform similar procedure as above to see

t0 ≤ t ≤ s ≤ t0 + s0 �⇒ D(X (t)) ≥ D(X (s)).

�

Now we are ready to quantify a decrement of D(X (t)) in the following proposition.

Proposition 3.3 Suppose that we can replace X in in framework (FA1) - (FA4) with X (t0)
for t0 ≥ 0, and let X = {xi }i∈N be a global solution to (3.1). Then we have

D(X (t)) ≤ D(X (t0)) − δ

2
‖κ‖−∞,1 (t − t0) ε(t0), t ∈ [t0, t0 + s0].

Proof Below, we use the same classification in (3.17) in Lemma 3.6.

For the pairs in Case B or Case C, we have

∥

∥xi (t) − x j (t)
∥

∥ ≤ D(X (t0)) − ε(t0)

2
, t ∈ [t0, t0 + s0]. (3.23)

On the other hand, for the pairs in Case A, we have

∥

∥xi (t) − x j (t)
∥

∥ ≤ D(X (t0)) − δ ‖κ‖−∞,1

∫ t

t0
ε(s)ds, t ∈ [t0, t0 + s0]. (3.24)

By the definition of ε(t) in (3.13), ε(t) is non-increasing for t ∈ [t0, t0 + s0], since ε(t) is a
linear function of D(X (t)) and D(X (t)) is non-increasing. Hence we have

δ ‖κ‖−∞,1

∫ t

t0
ε(s)ds ≤ δ ‖κ‖−∞,1 (t − t0)ε(t0) ≤ δ ‖κ‖−∞,1 ε(t0)s0 ≤ ε(t0)

2
, (3.25)

where we used the definition of s0 in the last inequality [see (3.14)].

We combine (3.23)–(3.25) to have

D(X (t)) ≤ D(X (t0)) − δ ‖κ‖−∞,1

∫ t

t0
ε(s)ds, t ∈ [t0, t0 + s0]. (3.26)

Meanwhile, by nonincreasing property of ε(t), we have
∫ t

t0
ε(s)ds ≥ (t − t0)ε(t). (3.27)

Now, we use the defining relation of ε(t) in (3.13) and the Lipschitz constant of D(X (t)) is
2L1 to find that

Lipschitz constant of ε(t)

= δ − 3rκ

2δ
· (Lipschitz constant of D(X (t))) = δ − 3rκ

2δ
· 2L1 = (δ − 3rκ )L1

δ
.

This implies

ε(t) ≥ ε(t0) − δ − 3rκ

2δ
· 2L1(t − t0) ≥ ε(t0) − δ − 3rκ

δ
· L1 · s0 ≥ 1

2
ε(t0). (3.28)
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Finally, we combine (3.26), (3.27) and (3.28) to get the desired estimate:

D(X (t)) ≤ D(X (t0)) − δ ‖κ‖−∞,1

∫ t

t0
ε(s)ds ≤ D(X (t0)) − δ ‖κ‖−∞,1

2
ε(t0)(t − t0).

�

3.4 Practical Synchronization

Now, we are ready to show “practical synchronization” of our model (3.1). Our result means
that each oscillator xi can be confinedwithin a small region ofSd−1 by increasing the coupling
strength ‖κ‖−∞,1 in this subsection.

Theorem 3.1 Suppose that the framework (FA1)-(FA4) holds, and let X = {xi }i∈N be a
global solution to (3.1). Then D (X ) satisfies

lim sup
t→∞

D (X (t)) ≤ D (�)

(δ − 3rκ ) ‖κ‖−∞,1
.

Proof Note that our framework (FA4) admits the existence of ε1 � 1 such that

(δ − 3rκ )D(X in) − D (�)

‖κ‖−∞,1
> ε1.

For such ε1 > 0, we define

Tε1 :=
{

τ ∈ [0,∞) : (δ − 3rκ )D(X (t)) − D (�)

‖κ‖−∞,1
> ε1, ∀ t ∈ [0, τ )

}

,

and

s̃(ε1) := min

{

tδ,
ε1

4L1
,

1

2δ ‖κ‖−∞,1
,

δε1

2(δ − 3rκ )L1

}

.

Here, the definition of s̃ is motivated by that of s0 in (3.14). Then we have

0 ∈ Tε1 and s̃(ε(t0)) = s0.

Now, we claim that
inf T c

ε1
< ∞. (3.29)

Proof of (3.29): By Lemma 3.6, we have

{t0, t0 + s̃(ε1)} ⊂ Tε1

�⇒ D(X (t0 + s̃(ε1))) ≤ D(X (t)) ≤ D(X (t0)), t ∈ [t0, t0 + s̃(ε1)]
�⇒ [

t0, t0 + s̃(ε1)
] ⊂ Tε1 .

If we have {t0 + n · s̃(ε1)}n∈N ⊂ Tε1 , then Tε1 = [t0,∞) and

D(X (t0 + (n + 1) · s̃(ε1))) ≤ D(X (t0 + n · s̃(ε1))) − 1

4
‖κ‖−∞,1 s̃(ε1) · ε1, n ≥ 1.

This yields that

D(X (t0 + n · s̃(ε1))) ≤ D(X (t0)) −
[

1

4
‖κ‖−∞,1s̃(ε1) · ε1

]

· n → −∞ as n → ∞.
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This contradicts to D(X (t)) > 0. Thus, we have (3.29). Now, we set

t∞ := inf T c
ε1

< ∞.

Note that t∞ is the first departure time of the set Tε1 , and it should satisfy

D(X (t∞)) = D (�)

(δ − 3rκ ) ‖κ‖−∞,1
+ ε1

δ − 3rκ

.

If there exists t1 ∈ (t∞,∞) such that t1 ∈ Tε1 , then by Lemma 3.3, the diameter func-
tion D(X (t)) decreases in the time interval [t∞, t∞ + s̃(ε1)]. Hence the intermediate value
theorem provides the existence of t∞,1 such that

D(X (t∞)) = D(X (t∞,1)), t∞,1 ∈ [t∞ + s̃(ε1), t1].
We can continue this process to construct the sequence

{

t∞,k
}

k∈N such that

D(X (t∞)) = D(X (t∞,k)), t∞,k+1 ∈ [t∞,k + s̃(ε1), t1], k ∈ N.

This contradicts to the finiteness of t1. Therefore such t1 does not exist and

lim sup
t→∞

D(X (t)) ≤ D (�)

(δ − 3rκ ) ‖κ‖−∞,1
+ ε1

δ − 3rκ

for arbitrarily small ε1. Finally, we take ε1 → 0 to find the desired result. �
Remark 3.3 Note that our practical synchronization result can cover the case

D(X in) ≤ D∗.

If X (t) satisfies

D(X (t)) ≤ D∗ = O(1)

‖κ‖−∞,1
, t ≥ 0,

then the oscillators {xi }i∈N are already confined in a small arc with diameter D∗.

On the other hand, if there exists some t0 > 0 such that

D(X (t0)) > D∗,

then by the Lipschitz continuity of D(X (t)), we can assume the existence of t∗ such that

t∗ := inf
{

t > 0 D(X (t0)) < D(X (t)) <
√
2 − 2δ

}

.

Then we have D(X (t∗)) = D(X (t0)) and our Theorem 3.1 can control X (t) for t > t∗.

As a corollary, we have exponential synchronization for a homogeneous ISS ensemble.

Corollary 3.1 Suppose that the framework (FA1) - (FA4) holds, and D (�) = 0, and let
X = {xi }i∈N be a global solution to (3.1). Then, one has asymptotic zero convergence:

lim
t→∞D (X (t)) = 0.

Proof We define two function ε, s : R≥0 → R by

ε(t) := 1

2δ
(δ − 3rκ )D(X (t))
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s(t) := min

{

D(X (t)),
√
2 − 2δ − D(X (t)),

ε(t)

4L1
,

1

2δ ‖κ‖−∞,1
,

δε(t)

2(δ − 3rκ )L1

}

= min

{

2δ

δ − 3rκ

ε(t),
√
2 − 2δ − δ − 3rκ

2δ
ε(t),

ε(t)

4L1
,

1

2δ ‖κ‖−∞,1
,

δε(t)

2(δ − 3rκ )L1

}

.

For

C1 := min

{

2δ

δ − 3rκ

,
1

4L1
,

δ

2(δ − 3rκ )L1

}

and C2 := 1

2δ ‖κ‖−∞,1
,

we have

s(t) = min

{

C1ε(t), C2,
√
2 − 2δ − 2δ

δ − 3rκ

ε(t)

}

=: min {s̃1(t), s̃2(t), s̃3(t)} .

We can see that s(t) attains s̃2(t) or s̃3(t) implies that the diameter is sufficiently large. More
precisely, one has

s̃1(t) ≤ s̃2(t) ⇐⇒ D(X (t)) ≤ 2δC2

C1(δ − 3rκ )
=: D1,

s̃1(t) ≤ s̃3(t) ⇐⇒ D(X (t)) ≤ √
2 − 2δ ·

(

C1

2δ
(δ − 3rκ ) + 1

)−1

=: D2,

s̃2(t) ≤ s̃3(t) ⇐⇒ D(X (t)) ≤ √
2 − 2δ − C2 =: D3.

(3.30)

This yields

s(t) = s̃2(t) �⇒ D(X (t)) ≥ D1,

s(t) = s̃3(t) �⇒ D(X (t)) ≥ max {D2,D3} .
(3.31)

We divide the remaining proof into two steps. First we claim that the configuration X
shrinks into an arc with diameter min{D1,D2} in finite time if initial diameter is greater than
D1 or max{D2,D3}. Next, we prove exponential decay of the diameter.

• Step A (Decay for large initial diameter): Let {tk}k∈N be a sequence defined by

tk+1 := tk + s(tk), k ≥ 0.

We first claim that assuming

s(tk) = s̃2(tk), k ≥ 0 or s(tk) = s̃3(tk), k ≥ 0, (3.32)

will leads to contradiction.

� Step A.1: Suppose that (3.32)1. By Proposition 3.3, we have

D(X (tk+1)) ≤
(

1 − 1

4
· δ − 3rκ

2δ

)

D(X (tk)), k ≥ 0.

Hence the sequence {D(X (tk))}k∈N should decay exponentially, which contradicts to (3.32)1.

� Step A.2: Suppose that (3.32)2. In this case, we apply Proposition 3.3 to get

D(X (tk+1)) ≤
(

1 − ‖κ‖−∞,1 (δ − 3rκ )

4
·
(√

2 − 2δ − D(tk)
)
)

D(X (tk)), k ≥ 0,

(3.33)
and

D(X (tk+1)) ≤ D(X (tk)), k ≥ 0. (3.34)
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Now we combine (3.33) and (3.34) to conclude

D(X (tk+1)) ≤
(

1 − ‖κ‖−∞,1 (δ − 3rκ )

4
·
(√

2 − 2δ − D(t0)
)
)

D(X (tk)), k ≥ 0,

which gives a similar contradiction to Step A.1.

• Step B (Decay for small initial diameter): Suppose that for some t0 ≥ 0, the state diameter
satisfies

D(X (t0)) ≤ min {D1,D2} ,

where D1 and D2 are defined in (3.30). Then we combine Lemma 3.3 together with (3.13)
to derive the existence of some positive constants C3(κ), C4(κ) such that

D(X (t)) ≤ (1 − C3(t − t0))D(X (t0)), t0 ≤ t ≤ t0 + C4D(X (t0)).

Define a sequence {tk}k∈N by the following recursive relation:

tk+1 := tk + C3D(tk).

Then we have

D(X (tk+1)) ≤ (1 − C3C4D(X (tk)))D(X (tk))

�⇒ 1

D(X (tk+1))
≥ 1

D(X (tk))
+ C3C4

1 − C3C4D(X (tk))
≥ 1

D(X (tk))
+ C3C4.

By induction on k, we have

D(X (tk)) ≤ 1
1

D(X in)
+ k · C3C4

, tk � 1

C3
log k.

This yields the exponential decay of D(X (t)). �

4 The Infinite LHSModel A

In this section, we study the emergent behaviors of the infinite Lohe Hermitian sphere model.
The overall structure of this section is parallel to those given in Sect. 3, but the difference
comes from extra perturbative terms included in the infinite LHS model. Hence, we propose
a different framework (FB) compared to (FA) to control bad terms.

4.1 Preparatory Lemmas

We introduce a new Banach space:

(�
∞,2
C

, ‖ · ‖∞,2) :=
{

Y = {yi }i∈N : yi ∈ C
d , ‖Y‖∞,2 := sup

i∈N
‖yi‖ < ∞

}

.

For each i ∈ N, let zi (t) ∈ C
d be the position of the i-th particle at time t .
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Suppose that Z(t) = {zi (t)}i∈N belongs to �
∞,2
C

. Then the dynamics of Z := {zi }i∈N is
given by the LHS model:

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

żi = �i zi + λ0
∑

j∈N
κi j

(

〈zi , zi 〉 z j − 〈

z j , zi
〉

zi

)

+λ1
∑

j∈N
κi j

(

〈zi , z j 〉 − 〈z j , zi 〉
)

zi , t > 0, ∀ i ∈ N,

zi (0) = zini .

(4.1)

For a homogeneous ensemble, we may set �i ≡ 0. Next, we state the second sufficient
framework (FB) compared with the sufficient framework (FA) for the ISS model:

• (FB0): Nonnegative constants λ0 and λ1 are assumed to be proportional to each other:

λ1 = r1λ0 for 0 ≤ r1 < 1.

• (FB1): There exists a δ ∈ (0, 1) such that

D
(

Z in) <
1 − δ

2
.

• (FB2): Then there exists rκ ∈ (0, 1) such that
∥

∥κ i − κ j
∥

∥

1 ≤ rκ

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

, i, j ∈ N, 0 < ‖κ‖−∞,1 , 4 (rκ + r1) < δ.

(4.2)
• (FB3): The natural frequencies satisfy

D(�) < λ0 ‖κ‖−∞,1 (δ − 4 (rκ + r1))D(Z in).

Note that the framework (FB) seems to be very restricted compared to the framework (FA)

for the ISS model. After we prove Lemma 4.1, we will identify which term in the LHSmodel
prevents synchronization and explain how to deal with these “bad” terms.

Lemma 4.1 Suppose the framework (FB0) - (FB3) holds, and let Z = {zi }i∈N be a global

solution to (4.1). Then
∥

∥

∥zin
i − zin

j

∥

∥

∥ and D
(

Z in
)

satisfy

d

dt

∣

∣

∣

∣

t=0

∥

∥zi − z j
∥

∥ ≤ D (�) − 1

2
λ0

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

) (

1 − 2D
(

Z in))
∥

∥

∥zin
i − zin

j

∥

∥

∥

+ 2λ0
∥

∥κi − κ j
∥

∥

1 D(Z in) + 2λ1
(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

D(Z in).

Proof We write Z in = {

zini
}

i∈N by Z = {zi }i∈N only in this proof. We use (4.1) to get

d

dt

〈

zi − z j , zi − z j
〉

= 〈

zi − z j ,�i zi − � j z j
〉 + λ0

∑

l∈N

〈

zi − z j , κil (zl − 〈zl , zi 〉 zi ) − κ jl
(

zl − 〈

zl , z j
〉

z j
)〉

+ λ1
∑

l∈N

〈

zi − z j , κil (〈zi , zl〉 − 〈zl , zi 〉) zi − κ jl
(〈

z j , zl
〉 − 〈

zl , z j
〉)

z j
〉 + c.c

=: I31 + λ0I32 + λ1I33 + c.c.

Here c.c denotes the complex conjugates of the preceding terms.
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Next, we deal with I31, I32 and I33 with their complex conjugates, respectively.

• Step A (Bound for I31 + c.c): By direct calculation,

I31 + c.c = 〈

zi − z j ,�i zi − �i z j
〉 + 〈

zi − z j ,�i z j − � j z j
〉 + c.c

= 〈

zi − z j ,�i
(

zi − z j
)〉 + 〈

zi − z j ,
(

�i − � j
)

z j
〉 + c.c

= 〈

zi − z j ,�i
(

zi − z j
)〉 + 〈

�i
(

zi − z j
)

, zi − z j
〉

+ 〈

zi − z j ,
(

�i − � j
)

z j
〉 + 〈(

�i − � j
)

z j , zi − z j
〉

= 0 + 2Re
〈

zi − z j ,
(

�i − � j
)

z j
〉

≤ 2D (�)
∥

∥zi − z j
∥

∥ ,

where Re(z) denotes the real part of the complex number z.

• Step B (Bound for I32 + c.c): We divide I32 into two terms by

I32 + c.c =
∑

l∈N

〈

zi − z j , κil (zl − 〈zl , zi 〉 zi ) − κ jl
(

zl − 〈

zl , z j
〉

z j
)〉 + c.c

=
∑

l∈N

[

κil
〈

zi − z j , zl − 〈zl , zi 〉 zi
〉 − κ jl

〈

zi − z j , zl − 〈

zl , z j
〉

z j
〉] + c.c

= 1

2

∑

l∈N

(

κil + κ jl
) [〈

zi − z j , zl − 〈zl , zi 〉 zi
〉 − 〈

zi − z j , zl − 〈

zl , z j
〉

z j
〉]

+ 1

2

∑

l∈N

(

κil − κ jl
) [〈

zi − z j , zl − 〈zl , zi 〉 zi
〉 + 〈

zi − z j , zl − 〈

zl , z j
〉

z j
〉] + c.c

=: I321 + I322 + c.c.

Below, we estimate I321 + c.c and I322 + c.c separately.

� Step B.1 (Bound of I321 + c.c): We rewrite I321 as

I321 = 1

2

∑

l∈N

(

κil + κ jl
) [〈

zi − z j , zl − 〈zl , zi 〉 zi
〉 − 〈

zi − z j , zl − 〈

zl , z j
〉

z j
〉 + c.c

]

.

(4.3)

Then, we can reform the summand in I321 as
〈

zi − z j , zl − 〈zl , zi 〉 zi
〉 − 〈

zi − z j , zl − 〈

zl , z j
〉

z j
〉 + c.c

= 〈

zi − z j ,
〈

zl , z j
〉

z j − 〈zl , zi 〉 zi
〉 + c.c

= 〈

zi − z j ,
〈

zl , z j
〉 (

z j − zi
)〉 + 〈

zi − z j ,
〈

zl , z j
〉

zi − 〈zl , zi 〉 zi
〉 + c.c

= − 〈

zl , z j
〉 ∥

∥zi − z j
∥

∥
2 + 〈

zl , z j − zi
〉 〈

zi − z j , zi
〉 + c.c

= − ∥

∥zi − z j
∥

∥
2 + 〈

z j − zl , z j
〉 ∥

∥zi − z j
∥

∥
2 + 〈

zl − zi , z j − zi
〉 〈

zi − z j , zi
〉

+ 〈

zi , z j − zi
〉 〈

zi − z j , zi
〉 + c.c

≤ −2
∥

∥zi − z j
∥

∥
2 + 2D (Z)

∥

∥zi − z j
∥

∥
2 + 2D (Z)

∥

∥zi − z j
∥

∥
2 + 0.

This gives
I321 ≤ − (‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

(1 − 2D (Z))
∥

∥zi − z j
∥

∥
2
. (4.4)
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� Step B.2 (Bound of I322 + c.c): Recall I322 + c.c is

I322 = 1

2

∑

l∈N

(

κil − κ jl
) [〈

zi − z j , zl − 〈zl , zi 〉 zi
〉 + 〈

zi − z j , zl − 〈

zl , z j
〉

z j
〉] + c.c.

Then, we use the inequality
∣

∣

〈

zi − z j , zl − 〈zl , zi 〉 zi
〉∣

∣

≤ ∣

∣

〈

zi − z j , zl − zi
〉∣

∣ + ∣

∣(1 − 〈zl , zi 〉)
〈

zi − z j , zi
〉∣

∣

= ∣

∣

〈

zi − z j , zl − zi
〉∣

∣ + ∣

∣〈zl − zi , zi 〉
〈

zi − z j , zi
〉∣

∣

≤ 2
∥

∥zi − z j
∥

∥D(Z)

to estimate

I322 ≤ 1

2

∑

l∈N

∣

∣κil − κ jl
∣

∣ · 8 ∥∥zi − z j
∥

∥D(Z) = 4
∥

∥κ i − κ j
∥

∥

1

∥

∥zi − z j
∥

∥D(Z). (4.5)

Now we combine (4.4) and (4.5) to obtain

I32 ≤ − (‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

(1 − 2D (Z))
∥

∥zi − z j
∥

∥
2 + 4

∥

∥κ i − κ j
∥

∥

1

∥

∥zi − z j
∥

∥D(Z).

• Step C (Bound of I33 + c.c): Note that the I33 + c.c term is given by

I33 + c.c =
∑

l∈N

〈

zi − z j , κil (〈zi , zl〉 − 〈zl , zi 〉) zi − κ jl
(〈

z j , zl
〉 − 〈

zl , z j
〉)

z j
〉 + c.c.

Then, we use
∑

l∈N

〈

zi − z j , κil (〈zi , zl〉 − 〈zl , zi 〉) zi
〉

≤
∑

l∈N

〈

zi − z j , κil (〈zi , zl − zi 〉 + 〈zi − zl , zi 〉) zi
〉

≤
∑

l∈N

∥

∥zi − z j
∥

∥ κil (‖zl − zi‖ + ‖zi − zl‖)

≤ 2
∥

∥zi − z j
∥

∥ ‖κ i‖1 D(Z)

to get
I33 + c.c ≤ 4

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

) ∥

∥zi − z j
∥

∥D(Z).

• Step D (Bound of d
dt

∥

∥zi − z j
∥

∥): We combine all the estimates in Step A to Step C to find

d

dt

〈

zi − z j , zi − z j
〉 ≤ 2D (�)

∥

∥zi − z j
∥

∥ − λ0
(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

(1 − 2D (Z))
∥

∥zi − z j
∥

∥
2

+ 4λ0
∥

∥κ i − κ j
∥

∥

1

∥

∥zi − z j
∥

∥D(Z)

+4λ1
(‖κ i‖1 + ∥

∥κ j
∥

∥

1

) ∥

∥zi − z j
∥

∥D(Z).

This yields

d

dt

∥

∥zi − z j
∥

∥ ≤ D (�) − 1

2
λ0

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

(1 − 2D (Z))
∥

∥zi − z j
∥

∥

+ 2λ0
∥

∥κ i − κ j
∥

∥

1 D(Z) + 2λ1
(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

D(Z).

�
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Remark 4.1 (i) Among I31, I321, I322 and I33, only I321 contains the term making
d
dt

∥

∥zi − z j
∥

∥ be decreasing. Furthermore, we impose (FB2) to control I32 term.

(ii) For a finite ensemble, the authors in [23] derived the Kuramoto model with frustration
which contains I33 only:

⎧

⎪
⎪
⎨

⎪
⎪
⎩

θ̇i = 2κ1
N

N
∑

j=1

Rin
i j sin

(

θ j − θi + α j i
)

, t > 0,

θi (0) = 0, i ∈ [N ] .

We cannot expect the term I33 can contribute to decrement of diameter. Hence we just
supressed the effect of I33 term with (FB0) and (FB2).

Following the arguments in the proof of Lemma 4.1, we show that the diameter is decreas-
ing for our configuration Z near t = t0. In the sequel, we briefly sketch the proof of
nonincreasing property of diameter. Let L1 be a constant appearing in Lemma 2.2, which
has the form

L1 := ‖�‖∞,op + 2 ‖κ‖∞,1 (λ0 + λ1) .

We define tδ , ε(t), and s0 motivated by (3.6), (3.13) and (3.14), respectively:

tδ := 1

2L1
min

{

D(X in) − D(�)

λ0 ‖κ‖−∞,1 (δ − 4(rκ + r1))
,
1 − δ

2
− D(Z in)

}

,

ε(t) := 1

2
· 1
δ

(

(δ − 4 (rκ + r1))D(Z(t)) − D(�)

λ0 ‖κ‖−∞,1

)

,

s0 := min

{

tδ,
ε(t0)

4L1
,

δε(t0)

2(δ − 4 (rκ + r1))L1
,

1

2δλ0 ‖κ‖−∞,1

}

.

Lemma 4.2 Suppose that we can replace Z in in the framework (FB0) - (FB3) with X (t0)
for t0 ≥ 0, and let Z = {zi }i∈N be a global solution to (4.1). Then we have

D(Z(t)) ≤ D(Z(t0)) − δ

2
λ0 ‖κ‖−∞,1 (t − t0) ε(t0), t ∈ [t0, t0 + s0].

Proof We estimate
∥

∥zi (t) − z j (t)
∥

∥ for two groups of oscillators.

• Case A: We choose (i, j) such that
∥

∥zi (t) − z j (t)
∥

∥ ≥ D(Z(t)) − ε(t), t ∈ [t0, t0 + s0].
Then for such index pair (i, j), we have

d

dt

∥

∥zi (t) − z j (t)
∥

∥

≤ D (�) + 1

2
λ0

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

) (−δ
∥

∥zi (t) − z j (t)
∥

∥ + 4 (rκ + r1)D(Z(t))
)

≤ D (�) + 1

2
λ0

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

(− (δ − 4 (rκ + r1))D(Z(t0)) + δε(t))

= 1

2

(

D (�) − 1

2
λ0

(‖κ i‖1 + ∥

∥κ j
∥

∥

1

)

((δ − 4 (rκ + r1))D(Z(t)))

)
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≤ −δλ0 ‖κ‖−∞,1 ε(t) < 0.

Hence, we have

∥

∥zi (t) − z j (t)
∥

∥ ≤ ∥

∥zi (t0) − z j (t0)
∥

∥ −
∫ t

t0
δλ0 ‖κ‖−∞,1 ε(s)ds, t ∈ [t0, t0 + tδ].

• Case B: Again we choose an index pair (i, j) such that
∥

∥zi (t1) − z j (t1)
∥

∥ ≤ D(Z(t1)) − ε(t1) for some t1 ∈ [t0, t0 + s0].
For such (i, j), we have

∥

∥zi (t) − z j (t)
∥

∥ ≤ D(Z(t0)) − ε(t0)

2
, t ∈ [t0, t0 + s0].

Finally, for t ∈ [t0, t0 + s0], we combine Case A and Case B to obtain

∥

∥zi (t) − z j (t)
∥

∥ ≤ ∥

∥zi (t0) − z j (t0)
∥

∥ − min

(

ε(t0)

2
, δλ0 ‖κ‖−∞,1

∫ t

t0
ε(s)ds

)

≤ ∥

∥zi (t0) − z j (t0)
∥

∥ − δλ0 ‖κ‖−∞,1

2
ε(t0) (t − t0) .

�
Now we are ready to provide our second main result in the next subsection.

4.2 Practical Synchronization

In previous subsection, we have studied several basic lemmas to be used in the following
practical synchronization estimates.

Theorem 4.1 Suppose that the framework (FB0) - (FB3) holds for t0 ≥ 0, and let
Z = {zi }i∈N be a global solution to (4.1). Then D (Z(t)) satisfies the following practical
synchronization estimate:

lim sup
t→∞

D(Z(t0)) ≤ D(�)

λ0 ‖κ‖−∞,1 (δ − 4 (rκ + r1))
= O

(

1

‖κ‖−∞,1

)

.

Proof The proof is similar to the ISS model case (see the proof of Theorem 3.1). Here we
need to define

Tε1 :=
{

t ∈ [0,∞) : (δ − 4 (rκ + r1))D(Z(t)) − D(�)

λ0 ‖κ‖−∞,1
≥ ε1

}

,

and our framework (FB) allows the existence of ε1 � 1 such that Tε1 � 0. By Lemma 4.2,
we have

{t0, t0 + s̃(ε1)} ∈ Tε1 �⇒ [t0, t0 + s̃(ε1)] ⊂ Tε1 ,

for

s̃(ε1) := min

{

tδ,
ε1

4L1
,

δε1

2(δ − 4 (rκ + r1))L1
,

1

2δλ0 ‖κ‖−∞,1

}

.
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We can see

lim sup
t→∞

D(Z(t)) ≤ D(�)

λ0 ‖κ‖−∞,1 (δ − 4 (rκ + r1))
+ ε1

δ − 4 (rκ + r1)

by a similar method in the proof of Theorem 3.1. Finally, we take the limit ε1 → 0 to obtain
the desired result. �

As on can see in the proof, we can apply the same steps with the proof of Theorem 3.1.
Furthermore, the proof of LHS counterpart of Corollary 3.1 is the same. Hence, we can state
the result without a detailed proof.

Corollary 4.1 Suppose the framework (FB0) - (FB3) holds for t0 ≥ 0, and let Z = {zi }i∈N
be a global solution to (4.1) with D (�) = 0. Then D (Z(t)) decays to zero exponentially
fast.

Proof Since the proof is almost the same as in the proof of Corollary 3.1, we omit its details.
�

5 The Infinite LHSModel B

In this section, we study the emergent behavior of the infinite LHS model on some special
network, namely, a “sender network" in which interaction capacities depend only on sender
nodes.

5.1 Order Parameter and Collision Avoidance

Consider a network topology in which the interaction capacity κi j froms the j-th node to the
i-th node is solely determined by the j-th sending node:

κi j = κ j > 0, i, j ∈ N and
∑

j∈N
κ j = ‖κ‖1 < ∞. (5.1)

Then, it is clear to see that this network satisfies the condition (4.2). Hence, the practical
synchronization estimate in Theorem 4.1 can be applied for this special case. However,
for this special case, we can infer more detailed asymptotic dynamics as can be see in the
remaining parts of this section (see Theorem 5.1, Corollary 5.2 and Proposition 5.4). For
given state {zi } and a sender network (κ j ), we define a complex order parameter zc as a
weighted sum of zi :

zc :=
∑

i∈N
κi zi . (5.2)

Then, by (5.1), it is well-defined and the square of the modulus of zc will play the key role
in the asymptotic dynamics of the infinite LHS ensemble. For this type of network topology,
we can rearrange the homogeneous LHS model as

{

żi = λ0 (〈zi , zi 〉 zc − 〈zc, zi 〉 zi ) + λ1(〈zi , zc〉 − 〈zc, zi 〉)zi , t ≥ 0,

zi (0) = zini ,
∥

∥zini
∥

∥ = 1, i ∈ N.
(5.3)

For the simplicity of presentation, we set

‖κ‖1 = 1, λ0 + λ1 = 1 (5.4)
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by rescaling time if necessary. We first introduce the basic properties of (5.3).

Lemma 5.1 Let Z = Z(t) be a global solution to (5.3). Then we have

(i) ‖zc‖ ≤ 1, ‖żi‖ ≤ 2, ‖żc‖ ≤ 2, ‖z̈c‖ ≤ 12.

(ii)

∣

∣

∣

∣

d

dt

〈

zi , z j
〉

∣

∣

∣

∣
≤ 4,

∣

∣

∣

∣

d

dt
〈zi , zc〉

∣

∣

∣

∣
≤ 4,

∣

∣

∣

∣

d2

dt2
〈zc, zc〉

∣

∣

∣

∣
≤ 32.

Proof (i) For the first estimate, we use (5.2) and (5.4) to get

‖zc‖ =
∥

∥

∥

∥

∥

∑

i∈N
κi zi

∥

∥

∥

∥

∥

≤
∑

i∈N
κi ‖zi‖ =

∑

i∈N
κi = 1. (5.5)

Again, it follows from (5.5) and (5.3)1 that

‖żi‖ = ‖λ0 (〈zi , zi 〉 zc − 〈zc, zi 〉 zi )‖ + λ1 ‖(〈zi , zc〉 − 〈zc, zi 〉)zi‖
≤ λ0

(‖zc‖ + ‖zc‖ · ‖zi‖2
) + λ1

(‖zc‖ ‖zi‖2 + ‖zc‖ ‖zi‖2
)

= 2 (λ0 + λ1) ‖zc‖ ≤ 2 ‖κ‖1 = 2.

(5.6)

Now, we use (5.5) and (5.6) to find

‖żc‖ ≤
∑

j∈N
κ j

∥

∥ż j
∥

∥ ≤ 2 ‖κ‖1 = 2,

‖z̈c‖ ≤
∑

j∈N
κ j

∥

∥z̈ j
∥

∥ ≤ λ0
∑

j∈N
κ j

∥

∥

(

żc − 〈

żc, z j
〉

z j − 〈

zc, ż j
〉

z j − 〈

zc, z j
〉

ż j
)∥

∥

+ 2 · λ1
∑

j∈N
κ j

∥

∥

〈

żc, z j
〉

z j + 〈

zc, ż j
〉

z j + 〈

zc, z j
〉

ż j
∥

∥

≤ λ0
∑

j∈N
κ j (4 · 2 (λ0 + λ1)) + 2 · λ1

∑

j∈N
κ j (3 · 2 (λ0 + λ1))

= 12 (λ0 + λ1)
2 = 12.

(ii) We use the estimates in (i) to get the following set of estimates:
∣

∣

∣

∣

d

dt

〈

zi , z j
〉

∣

∣

∣

∣
≤ ∣

∣

〈

żi , z j
〉∣

∣ + ∣

∣

〈

zi , ż j
〉∣

∣ ≤ ‖żi‖
∥

∥z j
∥

∥ + ‖zi‖
∥

∥ż j
∥

∥ ≤ 4,
∣

∣

∣

∣

d

dt
〈zi , zc〉

∣

∣

∣

∣
≤ |〈żi , zc〉| + |〈zi , żc〉| ≤ 4 (λ0 + λ1) = 4,

∣

∣

∣

∣

d2

dt2
〈zc, zc〉

∣

∣

∣

∣
≤ 2 |〈z̈c, zc〉| + 2 |〈żc, żc〉| ≤ 2 · 12 (λ0 + λ1)

2 + 2 (2 (λ0 + λ1))
2 = 32.

�
In the next lemma, we present the collision avoidance property for a solution to system (5.3).

Lemma 5.2 Let Z = Z(t) be a global solution to system (5.3). Then, for (i, j) ∈ N×N, the
following dichotomy holds.

(i) If zin
i 	= zin

j , then one has
zi (t) 	= z j (t), t > 0.
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(ii) If zin
i = zin

j , then one has
zi (t) ≡ z j (t), t > 0.

Proof Suppose that zi and z j collides at some positive time t∗. Now we consider a temporal
set and its infimum.

t0 := inf
{

t > 0 : zi (t) = z j (t)
}

< ∞. (5.7)

By (5.3), we have
d

dt
zi (t0) = d

dt
z j (t0).

Inductively one can see that

dn

dtn

∣

∣

∣

∣

t=t0

zi (t0) = dn

dtn

∣

∣

∣

∣

t=t0

z j (t0), n ≥ 2.

Since zi − z j is analytic at t = t0 as the solution of (5.3), there exists δ > 0 such that

zi (t) = z j (t), t ∈ (t0 − δ, t0 + δ)

which is contradictory to the choice of t0 in (5.7).

(ii) Note that the set
T := {

t ∈ [0,∞) zi (t) − z j (t) = 0
}

is nonempty closed set. At the collision time t0 such that

zi (t0) = z j (t0),

there exists an open set (t0 − δ, t0 + δ) containing t0 by similar argument to (i). Hence T is
an open set and T = R+. �

As briefly mentioned before, the roles of mean-field coupling terms
(〈

z j , z j
〉

zc − 〈

zc, z j
〉

z j
)

and
(〈

z j , zc
〉 − 〈

zc, z j
〉)

z j (5.8)

are somewhat different. In fact, the first term (5.8)1 is mainly responsible for the collective
behavior of model (4.1), whereas the second term (5.8)2 can be regarded as a perturbation.
More precisely, in order to see the role of each term, we first focus on the collective behaviors
of each subsystem

Subsystem A :
{

ż j = (〈

z j , z j
〉

zc − 〈

zc, z j
〉

z j
)

, t ≥ 0,

z j (0) = zinj ,

∥

∥

∥zinj

∥

∥

∥ = 1,

and

Subsystem B :
{

ż j = (〈

z j , zc
〉 − 〈

zc, z j
〉)

z j , t ≥ 0,

z j (0) = zinj ,

∥

∥

∥zinj

∥

∥

∥ = 1.

In what follows, the main tool is Barbalat’s lemma stated as follows.

Lemma 5.3 (Barbalat [3]) Let f : [0,∞) → R be a continuously differentiable function
satisfying the following two properties:

∃ lim
t→∞ f (t) and f ′ is uniformly continuous.
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Then, f ′ tends to zero, as t → ∞:

lim
t→∞ f ′(t) = 0.

In the following two subsections, we study the emergent dynamics of Subsystem A and
Subsystem B separately.

5.2 Subsystem A

Consider the Cauchy problem to the following Subsystem A:
{

żi = (〈zi , zi 〉 zc − 〈zc, zi 〉 zi ) , t ≥ 0,

zi (0) = zini ,
∥

∥zini
∥

∥ = 1, i ∈ N.
(5.9)

This corresponds to the special case (λ0, λ1) = (1, 0) in (5.3). In next proposition, we show
that the two functionals:

‖zc‖2 and
∑

i, j∈N
κiκ j ln

∣

∣1 − 〈

zi , z j
〉∣

∣

are monotone along the dynamics (5.9).

Proposition 5.1 Let Z = Z(t) be a global solution to Subsystem A. Then the following
assertions hold.

(i) The order parameter ‖zc‖ is nondecreasing:

d

dt
‖zc‖2 ≥ 0, t > 0.

(ii) If zin
i 	= zin

j for i 	= j , the functional
∑

i, j∈N κiκ j ln
∣

∣1 − 〈

zi , z j
〉∣

∣ is nonincreasing.

Proof (i) It follows from (5.2) and (5.9) that

dzc

dt
=
∑

j∈N
κ j ż j =

∑

j∈N
κ j

(

zc − 〈

zc, z j
〉

z j
) = zc −

∑

j∈N
κ j

〈

zc, z j
〉

z j .

This yields

d ‖zc‖2
dt

=
〈

zc, zc −
∑

j∈N
κ j

〈

zc, z j
〉

z j

〉

+
〈

zc −
∑

j∈N
κ j

〈

zc, z j
〉

z j , zc

〉

= 2 ‖zc‖2 −
∑

j∈N
κ j

〈

zc, z j
〉2 −

∑

j∈N
κ j

〈

z j , zc
〉2

= 2

⎛

⎝‖zc‖2 −
∑

j∈N
κ jRe

(
〈

zc, z j
〉2
)

⎞

⎠ .

(5.10)

On the other hand, by the Cauchy-Schwarz inequality, we have
∣

∣

〈

z j , zc
〉∣

∣
2 ≤ 〈

z j , z j
〉 〈zc, zc〉 ,

∣

∣

∣Re
〈

zc, z j
〉2
∣

∣

∣ ≤ ∣

∣

〈

zc, z j
〉∣

∣
2 ≤ 〈zc, zc〉 . (5.11)

Finally, we combine (5.10) and (5.11) to derive

d ‖zc‖2
dt

≥ 0.
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(ii) By Lemma 5.2, the function ln
∣

∣1 − 〈

zi , z j
〉∣

∣ is globally well-defined. Again, we use (5.9)
to find

d

dt

(

1 − 〈

zi , z j
〉) = − [〈

zc − 〈zc, zi 〉 zi , z j
〉 + 〈

zi , zc − 〈

zc, z j
〉

z j
〉]

= − [〈

zc, z j
〉 − 〈zi , zc〉

〈

zi , z j
〉 + 〈zi , zc〉 − 〈

zc, z j
〉 〈

zi , z j
〉]

= − [〈zi , zc〉 + 〈

zc, z j
〉] [

1 − 〈

zi , z j
〉]

.

(5.12)

Now, we use (5.12) to obtain

d

dt

∣

∣1 − 〈

zi , z j
〉∣

∣
2 = − [〈

zi + z j , zc
〉 + 〈

zc, zi + z j
〉] ∣

∣1 − 〈

zi , z j
〉∣

∣
2
.

This implies
d

dt
ln
∣

∣1 − 〈

zi , z j
〉∣

∣ = −1

2

[〈

zi + z j , zc
〉 + 〈

zc, zi + z j
〉]

. (5.13)

Thus, the desired estimates follows from (5.13):

d

dt

∑

i, j∈N
κiκ j ln

∣

∣1− 〈

zi , z j
〉∣

∣= − 1

2

∑

i, j∈N
κiκ j

[〈

zi + z j , zc
〉 + 〈

zc, zi + z j
〉] = −2 ‖zc‖2 <0.

�
Theorem 5.1 Let Z = Z(t) be a global solution to (5.3) with

sup
i, j∈N

∣

∣

∣1 −
〈

zin
i , zin

j

〉∣

∣

∣ < 1 − δ, for some δ ∈ (0, 1). (5.14)

Then we have
∣

∣1 − 〈

zi (t), z j (t)
〉∣

∣ ≤
∣

∣

∣1 −
〈

zin
i , zin

j

〉∣

∣

∣ · exp (−2δt) , ∀ t ≥ 0.

Proof Since the proof is rather lengthy, we leave proof in Appendix B. �

5.3 Subsystem B

Consider the Cauchy problem to the following Subsystem B:
{

żi = (〈zi , zc〉 − 〈zc, zi 〉)zi , t ≥ 0,

zi (0) = zini ,
∥

∥zini
∥

∥ = 1.
(5.15)

In the following proposition, we show that the time-derivative of zi vanishes asymptotically.

Proposition 5.2 Let Z = Z(t) be a global solution to (5.15). Then we have

lim
t→∞ |żi (t)| = 0, ∀i ∈ N.

Proof We split the proof into two steps.

• Step A: We will use the Babalat lemma to derive the desired estimate. For this, we set

f (t) = 〈zc(t), zc(t)〉 = ‖zc(t)‖2, t ≥ 0,
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and we claim

(i) ∃ lim
t→∞〈zc(t), zc(t)〉.

(ii)
d

dt
〈zc, zc〉 is uniformly continuous.

(5.16)

Below, we check the assertions in (5.16).

(i) First, we show that

d

dt
〈zc, zc〉 = −

∑

i∈N
κi

(

〈zc, zi 〉 − 〈zi , zc〉
)2

> 0. (5.17)

Proof of (5.17): we use
żc =

∑

i∈N
κi (〈zi , zc〉 − 〈zc, zi 〉)zi

to find the desired estimate (5.17):

d

dt
〈zc, zc〉 =

∑

i∈N
κi

(

〈zc, zi 〉 〈zi , zc〉 − 〈zi , zc〉 〈zi , zc〉
)

+
∑

i∈N
κi

(

〈zc, zi 〉 〈zi , zc〉 − 〈zc, zi 〉 〈zc, zi 〉
)

=
∑

i∈N
κi
(

2 |〈zc, zi 〉|2 − 〈zc, zi 〉2 − 〈zi , zc〉2
)

> 0.

(5.18)

On the other hand, we use
∣

∣

〈

zi , z j
〉∣

∣ ≤ ‖zi‖
∥

∥z j
∥

∥ = 1 to see

〈zc, zc〉 =
∣

∣

∣

∣

∣

∣

∑

i, j∈N
κiκ j

〈

zi , z j
〉

∣

∣

∣

∣

∣

∣

≤
∑

i, j∈N
κiκ j = 1 < ∞. (5.19)

By (5.18) and (5.19), we have
∃ lim

t→∞〈zc(t), zc(t)〉.

(ii) It follows from Lemma 5.1 that
∣

∣

∣

∣

d2

dt2
〈zc, zc〉

∣

∣

∣

∣
≤ 32.

This implies the uniform continuity of d
dt 〈zc, zc〉. Then, by the Babalat lemma and (5.17),

we have

lim
t→∞

d

dt
〈zc(t), zc(t)〉 = 0, i.e., lim

t→∞
(

〈zc(t), zi (t)〉 − 〈zi (t), zc(t)〉
)

= 0, i ∈ N.

(5.20)

• Step B: It follows from (5.20)2 that

lim
t→∞ żi (t) = lim

t→∞ (〈zi (t), zc(t)〉 − 〈zc(t), zi (t)〉) zi (t) = 0, i ∈ N,

where we use ‖zi‖ = 1. �
So far, we have studied collective behaviors of two submodels of (5.3) one by one. In next
subsection, we study the collective behavior of the full model for a homogeneous ensemble.
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5.4 Asymptotic State-Locking

In this subsection, we consider the Cauchy problem to the full infinite LHS model:

{

ż j = λ0
(

zc − 〈

zc, z j
〉

z j
) + λ1

(〈

z j , zc
〉 − 〈

zc, z j
〉)

z j , t > 0,

z j (0) = zinj ,

∥

∥

∥zinj

∥

∥

∥ = 1, j ∈ N.
(5.21)

For a special case with λ0 = 0, in the course of proof of Proposition 5.2, we have shown that

lim
t→∞

d

dt
‖zc(t)‖2 = 0.

In the next proposition, we show that the above estimate holds in full generality.

Proposition 5.3 Let Z = Z(t) be a global solution to the full model (5.21). Then we have

∃ lim
t→∞ ‖zc(t)‖2 and lim

t→∞
d

dt
‖zc(t)‖2 = 0.

Proof We basically follow the same strategy employed in the proof of Proposition 5.2.

(i) (Derivation of the first estimate): We split the derivation into two steps.

• Step A: We first claim:

d

dt
〈zc, zc〉 = λ0

∑

i∈N
κi
(

2 ‖zc‖2 − 〈zc, zi 〉2 − 〈zi , zc〉2
)

+ λ1
∑

i∈N
κi
(

2 |〈zc, zi 〉|2 − 〈zc, zi 〉2 − 〈zi , zc〉2
)

.

(5.22)

Proof of (5.22): Note that

d

dt

〈

zi , z j
〉 = 〈

żi , z j
〉 + 〈

zi , ż j
〉

= 〈

λ0 (zc − 〈zc, zi 〉 zi ) + λ1 (〈zi , zc〉 − 〈zc, zi 〉) zi , z j
〉

+ 〈

zi , λ0
(

zc − 〈

zc, z j
〉

z j
) + λ1

(〈

z j , zc
〉 − 〈

zc, z j
〉)

z j
〉

= λ0
(〈

zc, z j
〉 − 〈zi , zc〉

〈

zi , z j
〉) + λ1 (〈zc, zi 〉 − 〈zi , zc〉)

〈

zi , z j
〉

+ λ0
(〈zi , zc〉 − 〈

zc, z j
〉 〈

zi , z j
〉) − λ1

(〈

zc, z j
〉 − 〈

z j , zc
〉) 〈

zi , z j
〉

.

(5.23)
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We sum up (5.23) over all i and j to get the desired estimate (5.22):

d

dt
〈zc, zc〉 =

∑

i, j∈N
κi κ j

d

dt

〈

zi , z j
〉

=
∑

i, j∈N
κi κ j λ0

(〈

zc, z j
〉 − 〈zi , zc〉

〈

zi , z j
〉) +

∑

i, j∈N
κi κ j λ1 (〈zc, zi 〉 − 〈zi , zc〉)

〈

zi , z j
〉

+
∑

i, j∈N
κi κ j λ0

(〈zi , zc〉 − 〈

zc, z j
〉 〈

zi , z j
〉) −

∑

i, j∈N
κi κ j λ1

(〈

zc, z j
〉 − 〈

z j , zc
〉) 〈

zi , z j
〉

= λ0 ‖zc‖2 − λ0
∑

i∈N
κi 〈zi , zc〉2 +

∑

i∈N
κi λ1 |〈zc, zi 〉|2 −

∑

i∈N
κi λ1 〈zi , zc〉2

+ λ0 ‖zc‖2 − λ0
∑

i∈N
κi 〈zc, zi 〉2 +

∑

i∈N
κi λ1 |〈zc, zi 〉|2 −

∑

i∈N
κi λ1 〈zc, zi 〉2

= λ0
∑

i∈N
κi

(

2 ‖zc‖2 − 〈zc, zi 〉2 − 〈zi , zc〉2
)

+ λ1
∑

i∈N
κi

(

2 |〈zc, zi 〉|2 − 〈zc, zi 〉2 − 〈zi , zc〉2
)

,

(5.24)

where we used
∑

i∈N κi = 1.

• Step B: We show that the summand in (5.24) are nonnegative. For this, we use the identity

z2 + z̄2 = (Re(z) + iIm(z))2 + (Re(z) − iIm(z))2 = 2
(

(Re(z))2 − Im(z))2
)

≤ 2‖z‖2,
the Cauchy-Schwarz inequality and ‖zi‖ = 1 to find

2 ‖zc‖2 = 2 ‖zc‖2 ‖zi‖2 ≥ 2 |〈zc, zi 〉|2 ≥ 〈zc, zi 〉2 + 〈zi , zc〉2 .

This implies the nonnegativity of the right-hand side of (5.24):

d

dt
〈zc, zc〉 ≥ 0. (5.25)

On the other hand, we have
〈zc, zc〉 ≤ 1. (5.26)

Finally, it follows from (5.25) and (5.26) that

∃ lim
t→∞〈zc, zc〉.

(ii) (Derivation of the second estimate): We apply the Babalat’s lemma with f (t) =
〈zc(t), zc(t)〉. Since we have already shown that

∃ lim
t→∞ f (t),

we need to show that f ′ is uniformly continuous. Thus, it suffices to show that | f ′′(t)| is
uniformly bounded. This is obvious from Lemma 5.1 that

∥

∥

∥

∥

d2

dt2
〈zc, zc〉

∥

∥

∥

∥
≤ 32.

Finally, we can apply Lemma 5.3 to show

lim
t→∞

d

dt
‖zc‖2 = 0.

�
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As a corollary of Proposition 5.3, we have asymptotic behavior of the angle between zi and
zc.

Corollary 5.1 Let Z = Z(t) be a global solution to the full model (5.3). Then we have

lim
t→∞

(

‖zc(t)‖2 − |〈zc(t), zi (t)〉|2
)

= 0 and lim
t→∞ Im 〈zc(t), zi (t)〉 = 0 for i ∈ N.

Proof We use 〈zc, zi 〉 = 〈zi , zc〉 and further rearrange the estimate (5.22) as

d

dt
〈zc, zc〉 = λ0

∑

i∈N
κi
(

2 ‖zc‖2 − 〈zi , zc〉2 − 〈zc, zi 〉2
)

+ λ1
∑

i∈N
κi
(

2 |〈zc, zi 〉|2 − 〈zc, zi 〉2 − 〈zi , zc〉2
)

= 2λ0
∑

i∈N
κi
(‖zc‖2 − Re

(〈zi , zc〉2
)) + 2λ1

∑

i∈N
κi
(|〈zc, zi 〉|2 − Re

(〈zi , zc〉2
))

= 2λ0
∑

i∈N
κi
(‖zc‖2 − Re (〈zi , zc〉)2 + Im (〈zi , zc〉)2

)

+ 2λ1
∑

i∈N
κi
(|〈zc, zi 〉|2 − Re (〈zi , zc〉)2 + Im (〈zi , zc〉)2

)

= 2λ0
∑

i∈N
κi
(‖zc‖2 − Re (〈zi , zc〉)2 − Im (〈zi , zc〉)2 + 2Im (〈zi , zc〉)2

)

+2λ1
∑

i∈N
κi
(

2 · Im (〈zi , zc〉)2
)

= 2λ0
∑

i∈N
κi
(‖zc‖2 − |〈zi , zc〉|2

) + 4 (λ0 + λ1)
∑

i∈N
κi |Im (〈zi , zc〉)|2 .

This clearly shows that d
dt 〈zc, zc〉 is the sum of nonnegative terms. Finally, by Proposition

5.3, we obtain the desired result. �
So far, we do not show the convergence of our solution Z(t) as t ↑ ∞, but we can derive an
information for how the asymptotic configuration Z∞ in unit Hermitian sphere.

Corollary 5.2 Suppose that for each i ∈ N, zi converges to z∞
i . Then we have

〈

z∞
i , z∞

c

〉 ∈ {1,−1} .

Proof By the first part of Proposition 5.3 and ‖zi‖ = 1, one has

0= lim
t→∞

(

‖zc(t)‖2−|〈zc(t), zi (t)〉|2
)

= ∥

∥z∞
c

∥

∥
2−∣

∣

〈

z∞
i , z∞

c

〉∣

∣
2 = ∥

∥z∞
c

∥

∥
2 ‖zi‖2−

∣

∣

〈

z∞
i , z∞

c

〉∣

∣
2
.

Thus, the asymptotic configuration
{

z∞
i

}

i∈N satisfies the equality condition of the Cauchy-
Schwarz inequality. Hence we have

z∞
i = ai z

∞
c , i ∈ N,

for some ai ∈ C with |ai | = 1. On the other hand, by the second part of Corollary 5.1,

Im
〈

z∞
c , z∞

i

〉 = 0.

Therefore ai ∈ {1,−1}. �
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Remark 5.1 The result of Corollary 5.2 shows that the possible asymptotic configuration is
either completely synchronized state or bi-polar state.

In next proposition, we show that zi becomes stationary asymptotically (see Proposition
5.2 for Subsystem B).

Proposition 5.4 Let Z = Z(t) be a global solution to (5.3). then we have

lim
t→∞ |żi (t)| = 0, i ∈ N.

Proof We use (5.21) to see

〈żi , żi 〉 = |λ0|2
〈

zc − 〈zc, zi 〉 zi , zc − 〈zc, zi 〉 zi

〉

+ λ0λ1(〈zc, zi 〉 − 〈zi , zc〉)
〈

zc − 〈zc, zi 〉zi , zi

〉

+ λ1λ0(〈zc, zi 〉 − 〈zi , zc〉)
〈

zi , zc − 〈zc, zi 〉 zi

〉

+ |λ1|2| 〈zc, zi 〉 − 〈zi , zc〉 |2.

(5.27)

Om the other hand, it follows from Corollary 5.2 that

〈zc, zi 〉 − 〈zi , zc〉 = 〈zc, zi 〉 − 〈zc, zi 〉 = 2iIm(〈zc, zi 〉) → 0, as t → ∞. (5.28)

By (5.27) and (5.28), one has

lim
t→∞〈żi , żi 〉 = lim

t→∞ |λ0|2
〈

zc − 〈zc, zi 〉 zi , zc − 〈zc, zi 〉 zi

〉

. (5.29)

Again, we use Corollary 5.1 to see

〈zc − 〈zc, zi 〉 zi , zc − 〈zc, zi 〉 zi 〉
= ‖zc‖2 − 〈zc, zi 〉2 − 〈zi , zc〉2 + |〈zc, zi 〉|2
= ‖zc‖2 − |〈zc, zi 〉|2 + 2 |〈zc, zi 〉|2 − 〈zc, zi 〉2 − 〈zi , zc〉2 → 0,

(5.30)

as t ↑ ∞. Finally, we combine (5.29) and (5.30) to get the desired estimate. �

6 Conclusion

In this paper, we have studied the collective behaviors of infinitely many Lohe oscillators on
the unit Hermitian sphere in d-dimensional complex Euclidean space. For this, we proposed
a new synchronization model governing the dynamics of an infinite set of Lohe Hermitian
sphere oscillators andwe have also presented several sufficient framework leading to practical
and complete synchronization estimates. The proposed model extends author’s recent work
[22] on the infinite set of Kuramoto oscillators to the infinite set of Lohe Hermitian sphere
oscillators in a higher-dimensional setting. In our infinite model with an infinite coupling
matrix

(

κi j
)

, we cannot find such an average quantity with a similar role as zc in Sect. 5. That
makes our analysis in Sects. 3 and 4 be more delicate. The presented results of this paper
can be summarized as follows. First, we presented a sufficient framework for the collective
behaviors of the ensemble of infinite oscillators defined on higher-dimensional ambient space
with a network topology. Our sufficient framework is given in terms of system parameters
and admissible initial data. Second, we have demonstrated how the analysis in [23] can be
extended to an infinite ensemble over the sender network. In the previous works, the tool
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employed to analyze the finite-dimensional swarm spheremodel over network topology is the
spectral theory of adjacent matrices. However, we use a direct nonlinear functional approach
based on the state diameter as a suitable Lyapunov functional.
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Appendix A Well-Posedness of the Infinite LHSModel

In this appendix, we present a global well-posedness of the infinite LHS model. For this,
we study a local well-posedness using the Cauchy-Lipschitz theorem on a suitable Banach
space.

A.1 A LocalWell-Posedness

We first recall the Cauchy-Lipschitz theorem. Let E be a Banach space, and U ⊂ E . Let
F : U → E be a local Lipschitz map and let I = [0, T ∗) be an interval contained inRwhere
T ∗ ∈ (0,∞].
Lemma A.1 (Cauchy-Lipschitz) [6, 10] The Cauchy problem:

{

du
dt = F(u(t)), t > 0,

u
∣

∣

t=0+ = u0.

has a unique local solution u in the time interval I .

To apply Lemma A.1 for the infinite LHS model, we need to introduce E and U . We
introduce the Banach space �

∞,2
C

:

(�
∞,2
C

, ‖ · ‖∞,2) :=
{

Y = {yi }i∈N : yi ∈ C
d , ‖Y‖∞,2 := sup

i∈N
‖yi‖ < ∞

}

.

Theorem A.1 (Local existence) The Cauchy problem (1.3)–(1.4) admits a local unique
smooth solution Z : [0, t0) → �

∞,2
C

for some t0 > 0.

Proof We define F : �
∞,2
C

→ �
∞,2
C

as

F(z) = { fi (z)}i∈N , z = {zi }i∈N ,

fi (z) = �i zi + λ0
∑

j∈N
κi j

(〈zi , zi 〉 z j − 〈

z j , zi
〉

zi
) + λ1

∑

j∈N
κi j

(

〈zi , z j 〉 − 〈z j , zi 〉
)

zi .

(A1)
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We outline the proof strategy in four steps:

• (Step A): Find a local bound of F depending on ‖z‖∞,2 for z ∈ �
∞,2
C

.

• (Step B): Find a local Lipschitz constant of F depending on ‖z‖∞,2.

• (Step C): Prove a local existence of integral solution to the infinite LHS model.

• (Step D): Prove Z is a classical solution of LHS model.

In what follows, we perform the above steps one by one.

� Step A (Local boundedness of F): We use (A1) to see

‖ fi (z)‖ ≤ ‖�i zi ‖ + λ0
∑

j∈N
κi j

∥

∥〈zi , zi 〉 z j − 〈

z j , zi
〉

zi
∥

∥ + λ1
∑

j∈N
κi j

∣

∣〈zi , z j 〉 − 〈z j , zi 〉
∣

∣ ‖zi ‖

≤ ‖�‖∞,op ‖z‖∞,2 + 2λ0
∑

j∈N
κi j ‖z‖3∞,2 + 2λ1

∑

j∈N
κi j ‖z‖3∞,2

≤‖�‖∞,op ‖z‖∞,2 + 2 (λ0 + λ1) ‖κ‖∞,1 ‖z‖3∞,2 .

This yields

sup
i∈N

‖ fi (z)‖ = ‖F(z)‖∞,2 ≤ ‖�‖∞,op ‖z‖∞,2 + 2 (λ0 + λ1) ‖κ‖∞,1 ‖z‖3∞,2 .

� Step B (Local Lipschitz continuity of F): For Z, Z̃ ∈ �
∞,2
C

, we have
∥

∥F (Z) − F
(

Z̃
)∥

∥∞ ≤ sup
i∈N

‖�i‖op ‖zi − z̃i‖

+ λ0 sup
i∈N

∥

∥

∥

∥

∥

∥

∑

j∈N
κi j

{(〈zi , zi 〉 z j − 〈

z j , zi
〉

zi
) − (〈z̃i , z̃i 〉 z̃ j − 〈

z̃ j , z̃i
〉

z̃i
)}

∥

∥

∥

∥

∥

∥

+ λ1 sup
i∈N

∥

∥

∥

∥

∥

∥

∑

j∈N
κi j

{(

〈zi , z j 〉 − 〈z j , zi 〉
)

zi −
(

〈z̃i , z̃ j 〉 − 〈z̃ j , z̃i 〉
)

z̃i

}

∥

∥

∥

∥

∥

∥

=: I41 + λ0I42 + λ1I43.

In the sequel,we show that each termI41,I42 andI43 canbe controlledbyO(1)
∥

∥Z − Z̃
∥

∥∞,2 .

� Step B.1 (Estimate of I41): Note that

I41 ≤ ‖�‖∞,op

∥

∥Z − Z̃
∥

∥∞,2 .

� Step B.2 (Estimate of I42): By direct calculation, one has

I42 = sup
i∈N

∥

∥

∥

∥

∥

∥

∑

j∈N
κi j

{(〈zi , zi 〉 z j − 〈

z j , zi
〉

zi
) − (〈z̃i , z̃i 〉 z̃ j − 〈

z̃ j , z̃i
〉

z̃i
)}

∥

∥

∥

∥

∥

∥

≤ sup
i∈N

∥

∥

∥

∥

∥

∥

∑

j∈N
κi j

(

‖zi‖2 z j − ‖z̃i‖2 z̃ j

)

∥

∥

∥

∥

∥

∥

+ sup
i∈N

∥

∥

∥

∥

∥

∥

∑

j∈N
κi j

(〈

z j , zi
〉

zi − 〈

z̃ j , z̃i
〉

z̃i
)

∥

∥

∥

∥

∥

∥
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=: I421 + I422.

Then for each i ∈ N, we have
∥

∥

∥

∥

∥

∥

∑

j∈N
κi j

(

‖zi‖2 z j − ‖z̃i‖2 z̃ j

)

∥

∥

∥

∥

∥

∥

≤
∑

j∈N
κi j ‖zi‖2

∥

∥z j − z̃ j
∥

∥ +
∑

j∈N
κi j

(

‖zi‖2 − ‖z̃i‖2
)
∥

∥z̃ j
∥

∥

≤ ‖κ‖∞,1 ‖Z‖2∞,2

∥

∥Z − Z̃
∥

∥∞,2 +
∑

j∈N
κi j (‖zi‖ + ‖z̃i‖)

∥

∥z̃ j
∥

∥ ‖zi − z̃i‖

≤ ‖κ‖∞,1

(

‖Z‖2∞,2 + ‖Z‖∞,2

∥

∥Z̃
∥

∥∞,2 + ∥

∥Z̃
∥

∥

2
∞,2

)
∥

∥Z − Z̃
∥

∥∞,2 ,

and
∥

∥

∥

∥

∥

∥

∑

j∈N
κi j

(〈

z j , zi
〉

zi − 〈

z̃ j , z̃i
〉

z̃i
)

∥

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∥

∑

j∈N
κi j

〈

z j , zi
〉

(zi − z̃i )

∥

∥

∥

∥

∥

∥

+
∥

∥

∥

∥

∥

∥

∑

j∈N
κi j

(〈

z j , zi − z̃i
〉

z̃i
)

∥

∥

∥

∥

∥

∥

+
∥

∥

∥

∥

∥

∥

∑

j∈N
κi j

(〈

z j − z̃ j , z̃i
〉

z̃i
)

∥

∥

∥

∥

∥

∥

≤
∑

j∈N
κi j

∥

∥z j
∥

∥ ‖zi ‖ ‖zi − z̃i ‖ +
∑

j∈N
κi j

∥

∥z j
∥

∥ ‖zi − z̃i ‖ ‖z̃i ‖ +
∑

j∈N
κi j

∥

∥z j − z̃ j
∥

∥ ‖z̃i ‖2

≤ ‖κ‖∞,1

(

‖Z‖2∞,2 + ‖Z‖∞,2

∥

∥Z̃
∥

∥∞,2 + ∥

∥Z̃
∥

∥
2
∞,2

)
∥

∥Z − Z̃
∥

∥∞,2 .

These give upper bounds of I421 and I422.

� Step B.3 (Estimate of I43): Note that

I43 = sup
i∈N

∥

∥

∥

∥

∥

∥

∑

j∈N
κi j

{(

〈zi , z j 〉 − 〈z j , zi 〉
)

zi −
(

〈z̃i , z̃ j 〉 − 〈z̃ j , z̃i 〉
)

z̃i

}

∥

∥

∥

∥

∥

∥

≤ sup
i∈N

∑

j∈N
κi j

∥

∥〈zi , z j 〉zi − 〈z̃i , z̃ j 〉z̃i
∥

∥ + sup
i∈N

∑

j∈N
κi j

∥

∥〈z j , zi 〉zi − 〈z̃ j , z̃i 〉z̃i
∥

∥

=: I431 + I432.

For each i and j , we use
∥

∥〈zi , z j 〉zi − 〈z̃i , z̃ j 〉z̃i
∥

∥

≤ ∥

∥〈zi , z j 〉zi − 〈zi , z j 〉z̃i
∥

∥ + ∥

∥〈zi , z j 〉z̃i − 〈zi , z̃ j 〉z̃i
∥

∥ + ∥

∥〈zi , z̃ j 〉z̃i − 〈z̃i , z̃ j 〉z̃i
∥

∥

≤
(

‖Z‖2∞,2 + ‖Z‖∞,2

∥

∥Z̃
∥

∥∞,2 + ∥

∥Z̃
∥

∥

2
∞,2

)
∥

∥Z − Z̃
∥

∥∞,2

to get

I431 ≤ ‖κ‖∞,1

(

‖Z‖2∞,2 + ‖Z‖∞,2

∥

∥Z̃
∥

∥∞,2 + ∥

∥Z̃
∥

∥

2
∞,2

)
∥

∥Z − Z̃
∥

∥∞,2 .

Similarly we have

I432 ≤ ‖κ‖∞,1

(

‖Z‖2∞,2 + ‖Z‖∞,2

∥

∥Z̃
∥

∥∞,2 + ∥

∥Z̃
∥

∥

2
∞,2

)
∥

∥Z − Z̃
∥

∥∞,2 .
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Finally, we combine estimates for I41, I42 and I43 to obtain
∥

∥F (Z) − F
(Z̃)

∥

∥∞
≤
(

‖�‖∞,op + 2 (λ0 + λ1) ‖κ‖∞,1

(

‖Z‖2∞,2 + ‖Z‖∞,2

∥

∥Z̃
∥

∥∞,2 + ∥

∥Z̃
∥

∥

2
∞,2

))
∥

∥Z − Z̃
∥

∥∞,2 .

(A2)

� Step C (Local existence of an integral equation): We integrate the infinite LHS model to

see

X (t) = X in +
∫ t

0
F (X (s)) ds.

Then, the solution to this integral equation is given as a fixed point of the operator:

 : C (Ct0,r
) → C

(

Ct0,r
)

, (Z) (t) := Z in +
∫ t

0
F (Z(s)) ds (A3)

for suitable Banach space C
(

Ct0,r
)

to be defined below. We set

L := 27
(‖�‖∞,op + 2 (λ0 + λ1) ‖κ‖∞,1

)

, t0 <
1

L
,

Br
(

Z in) :=
{

Y ∈ �
∞,2
C

: ∥∥Y − Z in
∥

∥∞,2 ≤ r
}

, Ct0,r := [0, t0] × Br
(

Z in) .

(A4)

Then, we define a normed space and the associated norm as follows.

C
(

Ct0,2
) := {

f : [0, t0] → B2
(

Z in) | f is continuous
}

, ‖Z‖c := sup
0≤t≤t0

‖Z(t)‖∞,2 .

For X ∈ C
(

Ct0,2
)

we have

‖Z(t)‖∞,2 ≤ ∥

∥Z(t) − Z in
∥

∥∞,2 + ∥

∥Z in
∥

∥∞,2 ≤ 3.

Then, we use (A3) and (A4). to see that the functional  defined in (A3) satisfies

∥

∥Z − Z in
∥

∥∞,2 ≤
∫ t

0
‖F (Z(s))‖∞,2 ds

≤
∫ t

0
‖�‖∞,op ‖Z(s)‖∞,2 + 2 (λ0 + λ1) ‖κ‖∞,1 ‖Z(s)‖3∞,2 ds

≤
∫ t

0
3 ‖�‖∞,op + 54 (λ0 + λ1) ‖κ‖∞,1 ds

= (

3 ‖�‖∞,op + 54 (λ0 + λ1) ‖κ‖∞,1
)

t

< 2, for t ≤ t0.

We combine (A2) and (A4) gives

‖F (Z1(t)) − F (Z2(t))‖∞,2 ≤ L ‖Z2(t) − Z1(t)‖∞,2 , t ≤ t0.

Hence we have

‖X1 − X2‖∞ ≤
∫ t0

0
‖F (X1(s)) − F (X2(s))‖∞,2 ds

≤ L
∫ t0

0
‖X2(s) − X1(s)‖∞,2 ds

≤ Lt0 ‖X2 − X1‖c .
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Since t0 < 1
L , the relation implies that  is a contraction mapping. Then, by the Banach

fixed point theorem, we obtain the existence of integral solution X (t) ∈ C
(

Ct0,2
)

.

• Step D (Local existence of solution): Next, we show that the fixed point X (t) is differen-
tiable: for each t, s ∈ [0, t1],

‖X (t) − X (s) − (t − s)F (X (s))‖∞,2 =
∥

∥

∥

∥

∫ t

s
F (X (τ )) − F (X (s)) dτ

∥

∥

∥

∥∞,2

≤ L
∫ t

s
‖X (τ ) − X (s)‖∞,2 dτ = L

∫ t

s

∥

∥

∥

∥

∫ τ

s
F (X (σ )) dσ

∥

∥

∥

∥∞,2
dτ

≤ L
∫ t

s

∫ τ

s
‖F (X (σ ))‖∞,2 dσdτ ≤ L2

∫ t

s

∫ τ

s
dσdτ = L2

2
(t − s)2 .

This gives

lim
t→s

‖X (t) − X (s) − (t − s)F (X (s))‖∞,2

|t − s| = 0.

Therefore, the fixed point X is the desired solution in the time interval [0, t0):

d

dt
X (t) = F(X (t)).

Furthermore by Lemma A.1, this local solution is unique. �

A.2 A GlobalWell-Posedness

In this part, we provide a global well-posedness by extending the local solution which was
constructed in the previous subsection. More precisely, our global well-posedness can be
stated as follows.

Theorem A.2 (A global existence) For any T ∈ (0,∞), the Cauchy problem (1.3)–(1.4)
admits a global unique smooth solution Z : [0, T ) → �

∞,2
C

.

Proof By Theorem A.1, we have a local solution Z : [0, t0) → �
∞,2
C

where t0 depends on
the parameters κ , �, λ1 and λ2 in our model. We proceed by induction on n ≥ 1 to prove the
existence of solution Z in the time interval [0, nt0). The initial step has already verified in
Theorem A.1. For the inductive step, it sufficies to check how the domain can be extended
by [0, 2t0). Since our local solution Z : [0, t0) → �

∞,2
C

defined as the fixed point of operator

 : C (Ct0,2
) → C

(

Ct0,2
)

, (Z) (t) = Z in +
∫ t

0
F (Z(s)) ds,

where
Ct0,2 := [0, t0] ×

{

Y : ∥∥Y − Z in
∥

∥∞,2 ≤ 2
}

,

Z cannot blow up at t = t0. ThereforeZ is defined at [0, t0]. By Lemma 2.1, we can consider
Z(t0) as new initial data, and we can apply Theorem A.1 to extend the local solution to the
interval [t0, 2t0], since the estimates in Step C of Theorem A.1 depends on the estimate:

∥

∥Z in
∥

∥∞,2 ≤ 1.

In this way, we have the solution in the time interval [0, 2t0]. �
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Appendix B Proof of Theorem 5.1

In this appendix, we provide the lengthy proof of Theorem 5.1 in several steps.

• Step A (A dynamical system for two-point correlation function): We set

hi j := 〈

zi , z j
〉

, Ri j := Rehi j , Ii j := Imhi j .

We use (5.9) to see

dhi j

dt
= 〈

zc − 〈zc, zi 〉 zi , z j
〉 + 〈

zi , zc − 〈

zc, z j
〉

z j
〉

= (〈

zc, z j
〉 − 〈zi , zc〉

〈

zi , z j
〉 + 〈zi , zc〉 − 〈

zc, z j
〉 〈

zi , z j
〉)

.

(B1)

Then, we take the real and imaginary parts of (B1) to find

d Ri j

dt
= Rcj − Ric Ri j + Ric − Rcj Ri j + Iic Ii j + Icj Ii j

= (

1 − Ri j
) (

Rcj + Ric
) + Ii j

(

Iic + Icj
)

,

d Ii j

dt
= Icj − Iic Ri j − Ric Ii j + Iic − Icj Ri j − Rcj Ii j

= (

1 − Ri j
) (

Icj + Iic
) − Ii j

(

Ric + Rcj
)

.

(B2)

For notational simplicity, we also use the following handy notation in (B2):

Ric := Re 〈zi , zc〉 =
∑

l∈N
κlRe 〈zi , zl〉 , Iic := Re 〈zi , zc〉 =

∑

l∈N
κlRe 〈zi , zl〉 .

Similarly we can define Rcj and Icj . Since we are looking for a sufficient framework in which
Ri j approaches to one asymptotically, it would be nice to work with 1 − Ri j instead of Ri j .
Hence, we set

Hi j = 1 − Ri j , Hic :=
∑

l∈N
κl (1 − Re 〈zi , zl〉) = 1 − Ric.

Then the system (B2) can be rewritten as

d Hi j

dt
= −Hi j

(

2 − Hcj − Hic
) − Ii j

(

Iic + Icj
)

,

d Ii j

dt
= Hi j

(

Icj + Iic
) − Ii j

(

2 − Hic − Hcj
)

.

This is equivalent to
d

dt

[

Hi j

Ii j

]

=
[−αi j −βi j

βi j −αi j

] [

Hi j

Ii j

]

, (B3)

where αi j and βi j in (B3) are given by

αi j := 2 − Hcj − Hic, βi j := Iic + Icj .

Now we use (B3) to find the Grönwall-type inequality for H2
i j + I 2i j :

d

dt

(

H2
i j + I 2i j

)

= 2Hi j Ḣi j + 2Ii j İi j

= 2Hi j
(−αi j Hi j − βi j Ii j

) + 2Ii j
(

βi j Hi j − αi j Ii j
)

= −2αi j

(

H2
i j + I 2i j

)

.

(B4)
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We define
λ(t) = sup

i 	= j

√

H2
i j (t) + I 2i j (t).

Then the assumption (5.14) implies

λ(0) < 1 − δ.

• Step B (Estimation of
∣

∣1 − 〈

zi (t), z j (t)
〉∣

∣): By a direct calculation, for each s < t ,

∣

∣Hcj (t) − Hcj (s)
∣

∣ ≤
∑

l∈N
κl
∣

∣Hjl(t) − Hjl(s)
∣

∣ ≤
∑

l∈N
κl
∣

∣h jl(t) − h jl(s)
∣

∣ ≤ 8(t − s),

since we can see that hi j = 〈

zi , z j
〉

is Lipschitz:
∣

∣

∣

∣

d

dt

〈

zi , z j
〉

∣

∣

∣

∣
≤ ∣

∣

〈

żi , z j
〉∣

∣ + ∣

∣

〈

zi , ż j
〉∣

∣ ≤ ‖żi‖
∥

∥z j
∥

∥ + ‖zi‖
∥

∥ż j
∥

∥ ≤ 16.

Here we obtain local bound

αi j (t) ≥ αi j (0) − t · 16 ≥ δ, 0 ≤ t <
δ

16
(B5)

of αi j from

αi j (0) = 2 ‖κ‖1 − Hcj − Hic ≥ 2 ‖κ‖1 − 2 ‖κ‖1 (1 − δ) = 2δ,
∣

∣αi j (t) − αi j (s)
∣

∣ ≤ ∣

∣Hcj (t) − Hcj (s)
∣

∣ + |Hic(t) − Hic(s)| ≤ 16(t − s).

Then we use (B4) and (B5) to obtain

d

dt

(

H2
i j (t) + I 2i j (t)

)

≤ −2δ
(

H2
i j (0) + I 2i j (0)

)

, 0 ≤ t <
δ

16
=: t0.

This yields

H2
i j (t) + I 2i j (t) ≤

(

H2
i j (0) + I 2i j (0)

)

· exp (−2δt) , 0 ≤ t < t0.

By induction on n, we can prove that H2
i j (t)+ I 2i j (t) is exponentially decreases for 0 ≤ t < nt0

with exponential decay rate 2δ. For the inductive step, we can consider Z(nt0) as new initial
data. Then, we have

λ(nt0) < 1 − δ,

and we can prove that H2
i j (t) + I 2i j (t) is exponentially decrease with decay rate 2δ for

nt0 ≤ t < (n + 1)t0 by a similar argument as in the initial step (n = 1).
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