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Abstract
We introduce a minimal model of energy transfer through scales to describe, at a qualitative
level, the subcritical transition between laminar and turbulent flows, viewed in a statistical
physics framework as a discontinuous absorbing phase transition. Themain control parameter
of the model is a Reynolds number that compares energy transfer to viscous dissipation on a
large length scale. In spite of its simplicity, the model qualitatively reproduces a number of
salient features of the subcritical laminar-turbulent transition, including the existence of an
absorbing laminar state, the discontinuous onset of a metastable fluctuating turbulent state
above a threshold Reynolds number, and a faster-than-exponential increase of the turbulence
lifetime when increasing the Reynolds number. The behavior of the model is also consistent,
at high Reynolds number, with the Kolmogorov K41 phenomenology of fully developed
turbulence.

Keywords Absorbing phase transition · Laminar-Turbulent transition · Shell models for
turbulence

1 Introduction

The beautiful natural scenery of a waterfall is an inspiring experience for both the artist
and the scientist. In waterfalls where water rapidly flows down over the ground—instead of
freely falling into the air—one clearly sees a change of behavior between the quiet laminar
flow of water upstream from the cascade, and the swirly and fluctuating turbulent flow in the
cascade, that then progressively recovers its laminar state downstream from the waterfall.
Such a natural phenomenon is an example of the transition from laminar to turbulent flow,
that has been extensively studied and characterized in controled laboratory experiments [1,
14, 42, 45, 48]. In this transitional regime, the turbulent flow significantly differs from fully
turbulent flows obtained under a strong external drive, where fluctuating structures span
a broad range of length scales, and exhibit scale invariance [21]. Transitional turbulence
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is rather a form of spatiotemporal chaos, involving a comparably narrow range of length
scales [14]. The control parameter quantifying the intensity of the drive, and allowing for
a classification of the different regimes (e.g., laminar flow, transitional turbulence or fully
developed turbulence), is the Reynolds number Re, which basically compares inertial energy
transfer to viscous damping at large length scale. A fluid flow is typically laminar at low
Reynolds number (where viscous effects dominate), while it is turbulent at high Reynolds
number (where inertial effects dominate) [21].

Early characterizations of the transition to turbulence were based on dynamical systems
approaches, and started by a linear stability analysis of the laminar state, where no fluctuations
are present. For some flow geometries, like the Taylor-Couette cylindrical flow, the laminar
state becomes linearly unstable above a critical Reynolds number Rec, where a supercritical
bifurcation takes place [13, 25, 28]. For Re > Rec, small fluctuations around the laminar
state grow exponentially and lead to the formation of dissipative structures like vortices,
which may themselves become unstable at higher Reynolds number through a bifurcation
cascade, eventually leading to a spatiotemporally chaotic state [15]. For other geometries
like the sheared plane Couette flow between two plates moving in opposite directions [14],
or the Poiseuille pipe flow driven by a pressure gradient [1], the laminar flow is linearly
stable up to very high values of Reynolds number [43, 44]. In this case, the turbulent state
appears through a subcritical bifurcation and can only be reached through finite amplitude
perturbations around the laminar state [2, 12]. The minimal perturbation amplitude beyond
which the turbulent state is triggered typically decays as an inverse power law of the Reynolds
number [17, 32], so that at highReynolds number experimental noise is enough, in practice, to
destabilize the laminar state. In this transitional regime, turbulent spots coexists with laminar
regions, leading to a rich spatiotemporal dynamics [9, 12, 14, 48].

In large aspect ratio experiments [1, 7, 41, 42, 45] or numerical simulations [5, 18, 19,
37, 39, 46, 49] in the plane Couette geometry, the flow organizes into turbulent bands with a
well-defined length scale, that has been shown to result from a linear instability (in a statis-
tical sense) of the homogeneous turbulent state, that occurs when decreasing the Reynolds
number [29]. The coexistence of laminar and turbulent regions, as well as the need for finite
amplitude perturbations to reach the turbulent state from the laminar state, suggests a qual-
itative analogy with discontinuous phase transitions (e.g., the equilibrium liquid–gas phase
transition). However, here the transition occurs far from equilibrium, and rather resembles
absorbing phase transitions, with the laminar state playing the role of the absorbing state and
the turbulent state corresponding to the active one [31, 34, 40, 47]. The turbulent state has a
finite lifetime which increases faster than exponentially with the Reynolds number, close to
the laminar-turbulent transition [24, 27]. The analogy with absorbing phase transitions was
already pointed out in the seminal work of Pomeau [40], who suggested that the dynamics of
turbulent and laminar regions may be described in terms of directed percolation (the promi-
nent class of absorbing phase transition), a conjecture recently confirmed numerically and
experimentally [31, 34].

Apart from amodel inspired by an unexpected analogywith the physics of glasses [10, 11],
models of the transition to turbulence have so far focused on the description of the complex
spatio-temporal dynamics, and often take the form of coupled (partial) differential equations
(the Navier–Stokes equations, or projections thereof), whose behavior beyond the laminar
state can only be studied numerically [3, 20, 22, 33]. This is in contrast with fully developed
turbulence, where toy models amenable to analytical treatments have been proposed and
analyzed. In particular, the turbulent cascade phenomenology of fully developed turbulence
can be qualitatively described using shell models [16, 23, 35, 50], or even, at a metaphoric
level, using simpler stochastic models of energy transfer through scales [6].
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Getting inspiration from both shell models for turbulence [16] and stochastic models
describing absorbing phase transitions [26], we propose and analyze a stochastic energy
transfer model which qualitatively captures a number of key properties of the subcritical
transition to turbulence: (i) the existence of an absorbing laminar state for all Reynolds num-
ber; (ii) the existence of a fluctuating turbulent state above a characteristic Reynolds number;
(iii) a faster-than-exponential increase of the turbulent lifetime with Reynolds number; (iv)
a perturbation amplitude to reach the turbulent state from the laminar state which decays
as a power law of the Reynolds number; (v) a behavior consistent with the fully developed
turbulence phenomenology in the limit of high Reynolds number. We show that such a model
can be derived using minimal phenomenological assumptions, and we characterize its main
properties.

2 Schematic Shell Model for the Laminar-Turbulent Transition

2.1 Generic Form of the Stochastic Shell Model

It is customary to represent the velocity field of the fluid in terms of spatial Fourier modes,
labeled by a wavevector k. In the spirit of shell models for fully-developed turbulence, we
consider that the wavevector space can be split into N + 1 different shells, associated with
a characteristic wavenumber ki (i = 0, . . . , N ) [16]. We assume, again as in standard shell
models, that the wavenumbers ki are exponentially spaced, i.e., ki = k0λi , with λ > 1 a
characteristic scale ratio. The energy Ei (t) of shell i aggregates the energies of all Fourier
modes whose wavevector k is within shell i (1 < |k|/ki < λ) [16]. We assume throughout
the paper that Ei (t) ≥ 0.

As a minimal model, we assume that the drive maintains constant the energy E0 of the
shell i = 0, corresponding to the largest length scale in the system, at which energy is
injected (e.g., by applying an external shear). The constant energy E0 thus becomes a control
parameter of the model. For i = 1, . . . , N − 1, the energy Ei (t) is assumed to satisfy the
following dynamics:

dEi

dt
= −νk2i Ei + Ti (Ei−1, Ei ) − Ti+1(Ei , Ei+1) + gi (Ei ) ξi (t). (1)

The term−νk2i Ei in the rhs of Eq. (1) accounts for viscous dissipation, ν being the viscosity.
The term Ti (Ei−1, Ei ) models in a simplified way the energy transfer rate from shell i − 1
to shell i , due to nonlinear (inertial) terms in the Navier–Stokes equation. For the sake of
simplicity, energy transfer is assumed to be fully biased from shell i−1 to shell i , with no back
flux from shell i to shell i − 1. As a boundary condition on the shell i = N , we assume for
simplicity a constant energy EN , taking a zero or small positive value. The last term in the rhs
of Eq. (1) is a multiplicative Langevin noise (in the Itō interpretation) inducing fluctuations
in the turbulent phase, where ξi (t) is a Gaussian white noise satisfying 〈ξi (t)〉 = 0 and
〈ξi (t)ξ j (t ′)〉 = δi jδ(t − t ′). The noise models the effect of fast chaotic degrees of freedom
that are not explicitly retained in the description. Note that a Langevin noisewas also used in a
Ginzburg-Landau description of the turbulent state in [41, 42] tomodel turbulent fluctuations,
but the noise was additive instead of multiplicative, as the model considered did not aim at
capturing both the laminar and turbulent states. The use of a multiplicative Langevin noise
is a standard practice in the description of absorbing phase transitions, to ensure that noise
vanishes in the absorbing state [26].We thus require that gi (0) = 0. The specific form chosen
for the function gi (Ei ) is discussed below.
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2.2 Dimensionally-Consistent Energy Transfer Terms

To model both the energy transfer term (or energy flux) Ti (Ei−1, Ei ) and the noise ampli-
tude gi (Ei ), we resort to dimensional analysis. By construction, Ti (Ei−1, Ei ) can only
depend on the energies Ei−1, Ei , and on the wavenumber ki . The energies have dimen-
sion [E j ] = L2T−2, while the energy flux has dimension [Ti (Ei−1, Ei )] = L2T−3, where
L and T indicate the dimensions of length and time respectively [16]. Hence a dimensionally-
consistent expression of the energy flux necessarily takes the form

Ti (Ei−1, Ei ) = ki E
3/2
i fi

(
Ei

Ei−1

)
, (2)

where fi (x) is at this stage an arbitrary positive dimensionless function of the dimensionless
argument x . In the following, we make the further simplification that fi (x) ≡ f (x) is the
same for all shells. A brief discussion of the qualitative analogy with energy transfer terms
in the Navier–Stokes equation is given in Appendix 1.

2.3 Dimensionally-Consistent Multiplicative Noise Term

Turning to the noise amplitude gi (Ei ), we assume that it depends only on ki and Ei . Dimen-
sional arguments thus lead us to postulate the following power-law form

gi (Ei ) = ηkδ
i E

γ

i , (3)

where η is a dimensionless constant, and δ, γ are exponents to be determined. As the noise
correlation has dimension [〈ξi (t)ξi (t ′)〉] = [δ(t − t ′)] = T−1, the noise thus has dimension
[ξi (t)] = T−1/2. Since

[g(Ei )ξi (t)] =
[
dE

dt

]
= L2T−3, (4)

it follows that [g(Ei )] = L2T−5/2. Recalling that [Ei ] = L2T−2, we get from Eq. (3), by
identification, that γ = 5

4 and δ = 1
2 .

2.4 Dimensionless Dynamical Equations

The transition between laminar and turbulent states is controlled by the Reynolds number,
that quantifies the intensity of the external drive by comparing the order of magnitude of the
energy transfer by inertial terms to the viscous damping on a large length scale. In the present
model, we thus define the Reynolds number as

Re = k1E
3/2
0

νk21E0
=

√
E0

νk1
, (5)

by comparing the energy transfer to mode i = 1, roughly estimated as k1E
3/2
0 (by assuming

that E1 is of the order of E0 and that f (1) ≈ 1), to the typical scale of the viscous damping,
estimated as νk21E0. Defining the dimensionless shell energies Ẽi = Ei/E0, the dimension-
less time t̃ = tk1

√
E0, and the dimensionless wavenumber k̃i = ki/k1, Eq. (1) turns into,
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also using Eqs. (2) and (3):

d Ẽi

dt
= − 1

Re
k̃2i Ẽi + k̃i Ẽ

3/2
i f

(
Ẽi

Ẽi−1

)

− k̃i+1 Ẽ
3/2
i+1 f

(
Ẽi+1

Ẽi

)
+ ηk̃1/2i Ẽ5/4

i ξ̃i (t̃), (6)

for i = 1, . . . , N−1, andwith Ẽ0 = 1. From now on, weworkwith dimensionless equations,
and we drop the tilde on dimensionless quantities to lighten notations.

3 Deterministic Dynamics under a Mean-Field Approximation

3.1 Local Mean-Field Approximation

We start by considering a local mean-field approximation of the dynamics, by taking an
ensemble average of Eq. (1), which removes the noise term, and by approximating averages
of the transfer terms, 〈Ti (Ei−1, Ei )〉, by Ti (〈Ei−1〉, 〈Ei 〉). We then get

d〈Ei 〉
dt

= − 1

Re
k2i 〈Ei 〉 + ki 〈Ei 〉3/2 f

( 〈Ei 〉
〈Ei−1〉

)
− ki+1〈Ei+1〉3/2 f

( 〈Ei−1〉
〈Ei 〉

)
, (7)

recalling that in dimensionless form, ki = λi−1. The approximate description given in Eq. (7)
has the advantage of being more easily amenable to analytical treatments, in particular to
study laminar and turbulent states which both appear as fixed points of Eq. (7).

3.2 Consistency with K41 Theory of Fully-Developed Turbulence

Before studying the transitional regime between laminar and turbulent states, we note that
the mean-field evolution equation (7) is compatible with the Kolmogorov K41 theory of
fully developed turbulence [21]. For very high Reynolds number, the viscous dissipation
term −k2i 〈Ei 〉/Re can be neglected over the inertial range with respect to the energy transfer
terms. The inertial range corresponds to wavenumbers ki which are smaller than the so-called
dissipative scale at which viscous dissipation starts to dominate over non-linear energy trans-
fer. In the K41 theory, the dissipative (or Kolmogorov) scale can be estimated as (ν3/ε)1/4,
where ν is the viscosity and ε is the energy flux from large to small scales [21].

In the inertial range, the stationary state of Eq. (7) corresponds to a constant energy flux
ε,

ki 〈Ei 〉3/2 f
( 〈Ei 〉

〈Ei−1〉
)

= ε (8)

where ε is independent of i . It follows that

〈Ei 〉 = ζ ε2/3k−2/3
i (9)

with ζ = f (λ−2/3)−2/3, and λ = ki/ki−1. The energy 〈Ei 〉 corresponds to the average
energy integrated over a wavenumber shell of width Δki = ki+1 − ki = ki (λ − 1), taking
into account that ki = k0λi . One thus finds for the energy spectral density,

〈Ei 〉
Δki

∝ ε2/3k−5/3
i , (10)
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consistently with the Kolmogorov K41 theory. This comes from the fact that we have taken
into account the same type of dimensional argument as in K41 theory [21] when defining the
transfer rates in Eq. (2).

3.3 Choice of Energy Transfer Terms from Stability Criteria

We now determine the key properties of the function f (x) appearing in the expression (2)
of the energy transfer terms, based on the expected physical properties of the model. Let us
assume for now that 〈Ei 〉 = 0 for i = 2, . . . , N . Equation (7) specified to i = 1 then boils
down to

d〈E1〉
dt

= − 1

Re
〈E1〉 + 〈E1〉3/2 f (〈E1〉) . (11)

Under the above assumptions, the state 〈E1〉 = 0 corresponds to the laminar state, and it
is indeed a fixed point of Eq. (11), provided that the function x3/2 f (x) goes to zero when
x → 0. The linear stability of the laminar state depends on the asymptotic formof the function
f (x) for x → 0. We assume that, in this limit, f (x) ∼ ax−α , with a > 0 a constant. For
small x , Eq. (11) then reads

d〈E1〉
dt

= − 1

Re
〈E1〉 + a〈E1〉3/2−α. (12)

For α > 1
2 , the term proportional to 〈E1〉3/2−α dominates over the linear term when 〈E1〉 →

0, and the laminar state 〈E1〉 = 0 is unstable for all values of Reynolds number Re. This
situation is not physically relevant, as in real fluid flows, the laminar state is always stable at
low enough Reynolds number. The case α = 1

2 corresponds to a supercritical bifurcation. In
this case, Eq. (12) boils down to

d〈E1〉
dt

=
(
a − 1

Re

)
〈E1〉, (13)

so that the laminar state 〈E1〉 = 0 is linearly stable for Re < Rec = a−1, and linearly
unstable for Re > Rec. This supercritical bifurcation may be relevant, at a qualitative level,
to describe specific flow geometries like the Taylor-Couette cylindrical flow. However, in this
case, the destabilization of the laminar state occurs through the onset of regular dissipative
structures like vortices, which themselves become unstable at higher Reynolds number [15].
Our model is not designed to capture these regular dissipative structures, notably due to
the aggregation of modes into shells, and to the presence of a stochastic noise mimicking
the chaoticity of the turbulent state. Other modelling approaches, based on a more realistic
deterministic description of the linear instability of the laminar state, would thus be better
suited to describe the case of a supercritical bifurcation.

Finally, for α < 1
2 , the leading term when 〈E1〉 → 0 is the linear term −〈E1〉/Re, so

that the laminar state 〈E1〉 = 0 is linearly stable for all values of the Reynolds number
Re. However, for high enough Reynolds number, a finite but small value of 〈E1〉 > 0 is
enough to make the nonlinear transfer term approximated as a〈E1〉3/2−α dominate over the
linear viscous damping term, in which case the energy 〈E1〉 grows with time, reaching a
turbulent state to be characterized below. This case corresponds to a subcritical bifurcation
to turbulence, and is the main focus of this work. In the following, we thus restrict our study
to the case α < 1

2 . Note that we do not assume that α is positive. The subcritical transition
scenario (or more precisely, the globally subcritical bifurcation scenario [13]) is of qualitative
relevance to the plane Couette flow and the Poiseuille pipe flow, as well as to the Taylor-
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Couette flow in some regimes [1, 42]. The threshold amplitude E th
1 beyond which 〈E1〉 grows

up to a turbulent state is obtained by balancing the two terms in the rhs of Eq. (12), leading
(again for α < 1

2 ) to

E th
1 =

(
1

a Re

)2/(1−2α)

. (14)

This result is consistent, at a qualitative level, with the fact that the threshold amplitude of
perturbation is typically observed to decay with Re as an inverse power law in subcritical
transitions from laminar to turbulent flows [17, 32]. For instance, the decay of the threshold
amplitude of perturbation as Re−21/4 found in [32] would lead to α = 13

42 ≈ 0.31.
Once 〈E1〉 > E th

1 , the energy 〈E1〉 grows, and this growth needs to be saturated to prevent
the energy fromdiverging. FromEq. (11),we see that the energy transfer term 〈E1〉3/2 f (〈E1〉)
has to become sublinear for large 〈E1〉 so that viscous damping eventually dominates at large
energy. Assuming f (x) ∼ bx−β (b > 0) for x → +∞, a sublinear behavior of the transfer
term corresponds to β > 1

2 .
As a simple parametrization of the function f (x) that satisfies the asymptotic behaviors

f (x) ∼ ax−α when x → 0 and f (x) ∼ bx−β for x → +∞, we choose the form

f (x) = a

xα
(
1 + a

b x
β−α

) , (15)

assuming β − α > 0, a condition valid in the subcritical case where α < 1
2 and β > 1

2 .
The results below do not depend, at a qualitative level, on the details of the specific shape of
f (x) as long as this function smoothly interpolates between the two power-law asymptotic
behaviors.

3.4 Transition Between Laminar and Turbulent States

According to Eq. (11), a stationary state with 〈E1〉 > 0 (to be interpreted as a turbulent state)
satisfies

〈E1〉1/2 f (〈E1〉) = 1

Re
. (16)

With f in the form (15), the function

F(〈E1〉) = 〈E1〉1/2 f (〈E1〉) (17)

has a maximum value reached for 〈E1〉 = E∗
1 , with

E∗
1 =

[
b

( 1
2 − α

)
a

(
β − 1

2

)
]1/(β−α)

. (18)

The corresponding value Ret = F(E∗
1 )

−1 is the threshold Reynolds number for the existence
of the turbulent state in the local mean-field approximation. For Re < Ret , Eq. (16) has no
solution, meaning that the laminar state 〈E1〉 = 0 is the only stationary solution of Eq. (11).
In contrast, for Re > Ret , Eq. (16) has two solutions, the threshold amplitude E th

1 and
the turbulent state E turb

1 (with E th
1 < E turb

1 ). A linear stability analysis around these two
fixed points shows that, as expected, E th

1 is an unstable fixed point whereas E turb
1 is a stable

fixed point. Note that in the fluid mechanics literature, the equivalent of Ret is often called
Rg . An illustration of the convergence of trajectories to the turbulent fixed point under the
deterministic dynamics is given in Fig. 1.
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Fig. 1 Illustrations of the trajectories converging to the turbulent fixed point in the (E1, E2, E3)-space, starting
from a set of distinct initial conditions, indicated by different colors. Both panels display the same trajectories,
with different viewing angles. The brightness codes for the time along the trajectories. Parameters: Re = 13.3,
λ = 1.5, η = 0, a = 1, b = 0.5, α = 0.25, β = 1.25, N = 4. The energy E4 is fixed to E4 = 10−3

The range of validity of the assumption that 〈Ei 〉 = 0 for i > 1 can be assessed recursively,
in a self-consistentmanner. Assuming that 〈Ei 〉 = 0 for i > 2, the dynamics of 〈E2〉 is similar
to the dynamics of 〈E1〉 studied above, provided one redefines a mode-dependent Reynolds
number Re2 as

Re2 =
√
E turb
1

νk2
. (19)

This definition takes the same form as the original definition of the Reynolds number Re
given in Eq. (5), upon replacement of the driving energy E0 by the turbulent fixed point
energy 〈E1〉 = E turb

1 , and of k1 by k2. As E turb
1 < E0 and k2 > k1, one finds that Re2 < Re.

More precisely, one has

Re2 = 1

λ

(
E turb
1

E0

)1/2

Re. (20)

As long as Re2 < Ret , the only fixed point of 〈E2〉 is the laminar state, 〈E2 = 0〉. Hence the
assumption 〈Ei 〉 = 0 for i > 1 is consistent in the range Ret < Re < Re′

t , having defined

Re′
t = λ

(
E0

E turb
1

)1/2

Ret (21)

from the condition Re2 = Ret , and using Eq. (20). One easily checks that Re′
t > Ret .

4 Stochastic Dynamics and Turbulence Lifetime

In the previous section, we studied the deterministic dynamics of the model obtained under
a mean-field assumption. We now come back to the original Langevin dynamics defined in
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Eq. (6). Using Eqs. (2), (3) and (15), the evolution equation for Ei given in Eq. (6) reads:

dEi

dt
= − k2i

Re
Ei + abki E

3/2
i

[
b

(
Ei

Ei−1

)α

+ a

(
Ei

Ei−1

)β
]−1

− abki+1E
3/2
i+1

[
b

(
Ei+1

Ei

)α

+ a

(
Ei+1

Ei

)β
]−1

+ ηk1/2i E5/4
i ξi (t). (22)

We study below some properties of the turbulent state obtained for Re > Ret .

4.1 Representations of the Turbulent State

Under this stochastic dynamics, the turbulent state no longer appears as a fixed point, but
rather as a fluctuating state with a finite lifetime (see Fig. 2), in qualitative agreement with
experiments [8, 14, 42]. These fluctuations may also be visualized by considering many
independent stochastic trajectories with statistically independent realizations of the noise
ξi (t). In other words, one may look at many different independent copies of the system,
which evolve in parallel. In Fig. 3, we plot the position of the resulting ensemble of copies
in the (E1, E2, E3)-space, using simulations with N = 4, and noise coefficient η = 0.1
[Fig. 3(a)] and η = 0.2 [Fig. 3(b)]. The resulting cloud of points provides a visualization of
the fluctuations of the dynamics. We also provide in Supplementary Material (SM) a movie
to visualize dynamical fluctuations, under a step-by-step increase of the amplitude η of the
noise.

The turbulent state lasts only for a finite duration, after which the system eventually
relaxes to the laminar state. The turbulence lifetime strongly depends on theReynolds number
Re. For Re < Ret , the relaxation to the laminar state is very fast. For Re > Ret , the
turbulent state emerges, and the system first relaxes to the turbulent (metastable) state before
eventually relaxing to the laminar state, due to fluctuations. To get some intuition of the
relaxation process, we have represented the state of the system by synthesizing an acoustic
signal modulated by the modes Ei (see Appendix 1 for details on the synthesis procedure).

Fig. 2 Illustration of the time-dependence of the energies Ei (t) for i = 1, 2 and 3 under the stochastic
dynamics given in Eq. (22) with initial condition Ei = 0.1, in the regime of moderate turbulence lifetime.
Parameters: Re = 3.09, λ = 1.08, η = 1, a = 1, b = 1, α = 0.1, β = 0.93, N = 4
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Fig. 3 Illustration of the turbulent state of the stochastic dynamics in the (E1, E2, E3)-space. Each particle
represents a different realization of the stochastic dynamics. Same parameters as Fig. 1, except η = 0.1 for
panel (a) and η = 0.2 for panel (b)

The resulting acoustic signal, determined for different values of Reynolds number (and two
different noise amplitudes) is embedded in a movie, available in SM. At Re < Ret , the fast
relaxation sounds like a fast decaying sound similar to some music instruments, while for
Re > Ret the sound remains sustained as long as the turbulent state has not relaxed to the
laminar state.

4.2 Analytical Determination of the Turbulent Lifetime Close to the Transition

Themean-field determination of the turbulent state was done in Sec. 3.4 under the assumption
that higher modes 〈Ei 〉 (i > 1) remain in the state 〈Ei 〉 = 0, in which case the turbulent
state can be characterized by the dynamics of 〈E1〉 only. This is true close to the transition
Reynolds number Ret , for Ret < Re < Re′

t . For higher Reynolds number, the turbulent state
progressively involves additional modes, as illustrated in Fig. 3 for the stochastic dynamics
given by Eq. (22). Here, we wish to determine analytically how the turbulent lifetime, which
becomes finite in the case of the stochastic dynamics, increases with Reynolds number close
to the transition. We thus focus again on the dynamics of E1, assuming Ei = 0 for i > 1.
One expects the range of validity of this assumption to remain approximately the same as for
the deterministic dynamics.

Using Eq. (22) under the assumption that Ei = 0 for i > 1, the stochastic dynamics of
E1 can be written as

dE1

dt
= −Φ ′(E1) + ηE5/4

1 ξ1(t) (23)

(we recall that k1 = 1 in dimensionless form), where the effective force −Φ ′(E1) derives
from a potential

Φ(E1) = E2
1

2Re
−

∫ E1

0
dx

ax3/2−α

1 + a
b x

β−α
. (24)

The effective potentialΦ(E1) is plotted in Fig. 4 for different values of the Reynolds number,
close to Ret , showing the onset of the turbulent state. For Re < Ret , the potential Φ(E1) has
a single minimum in E1 = 0, corresponding to the laminar state. In contrast, for Re > Ret ,
a second minimum of the potential Φ(E1) appears at the value E turb

1 , corresponding to the
turbulent state. By increasing Re further, the value Φ(E turb

1 ) of the potential in the turbulent

123



A Cascade Model for the Discontinuous Absorbing... Page 11 of 15   113 

Fig. 4 Effective potential Φ(E1) for the stochastic dynamics of E1, showing the emergence of the turbulent
state as a local minimum of Φ(E1) for Re > Ret = 2.088. Parameters: a = 1, b = 0.5, α = 0.25, β = 1.25

state eventually becomes negative, i.e., Φ(E turb
1 ) < Φ(0) = 0, where Φ(0) is the value of

the potential in the laminar state. At equilibrium, the condition Φ(E turb
1 ) < Φ(0) would lead

one to conclude that the turbulent state then becomes the most stable state. However, this is
not the case here, due to the non-equilibrium character of the model, reflected in the presence
of the multiplicative noise in Eq. (23). Indeed, since the amplitude of the noise vanishes
for E1 = 0, the laminar state E1 = 0 is always a stable (i.e., absorbing) state, while E turb

1
remains a metastable state with a finite lifetime, even when Φ(E turb

1 ) < Φ(0).
To estimate the average lifetime of the turbulent state close to the transition, we proceed

as follows. As a simplifying hypothesis, we assume that close to Ret , the amplitude of the
noise can be approximated by a constant amplitude

Γ = η(E∗
1 )

5/4, (25)

assuming E1 ≈ E∗
1 , where E∗

1 is defined in Eq. (18). Note that E∗
1 is approximately the

mean value between the local maximum E th
1 of Φ(E1) and the turbulent state E turb

1 . This
approximation is not valid for the whole dynamics of E1, but it is a reasonable assumption
to describe the dynamics within the local potential well corresponding to the turbulent state,
since for Re only slightly above Ret , the extent of this local potential well is small. Under this
approximation, the computation of the average turbulent lifetime boils down to a standard
Arrhenius escape problem over an energy barrier ΔΦ, whose typical escape time scales as
exp(ΔΦ/Γ ), in the presence of a delta-correlated noise of amplitude Γ .

Defining ε = Re − Ret , we expand Φ(E1) around E1 = E∗
1 , for small ε:

Φ(E∗
1 + y) ≈ Φ(E∗

1 ) − E∗
1

Re2t
εy + E∗

1κ

3
y3, (26)

with |y| � E∗
1 , and where κ = 1

2 |F ′′(E∗
1 )|; the function F(E1) is defined in Eq. (17). For

ε > 0, Φ1(E∗
1 + y) has a local minimum for y = yt > 0 (turbulent state) and a local

maximum for y = −yt , where

yt =
(

ε

κRet

)1/2

. (27)
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One then obtains for the barrier ΔΦ = Φ(E∗
1 − yt ) − Φ(E∗

1 + yt ):

ΔΦ = 4E∗
1

3κ1/2Re3t
ε3/2 (ε > 0). (28)

As a result, the average turbulence lifetime τ behaves close to the laminar-turbulent transition
as

τ ∼ eμ(Re−Ret )3/2 , (29)

withμ = 4E∗
1/(3κ

1/2Re3t ). Hence the turbulence lifetime increases faster than exponentially
with the Reynolds number, in qualitative agreement with experimental results [7].

5 Conclusion

In this work, we have considered the subcritical transition to turbulence in the perspective of
discontinuous absorbing phase transitions. In this spirit, we have proposed and analyzed a
stochastic energy transfer model which qualitatively captures a number of key properties of
the subcritical transition to turbulence, including the existence of an absorbing laminar state
for all Reynolds number, the existence of a fluctuating turbulent state above a characteristic
Reynolds number, and a faster-than-exponential increase of the turbulence lifetime with
Reynolds number, close to the onset of the turbulent state. The resulting model can be derived
using minimal phenomenological assumptions, and is consistent with the Kolmogorov K41
phenomenology of fully developed turbulence in the limit of high Reynolds number.

We considered a simplified dynamics where energy transfers are fully directed toward
higher order modes (i.e., smaller length scales). Doing so, we discarded the possibility of
backward energy transfers, or more generally of backward information propagation. While
this simplification makes the model at least partly analytically tractable, it also leads to an
effective potential description of the turbulent state, which is unable to capture the excitability
mechanism that has been argued to play an important role in the laminar-turbulent transition
[4]. According to this mechanism, turbulent fluctuations exert an inhibitory feedback on the
energy transfer mechanism from the mean shear flow to turbulent modes, leading to locally
transient turbulent states. Generalizing the present cascade model to include an inhibitory
feedback effect akin to the excitability mechanism might be the topic of future work.

Besides, due to its simple formulation in terms of aggregatedmodes overwavevector shells
(in the spirit of shell models for isotropic fully developed turbulence), such a cascade model
is not able to account for instance for the emergence of periodic turbulent bands reported in
large-aspect-ratio experiments [41, 42] or numerical simulations [5, 49] in the plane Couette
and Taylor-Couette geometries. Extensions of this work may consider the present cascade
model as a local mesoscopic description of large-aspect-ratio flow geometries, over boxes
of a size given by the system’s extension over the shear direction. Coupling boxes along
the extended directions perpendicular to the shear direction might lead to an effective two-
dimensional description of the possibly complex spatio-temporal dynamics of the flow [29,
30, 34, 36].

At any rate, the present simple model aims at tentatively bridging the gap between shell
models for fully developed turbulence [16] and simple models of absorbing phase transitions
[26], since the relevance of the absorbing phase transition framework to describe the subcrit-
ical laminar-turbulent transition has recently been confirmed experimentally [31]. Along this
line of thought, one might expect the laminar-turbulent transition to become an interesting
field of investigation for the non-equilibrium statistical physics community.
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Appendix A: Qualitative Analogy with the Navier–Stokes Equation

The formEq. (2) of the energy transfer term, obtained by dimensional analysis, is reminiscent
of the transfer terms in the Navier–Stokes equation. Defining v̂k the spatial Fourier transform
of the velocity field v(r), and the (three-dimensional) energy spectrum Ek = 1

2 |v̂k|2, one has
from the Navier–Stokes equation

dEk
dt

= −νk2Ek −
∑
k′

(
i(k − k′) · v̂k′

)
(v̂k · v̂k−k′) + ik

p̂k
ρ

, (30)

with k = |k|, and where p̂k is the spatial Fourier transform of the pressure (which ensures
incompressibility), and ρ is the constant density of the fluid [21].

The qualitative analogy with our model goes as follows. The shell energy Ei corresponds
to the sum of Ek over all wavevectors k within shell i . By splitting the sum over k′ into a sum
over k′ with k′ < k and a sum over k′ with k′ > k, we obtain transfer terms from lower to
higher wavenumbers. These transfer terms depend on the velocity field vk′ and not only on
the energy Ek′ . They thus contain information about both the vectorial nature of the flow and
the complex phase of the Fourier transform. However, at a heuristic level, we recover that the
transfer term is proportional to the wavenumber ||k − k′|| (instead of k in our model), and
that the dimension of the term v̂k′ (v̂k · v̂k−k′) is the same as E3/2

k . The function f (x) in our
model thus effectively encodes the average ‘interference’ effects resulting from the complex
phase of vk, and its vectorial nature.

Appendix B: Harmonic Synthesizer for the Relaxation of the Turbulent
State

A harmonic synthesizer was built using FAUST [38] to generate dynamic sounds following
the evolution of the solutions of Eq. (22). The equation was solved using a finite element
method for N = 11 energy modes, keeping E11 fixed to the value E11 = 0.1. Parameter
values are given in Table 1. The synthesizer was designed as a sine wave of frequency 440Hz
and its 9 first harmonics, where the energy modes E1 to E10 modulate the amplitude of each
frequency according to:

synthesis(t) =
10∑
i=1

sin

(
440i

2π
t

)
Ei (t). (31)

At t = 0, energy was introduced in the system by setting each energy mode to Ei = 0.1,
and then the evolution under the stochastic dynamics Eq. (22) was recorded. We report in the
movie (see SM) the synthesized signal with different Reynolds numbers (Re = 0.93, 1.85,
3.09, 30.9) below and above the transition to turbulence, and with different noise amplitudes
(η = 1 or 2). The video shows the spectrum over time of the different syntheses while they
play.
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Table 1 Parameter values used in
the harmonic synthesizer

a b α β λ

1 1 0.1 0.93 1.08
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