
Journal of Statistical Physics         (2024) 191:114 
https://doi.org/10.1007/s10955-024-03326-4

Absence of Local Conserved Quantity in the Heisenberg
Model with Next-Nearest-Neighbor Interaction

Naoto Shiraishi1

Received: 1 April 2024 / Accepted: 13 August 2024
© The Author(s) 2024

Abstract
We rigorously prove that the S = 1/2 anisotropic Heisenberg chain (XYZ chain) with
next-nearest-neighbor interaction, which is anticipated to be non-integrable, is indeed non-
integrable in the sense that this system has no nontrivial local conserved quantity. Our
result covers some important models including the Majumdar–Ghosh model, the Shastry–
Sutherland model, and many other zigzag spin chains as special cases. These models are
shown to be non-integrable while they have some solvable energy eigenstates. In addition to
this result, we provide a pedagogical review of the proof of non-integrability of the S = 1/2
XYZ chain with Z magnetic field, whose proof technique is employed in our result.

Keywords Integrable systems · Heisenberg chain · Majumdar–Ghosh model · Local
integral of motion
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1 Introduction

Integrable systems, or exactly solvable systems, are special quantum many-body systems
whose energy eigenstates can be computed exactly [1–4]. The structure behind solvability is
the existence of (infinitely many) local conserved quantities, which decomposes the Hilbert
space and helps to construct energy eigenstates [5–10]. An established method to obtain local
conservedquantities in integrable systems is the quantum inverse scatteringmethod [2],which
algebraically reproduces the solutions obtained by the Bethe ansatz. The quantum inverse
scattering method has revealed the integrability of the Heisenberg model, the XXZ model,
and various more complex systems [11–13].

In contrast to the aforementioned deep understanding of integrable systems, very few stud-
ies have tackled non-integrable systems. Here, we identify non-integrability to the absence of
nontrivial local conserved quantity. Non-integrability is a necessary condition for the appli-
cation of the Kubo formula in the linear response theory [14–17] and for the existence of
normal transport [18] and thermalization phenomena [19–22], which suggests the importance
of clarifying non-integrability of quantummany-body systems. In spite of its importance and
expected ubiquitousness of non-integrable systems, quantum non-integrability has not been
studied from an analytical viewpoint for a long time (a notable exception is [9], while its
attempt is heuristic and relies on some plausible assumptions).

Recently, the author invented a method to prove the non-integrability of quantum
many-body systems, with which the XYZ model with Z magnetic field is proven to be
non-integrable [23]. By applying this method, the mixed-field Ising chain [24] and the PXP
model [25] were also shown to be non-integrable. However, these three applications are pre-
sented as craftsmanship, and the potential power and the general structure of this method
have not yet been clarified.

In this paper, we prove the non-integrability of the Heisenberg model and the XYZ model
with next-nearest-neighbor interactions. This model is also called as zigzag spin ladders,
where we regard the next-nearest-neighbor interaction on odd sites (1, 3, 5,. . .) and even sites
(2 ,4, 6,. . .) as two parallel lines and the nearest-neighbor interactions as ladders. We show
that if all of the next-nearest-neighbor interactions (X, Y, and Z) are nonzero and one of the
nearest-neighbor interactions with X, Y, and Z is nonzero, then this system has no nontrivial
local conserved quantity. Our setup includes an important model, the Majumdar–Ghosh
model [26], as its special case. The Majumdar–Ghosh model is a famous frustration-free
system, whose ground state and several excited energy eigenstates can be solved exactly [27–
29]. In addition to this model, various frustration-free zigzag spin chains [30–33] are also
special cases of our setup. By combining our result and the frustration-free property of these
models, theMajumdar–Ghoshmodel and other zigzag spin chainmodelsmentioned above are
rigorously proven to be interesting models where several energy eigenstates are solvable but
most of energy eigenstates are unsolvable, at least by the quantum inverse scattering method.
With a slight extension, a quantum chain model proposed by Shastry and Sutherland [34] is
also shown to have no local conserved quantity.

This paper is organized as follows. In Sect. 2.1, we rigorously define the local conserved
quantity and its absence and present our main theorems. We claim that the XYZ chain with Z
magnetic field and the Heisenberg chain with next-nearest-neighbor interaction have no local
conserved quantity. Although the non-integrability of the former has already been shown in
[23], in this paper, we provide a pedagogical explanation of this proof since this proof serves
as a prototype of other applications. In Sect. 2.2, we explain the proof method for the absence
of local conserved quantity: Expanding a candidate of a local conserved quantity by the basis
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with the Pauli matrices and the identity operator, we demonstrate that all of the coefficients
of these operators are zero by using the fact that it commutes with the Hamiltonian. In Sect.
2.3, we introduce several useful symbols employed in our proofs.

In Sect. 3, we review the proof of the absence of local conserved quantity in the XYZ
chain with Z magnetic field. Since some of its proof idea is directly extended to our main
result in Sect. 4, we explain this proof in a pedagogical and systematic way. In Sect. 3.2, we
treat the simplest case as a simple demonstration and show that all the remaining coefficients
are zero. In Sect. 3.1, we restrict a possible form of nonzero coefficients. In Sect. 3.3 we
introduce several symbols, and using them, in Sect. 3.4 we demonstrate that all the remaining
coefficients are zero, which completes our proof.

Section 4 is our main part, where we prove the absence of local conserved quantity in the
Heisenberg chain with next-nearest-neighbor interaction. In Sects. 4.1 and 4.2, we restrict a
possible form of nonzero coefficients, along with a similar line to Sect. 3.1. In Sect. 4.3, with
using symbols introduced in Sect. 3.3, we demonstrate that all the remaining coefficients
have zero coefficients, which completes our proof. We slightly extend our result in Sect. 4.4,
with which the Shastry–Sutherland model (a Heisenberg-type quantum chain model, not the
famous two-dimensional model) is covered.

2 Problem and General Strategy

2.1 Claim

This paper aims to prove the absence of local conserved quantity, which we employ as
the definition of the quantum non-integrability in this paper, in two spin models which are
considered to be non-integrable. One is the standard S = 1/2 XYZ spin chain on L sites
with a magnetic field in z-direction with the periodic boundary condition. By denoting by X ,
Y , Z the Pauli matrices σ x , σ y , σ z , the Hamiltonian is expressed as

H = −
L∑

i=1

[J X Xi Xi+1 + JY YiYi+1 + J Z Zi Zi+1] −
L∑

i=1

hZi (1)

with setting all the coupling constants J X , JY , J Z nonzero. Here, we identify site L + 1 to
site 1, meaning the periodic boundary condition. We call this model as XYZ + h model in
short. The non-integrability of XYZ + h model with JX �= JY and h �= 0 is shown in [23].
We review this result in Sect. 3.

The other model we treat is the S = 1/2 XYZ model with next-nearest-neighbor inter-
action, which is the main subject of this paper. The Hamiltonian of this model is expanded
as

H =
L∑

i=1

[J X
1 Xi Xi+1+JY1 YiYi+1+J Z

1 Zi Zi+1]+
L∑

i=1

[J X
2 Xi Xi+2+JY2 YiYi+2+J Z

2 Zi Zi+2],
(2)

where we identify sites L + 1 and L + 2 to sites 1 and 2, implying the periodic boundary
condition. We call this model as NNN-XYZ model in short. This model is also called a zigzag
spin chain, which has been investigated in the context of frustration-free systems [30–33]. If
Ja1 and Ja2 (a ∈ {X , Y , Z}) do not depend on the direction a, this Hamiltonian is isotropic and
reduces to the Heisenberg-type interaction. In particular, the Majumdar–Ghosh model [26]
is included as a special case. We suppose that all of J X

2 , JY2 , J Z
2 and one of J X

1 , JY1 , J Z
1 are
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nonzero. In the following, we set J Z
1 nonzero. We treat NNN-XYZ model in Sect. 4, where

the proof technique presented in Sect. 3 is essential.

In order to state our claim rigorously, we first clarify the notion of the locality of operators.

Definition 1 An operator C is a k-support operator if its minimum contiguous support is
among k sites.

Let us see several examples. With promising that the subscript of an operator represents
the site it acts, an operator X4Y5Z6 is a 3-support operator and X2X5 is a 4-support operator,
since the contiguous support of the latter is {2, 3, 4, 5}. In case without confusion, we call the
shift-sum of k-support operators, e.g.,

∑
i XiYi+1Xi+2, also simply as a k-support operator.

We express a sequence of l operators with A ∈ {X , Y , Z , I } starting from site i to site
i + l − 1 by a shorthand symbol Al

i := A1
i A

2
i+1 · · · Al

i+l−1. We promise that the first and the
last operators A1 and Al take one of the Pauli operators (X , Y , or Z ), not an identity operator
I , while other operators A2, . . . , Al−1 are one of {X , Y , Z , I }. We denote a set of such
operator sequences A1A2 · · · Al by Pl . Using these symbols, a candidate of a shift-invariant
local conserved quantity can be expressed as

Q =
k∑

l=1

∑

Al∈Pl

L∑

i=1

qAl Al
i (3)

with coefficients qAl ∈ R. The sum of Al runs over all possible 9 × 4l−2 sequences of
operators from XX · · · XX to Z I · · · I Z . The Pauli matrices and the identity span the space
of 2 × 2 Hermitian matrices, which confirms that the above form covers all possible shift
invariant quantities whose contiguous support of summand is less than or equal to k.

Definition 2 An operator Q in the form of Eq. (3) is a k-support conserved quantity if (i) Q
is conserved in the sense that [Q, H ] = 0, and (ii) one of qAk is nonzero.

Conventionally, a local conserved quantity refers to a k-support conserved quantity with
k = O(1) with respect to the system size L . Our main results exclude a much larger class of
conserved quantities, including some k = O(L) cases.

Theorem 1 The XYZ + h model with J X �= JY and h �= 0 has no k-support conserved
quantity with 3 ≤ k ≤ L/2.

Theorem 2 The NNN-XYZ model with J X
2 , JY2 , J Z

2 �= 0 and J Z
1 �= 0 has no k-support

conserved quantity with 4 ≤ k ≤ L/2 − 1.

These results demonstrate that all nontrivial conserved quantities in these models are
highly nonlocal, implying that the quantum inverse scatteringmethod never solves thesemod-
els. We note that the upper bound of k is almost tight because the square of the Hamiltonian,
H2, is a L/2+2-support conserved quantity in the XYZ + h model, and is a L/2+3-support
conserved quantity in the NNN-XYZ model. We also note that the system has some trivial
conserved quantities including the Hamiltonian itself and, in the case of symmetry, a mag-
netic field. They are k-support conserved quantities with k less than the conditions in the
above theorems.

We emphasize that although we restrict possible conserved quantities in the shift-invariant
form, this restriction does not decrease the generality of our result. We explain its intuitive
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reason below and rigorously justify it in the “Appendix”. Suppose that Q is not shift invariant.
Then, by defining T as the shift operator by one site,

∑L
j=1 T

j QT− j is also a conserved
quantity and is now shift-invariant. Hence, it suffices to treat shift-invariant conserved quan-
tities.

2.2 Proof Idea

Let μ be the size of the maximum contiguous support of H , which is two in the XYZ + h
model and three in the NNN-XYZ model. We first notice that the commutator of a k-support
operator Q and H is an at most k + μ − 1-support operator, which guarantees the expansion
as

[Q, H ] =
k+μ−1∑

l=1

∑

Bl∈Pl

L∑

i=1

rBl Bl
i . (4)

The conservation of Q implies rBl = 0 for any Bl , which leads to many constraints (linear
relations) on qA in Eq. (3) by comparing both sides of Eq. (4). Our goal is to show that these
linear relations do not have nontrivial solutions except for qAk = 0 for all Ak , which means
that Q cannot be a k-support conserved quantity.

Our proof consists of two steps.

(a) We examine the condition rBl = 0 for all Bl from l = K + μ − 1 to l = K + 1,
and show that the coefficients of Ak except those in a specific form (i.e., doubling-
product operators for the XYZ + h model and extended doubling-product operators for
the NNN-XYZ model) are zero. At the same time, we also compute explicit expressions
of the remaining coefficients of Ak . In particular, we show that if one of the remaining
coefficients is zero, then all the remaining coefficients must be zero.

(b) We examine the conditions for rBk = 0 for all Bk , and show that one of the remaining
coefficient of Ak is zero.

The latter step is highly model-dependent, and we need elaborated constructions for the XYZ
+ hmodel and the NNN-XYZmodel separately. In contrast, the former steps for thesemodels
are almost the same.

2.3 Symbols and Terms (1)

In this paper, when we align Pauli operators as XY , this symbol means an operator where
X acts on a site and Y acts on the next site (i.e., XiYi+1). If we intend to express a product
of Pauli operators on the same site, we use a dot symbol · as X · Y . For completeness, we
summarize the rule of the product of Pauli matrices below:

X · X = Y · Y = Z · Z = I , (5)

X · Y = −Y · X = i Z , (6)

Y · Z = −Z · Y = i X , (7)

Z · X = −X · Z = iY . (8)

This rule leads to an expression of a commutator of two different Pauli matrices A, B ∈
{X , Y , Z} (A �= B) as

[A, B] = 2A · B. (9)
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For our later use, it is convenient to define divestment of a phase factor and signless product
of Pauli matrices. We divest a phase factor of Pauli matrices as

|aX | = |a|X , |aY | = |a|Y , |aZ | = |a|Z (10)

with a ∈ C, where the symbol | · | denote divestment. The signless product of Pauli matrices
is a product with divestment, which is written as

|X · Y | = |Y · X | = Z , (11)

|Y · Z | = |Z · Y | = X , (12)

|Z · X | = |X · Z | = Y . (13)

To recover the lost phase factor, we introduce the sign factor σ(A, B) = ±1 for A, B ∈
{X , Y , Z} (A �= B) so that

A · B = iσ(A, B)|A · B|. (14)

A concrete expression is

σ(X , Y ) = σ(Y , Z) = σ(Z , X) = 1, (15)

σ(Y , X) = σ(Z , Y ) = σ(X , Z) = −1. (16)

For a product of l operators A = A1
i A

2
i+1 · · · Al

i+l−1, the divestment is defined as

|A| = ∣∣A1
i

∣∣ ∣∣A2
i+1

∣∣ · · ·
∣∣∣Al

i+l−1

∣∣∣ . (17)

If Ai ∈ {X , Y , Z} and Ai �= Ai+1 are satisfied for all i , its sign factor is defined recursively
as

σ(A1, A2, . . . , Al) = σ(A1, A2)σ (A2, A3, . . . , Al) =σ(A1, A2)σ (A2, A3)σ (A3, . . . , Al)

=σ(A1, A2)σ (A2, A3) · · · σ(Al−1, Al).

(18)

For example, we have σ(X , Y , X , Z) = σ(X , Y )σ (Y , X)σ (X , Z) = 1.

We shall introduce some further symbols and terms to describe commutators. When a
commutation relation [A,C] = cD holdswith a number coefficient c, we say that the operator
D is generated by the commutator of A and C. In our proof, we examine commutators
generating a given operator and derive a relation of coefficients of operators.

Consider the XYZ + h model and a candidate of conserved quantity Q with k = 4. A
5-support operator

∑
i XiYi+1Xi+2Yi+3Xi+4 in [Q, H], for example, is generated by the

following two commutators:

−i[XiYi+1Xi+2Zi+3, Yi+3Yi+4] = −2XiYi+1Xi+2Xi+3Yi+4, (19)

−i[Zi+1Xi+2Xi+3Yi+4, Xi Xi+1] = 2XiYi+1Xi+2Xi+3Yi+4, (20)

where we dropped
∑

i , the summation over i , for visibility. In case without confusion, we
also drop subscripts for brevity. We visualize these two commutation relations similarly to
the column addition as follows:

X Y X Z
Y Y

−2 X Y X X Y

Z X X Y
X X

2 X Y X X Y
.
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Here, two arguments of the commutator are written above the horizontal line, and the result
of the commutator (including the imaginary number i) is written below the horizontal line.
The horizontal positions in this visualization represent the spatial positions of spin operators.

The operator XY XXY in [Q, H ] is generated only by the above two commutators, from
which we say that XY X Z and Z X XY form a pair. Then, the condition rXY XXY = 0 implies
the following relation

− qXY X Z + qZXXY = 0. (21)

We next introduce a useful symbol Ai := Ai Ai+1, whichwe call as doubling-product. The
Hamiltonian of the XYZ + h model contains three doubling-products, X = XX , Y = YY ,
and Z = Z Z . When we align several doubling-products, we promise that a neighboring
doubling-product has its support with a single-site shift. For example, we can express

XY Xi = |(Xi Xi+1)(Yi+1Yi+2)(Xi+2Xi+3)|
= Xi |Xi+1 · Yi+1||Yi+2 · Xi+2||Xi+3 = Xi Zi+1Zi+2Xi+3. (22)

doublingspsproductspsdefWe require that the same doubling-products cannot be neighboring
(e.g., XX Z is not allowed). We call operators expressed in the above form as doubling-
product operators. In general, a doubling-product operator A with l doubling-products
A1, A2, . . . , Al is computed as

Ai = A1
i |A1

i+1 · A2
i+1||A2

i+2 · A3
i+2| · · · |Al−1

i+l−1 · Al
i+l−1|Al

i+l . (23)

Using the sign factor σ defined in Eq. (18), the phase factor of Ai can be recovered as

(A1
i A

1
i+1) · (A2

i+1A
2
i+2) · · · (Al

i+l−1A
l
i+l) = (i)lσ(A1, A2, . . . , Al)Ai . (24)

To highlight the power of the expression with doubling-products, we write a doubling-
product operator ABC · · · D as

A A
B B
C C

. . .

D D

, (25)

which we call a column expression of ABC · · · D. Here, the double horizontal line means
the multiplication of all the operators with divestment (removing the phase factor), which
we use for both doubling-product and non-doubling-product operators. Keep in mind not to
confuse a single horizontal line, which represents a commutation relation. Single and double
horizontal lines are frequently used at the same time as

A A
B B
C C

. . .

D D

E E

, (26)

which represents the commutator [ABC · · · D, E]. Here we abbreviated the last row (the
resulting operator of these commutators) for brevity. The column expression can be easily
extended to operators which are not doubling-product operators.
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Similarly to doubling-product operators,we define the sign of a commutator [A, B] includ-
ing −i denoted by s([A, B]) as

− i[A, B] = 2s([A, B])|A · B|. (27)

For example, we have s([Zi , Y i+1]) = −1, which follows from −i[Zi , Y i+1] = −2Z XYi
and |Zi ·Y i+1| = Z XYi . If both A and B are single Pauli matrices on the same site, we have
s([A, B]) = σ(A, B). We also express the argument of s in the form of the horizontal line as

s([X ZYi , Z Zi+2]) = s

(
X Z Y

Z Z

)
= 1, (28)

where X ZYi and Z Zi+2 are the abbreviations of Xi Zi+1Yi+2 and Zi+2Zi+3, respectively.
We promise that if an operator has a single subscript, the subscript represents the leftmost
site on which this operator acts. Using the sign of a commutator, the commutator equation
26 is expressed as

[ABC · · · D, E] = 2is([D, E])ABC · · · DE . (29)

3 XYZModel with ZMagnetic Field: A Review

3.1 Commutators Generating k+ 1-Support Operators

We prove the absence of nontrivial local conserved quantity along the idea presented in Sect.
2.2. Suppose that a k-support operator Q is a conserved quantity. The conservation of Q
implies that all rBl in Eq. (4) is zero; rBl = 0. Using this fact, we derive many relations on
the coefficients qA in Eq. (3) by comparing both sides of Eq. (4) and show that qAk = 0 for
all Ak .

A commutator of a k-support operator and the Hamiltonian can generate an at most k+1-
support operator. A k + 1-support operator in [Q, H] is generated by a commutator such that
the interaction term (XX , YY , and Z Z ) acts on the left end or the right end of a k-support
operator as

A B · · · C
X X

A B · · · D X
,

E · · · F G
Y Y
Y H · · · F G

. (30)

In the first step of our proof (step a in Sect. 2.2), we consider the case that the commutator
generates k + 1-support operators. The analysis on commutators generating k + 1-support
operators leads to the following consequence:

Lemma 1 Let Q be a k-support conserved quantity expanded as Eq. (3). Then, its coefficients
of a k-support operator A ∈ Pk should be expressed as

qA = ckXYZh · σ(B1, B2, . . . , Bk−1)

k−1∏

i=1

J Bi
(31)

with a common constant ckXYZh if A is a doubling-product operator written as A = ∏k−1
i=1 B

i
,

and qA = 0 otherwise.

We also express
∏k−1

i=1 J Bi
by J B .
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Let us prove Lemma 1. We first treat the case that A is a doubling-product operator and
confirmEq. (31). To this end,we consider two commutators generating the same k+1-support
operator in the column expression as

A A
B B
C C

. . .

D D

E E

,

B B
C C

. . .

D D
E E

A A

(32)

with A, B,C, . . . , D, E ∈ {X , Y , Z}. These two diagrams represent commutators
[ABC · · · Di , Ei+k−1] and [BC · · · DEi+1, Ai ], respectively. Since the k + 1-support
operator A|A · B| · · · |D · E |E is generated only by these two commutators, these two
doubling-product operators ABC · · · D and BC · · · DE form a pair, and we have

J EqABC ···D[ABC · · · Di , Ei+k−1] + J AqBC ···DE [BC · · · DEi+1, Ai ] = 0. (33)

The signs of these two commutators in Eq. (32) are computed as

s

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

A A
B B
C C

. . .

D D

E E

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= s([D, E]) = σ(A, B,C, . . . , D, E)

σ (A, B,C, . . . , D)
, (34)

s

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

B B
C C

. . .

D D
E E

A A

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= s([B, A]) = −σ(A, B,C, . . . , D, E)

σ (B,C, . . . , D, E)
, (35)

respectively. The latter has the minus sign because the order of A and B in multiplication (or
commutation) is converted compared to the order of products in the definition of the column
expression. In summary, two commutators in Eq. (32) imply a relation of coefficients:

qABC ···D
σ(A, B,C, . . . , D)

J E = qBC ···DE

σ(B,C, . . . , D, E)
J A (36)

for any sequence ABC · · · DE , which is equivalent to

qABC ···D
σ(A, B,C, . . . , D)J A J B JC · · · J D

= qBC ···DE

σ(B,C, . . . , D, E)J B JC · · · J D J E
. (37)

Fix ABC · · · D as a reference doubling-product operator with length k, whose coefficient is
written in the form of Lemma 1 as

qABC ···D = ckXYZh · σ(ABC · · · D)J A J B JC · · · J D (38)
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with some ckXYZh. Then, using Eq. (37), the coefficient of BC · · · DE is also shown to be
written in the form of Lemma 1 as

qBC ···DE = ckXYZh · σ(BC · · · DE)J B JC · · · J D J E . (39)

Since any pair of doubling-product operators is connected as

B1B2B3 · · · Bk−1 ↔ B2B3 · · · Bk−1D ↔ B3 · · · Bk−1DC1 ↔
· · · ↔ Bk−1DC1 · · ·Ck−3 ↔ DC1 · · ·Ck−3Ck−2 ↔ C1 · · ·Ck−3Ck−2Ck−1, (40)

repeated applications of Eq. (37) implies the first part of Lemma 1.

We next clarify what happens if an operator A is not a doubling-product operator, which
is the second part of Lemma 1. In a non-doubling-product operator A, one of the following
three happens.

(1) One of A2 . . . , Ak−1 is an identity operator I .

(2) There exists 2 ≤ n ≤ k − 1 satisfying
∣∣∣
∏n−1

i=1 Ai
∣∣∣ = ∣∣A1 · A2 · · · An−1

∣∣ = An .

(3)
∏k−1

i=1 Ai = ∣∣A1 · A2 · · · Ak−1
∣∣ �= Ak holds.

To confirm the above fact, it suffices to demonstrate that an operator A without the above

three conditions is indeed a doubling-product operator. Since
∣∣∣
∏n−1

i=1 Ai
∣∣∣ �= An holds for

2 ≤ n ≤ k − 1 (negation of condition 2), we notice that Bn = ∣∣∏n
i=1 A

i
∣∣ =

∣∣∣
∏n−1

i=1 Ai · An
∣∣∣

for 2 ≤ n ≤ k − 1 are Pauli operators (not the identity operator). By construction,

BnBn+1 =
∣∣∣
∏n−1

i=1 Ai ∏n
i=1 A

i
∣∣∣ = An is satisfied, and the negation of condition 1 sug-

gests that BnBn+1 = An is not the identity operator. In addition,
∏k−1

i=1 Ai = Ak (the
negation of condition 3) implies Bk−1 = Ak . Hence, A is a doubling-product operator
A = A1B2B3 · · · Bk−1.

Below we shall explain why the coefficient becomes zero in these three cases. We first
demonstrate the idea by simple examples and then provide a general proof. In case 1, the
column expression of an operator, e.g., XY X Z I Z XY , is written as

XY X Z I Z XY =

X X
Z Z

Y Y
X I

Z Z
Y Y

. (41)

This operator forms a pair with Y ZY X Z I Z Z , which is seen in generating Y ZY X Z I Z XY :

X X
Z Z

Y Y
X I

Z Z
Y Y

Y Y

,

Y Y
X X

Z Z
Y Y

X I
Z Z

Y Y

. (42)
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These two commutators suggest

JY qXY X Z I Z XY − JY qY ZY X Z I Z Z = 0. (43)

However, Y ZY X Z I Z Z cannot form a pair in generating X Z ZY X Z I Z Z

Y Y
X X

Z Z
Y Y

X I
Z Z

X X
−2 X Z Z Y X Z I Z Z

(44)

because the right end is Z Z and no commutator of 8-support operator and XX , YY , Z Z can
result in this form of operators:

? ? ? ? ? ? ? ?
Z Z

X Z Z Y X Z I Z Z
. (45)

Since the coefficient of X Z ZY X Z I Z Z in [Q, H] is zero, our observation directly means

qY ZY X Z I Z Z = 0, (46)

which leads to
qXY X Z I Z XY = 0. (47)

Cases 2 and 3 can be treated similarly to case 1. An example of case 2 in the column
expression is

XY Z X Z XXY =

X X
Z Z

X X
Y Y

Z Z
Y Y

, (48)

which forms a pair with Z Z X Z XXX Z as

X X
Z Z

X X
Y Y

Z Z
Y Y

Z Z

,

Z Z
X X

Y Y
Z Z
Y Y

Z Z

X X

. (49)
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However, Z Z X Z XXX Z does not form a pair in generating Z Z X Z XXXXY

Z Z
X X

Y Y
Z Z

Y Y
Z Z

Y Y
−2 Z Z X Z X X X X Y

, (50)

because the left end is Z Z , and no commutator of 8-support operator and XX , YY , Z Z can
result in this form of operators:

? ? ? ? ? ? ? ?
Z Z

−2 Z Z X Z X X X X Y
. (51)

This directly implies
qZ ZX Z XXX Z = 0, (52)

which leads to
qXY Z X Z X XY = 0. (53)

An example of case 3 in the column expression is

XY X Z Z XX Z =

X X
Z Z

Y Y
X X

Y Y
Z Z
Y Z

, (54)

where the last line is not YY but Y Z . Here, XY X Z Z XX Z forms a pair with Z X Z Z XXY X
in generating XY X Z Z XXY X :

X X
Z Z

Y Y
X X

Y Y
Z Z
Y Z

X X

,

Z Z
Y Y

X X
Y Y

Z Z
Y Z

X X

X X

. (55)

As a consequence, the coefficient qXY X Z Z XX Z is connected to qZX Z Z XXY X withmultiplying
some constant.
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Similarly to previous arguments, we can remove doubling-products from the left and add
doubling-products to the right repeatedly, which results in the connection to

X X
Z Z

Y Y
X X

Y Y
Z Z
Y Z

↔

Z Z
Y Y

X X
Y Y

Z Z
Y Z

X X

↔ · · · ↔

Y Z
X X

Y Y
X X

Y Y
X X

Y Y

. (56)

However, the last operator YY Z Z Z Z ZY does not form a pair in generating YY Z Z Z Z Z Z X
because the left end is YY . Following a similar argument to previous ones, we conclude that
the coefficient of the initial operator, qXY X Z Z XX Z , is zero.

Now we shall formulate this argument in a general form. Our starting point is the fact that
if A1 = A2 or A2 = I , then qA = 0. This fact holds because A1A2 · · · Ak−1|Ak · B|B with
B �= Ak is generated only by a commutator [Ai , Bi+k−1].

To state our key observation for our proof, we construct a sequence of Pauli operators
{Bn} with Bn �= Bn+1 and B1 �= Ak . We denote

∣∣∏n
i=1 A

i
∣∣ = Kn and Cn = ∣∣Bn−1Bn

∣∣
with regarding B0 = Ak for convenience. We observe that if A1 �= A2 and A2 �= I , then
by considering commutators generating A1A2A3 · · · Ak−1C1B1, we have a linear relation
between the coefficient of A = A1A2A3 · · · Ak−1Ak and K 2A3 · · · Ak−1C1B1 = |A1 ·
A2|A3 · · · Ak−1|Ak · B1|B1 as

J B1
s([Ak, B1])qA = J A1

s([A2, A1])qK 2A3···Ak−1C1B1 . (57)

In a similar manner, if K 2 �= A3 and A3 �= I , we have

J B2
s([B1, B2])qK 2A3···Ak−1C1B1 = J K 2

s([K 3, K 2])qK 3A4A5···Ak−1C1C2B2 . (58)

In general, if Kn �= An+1 and An+1 �= I , we have

J Bn
s([Bn−1, Bn])qKn An+1···Ak−1C1C2···Cn−1Bn−1

= J Kn
s([Kn+1, Kn])qKn+1An+2···Ak−1C1C2···Cn Bn , (59)

and consequently qA and qKn+1An+2···Ak−1C1C2···Cn Bn are linearly connected through these
relations.

We shall show that if A is a non-doublingproduct operator, thenqKn+1An+2···Ak−1C1C2···Cn Bn

= 0 for some n, which leads to the desired result qA = 0. We first consider cases 1
and 2. By assumption, there exists n such that Kn+1 = An+2 or An+2 = I . Then,
qKn+1An+2···Ak−1C1C2···Cn Bn = 0 holds for this n because Kn+1An+2 · · · Ak−1C1C2 · · ·
CnCn+1Bn+1 is generated only by a commutator [Kn+1An+2 · · · Ak−1C1C2 · · ·CnBn

i ,

Bn+1
i+k−1].

We next consider case 3. Since Kk−1 �= Ak , we can set B1 such that C1 =∣∣Ak · B1
∣∣ = Kk−1. The aforementioned linear relation is elongated to the case of

n = k − 2, where the coefficient qKk−1C1C2···Ck−2Bk−2 is in consideration. Then,
qKk−1C1C2···Ck−2Bk−2 = 0 holds because qKk−1C1C2···Ck−2Ck−1Bk−1 is generated only by a

commutator [Kk−1C1C2 · · ·Ck−2Bk−2, Bk−1
i+k−1] (notice Kk−1 = C1). This completes

the proof of Lemma 1.
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In summary, we used the fact that (1) a connection of a pair with a commutator can be
regarded as removing and adding a doubling-product at the left or right end, and (2) if two
leftmost sites or two rightmost sites of a k-support operator are the same Pauli operator (XX ,
YY , or Z Z ), then it cannot form a pair and thus has zero coefficient. This idea is quite general
and is also used in treating the NNN-XYZ model in Sect. 4.

3.2 Demonstration with k = 3; an Example

Before going to our second step (step b in Sect. 2.2) for general k, we here present the idea
of step b in the simplest case, the case of k = 3.

In step b for k = 3, we treat 3-support operators in [Q, H ]. First, Y ZY is generated by
the following four commutators;

Y Z X
Z

−2 Y Z Y

X Z Y
Z

−2 Y Z Y

Y X
Y Y

2 Y Z Y

X Y
Y Y

2 Y Z Y .

We note that Y Z X = Y X and X ZY = XY are doubling-product operators. Since Y ZY is
generated only by these four commutators, we have

h(qY Z X + qXZY ) − JY (qY X + qXY ) = 0. (60)

Similarly to this, we consider YY Z

X Y Z
Z

−2 Y Y Z

Y X Z
Z

−2 Y Y Z

Y X
Z Z

−2 Y Y Z

and XX Z
X Y Z

Z
2 X X Z

Y X Z
Z

2 X X Z

X Y
Z Z

2 X X Z ,

both of which are generated only by three commutators. Again, we note that XY Z = X Z
and Y X Z = Y Z are doubling-product operators. These two sets of commutators imply

h(qXY Z + qY X Z ) + JZqY X =0, (61)

h(qXY Z + qY X Z ) + JZqXY =0. (62)

Combining Eqs. (60), (61), and (62) to erase qY X and qXY , and inserting Eq. (31) shown in
Lemma 1, we obtain

h

(
1 − JY

JX

)
c3XYZh J

X J Z = 0, (63)

which directly implies the desired result c3XYZh = 0 as long as h �= 0 and JX �= JY .

3.3 Symbols and Terms (2)

We are ready to prove Theorem 1 for general k according to step b (in Sect. 2.2) by analyzing
k-support operators in [Q, H]. We again use the expression (3). We have shown in Lemma
1 that qA = 0 for all non-doubling-product operators A ∈ Pk and that all the remaining qA
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with A ∈ Pk is linearly connected. Thus, it suffices to demonstrate that a doubling-product
operator A ∈ Pk has zero coefficient, qA = 0. Toward this end,we introduce further symbols.

We shall introduce symbols by taking some examples. In the case of k = 5, Z X Z X Z is
generated by the following four commutators:

Z X Z Y Z
Z

2 Z X Z X Z ,

Z Y Z X Z
Z

2 Z X Z X Z ,

Z X Z Y
Z Z

2 Z X Z X Z ,

Y Z X Z
Z Z

2 Z X Z X Z .

(64)

Using the column expression, these commutators read

Z Z
Y Y

X X
Z Z

Z

,

Z Z
X X

Y Y
Z Z

Z

,

Z Z
Y Y

X X
Z

Z Z

,

X X
Y Y

Z Z
Z

Z Z

. (65)

A key fact behind the first two commutators is the relation

Z Z
Y Y

X X
Z Z
Z

=

Z Z
X X

Y Y
Z Z

Z

, (66)

where one should recall Eq. (9) implying that a signless product (double line) and a com-
mutation relation (single line) result in the same operator. This equality suggests that we can
switch the role of X and Y in the alternation of these two by moving a single Z from one end
to the other. As will be demonstrated at the beginning of Sect. 3.4, we shall extend this idea
to general strings.

Now we introduce some symbols which help to describe commutators as above. First,
we introduce a symbol “↑

Z
” representing a commutator with Z at which the left and right

doubling-products have an overlap. For example, XY ↑
Z

Z represents the commutator

[Xi Zi+1Xi+2Zi+3, Zi+2], since XY Zi = |(Xi Xi+1) · (Yi+1Yi+2) · (Zi+2Zi+3)| and the
overlap of Y and Z is at site i + 2. Using this symbol, the first two commutators in (64)
(see also Eq. (65)) are expressed simply as

ZY X ↑
Z
Z , Z ↑

Z
XY Z .

Next, we introduce a symbol “
Z| ”, which represents the multiplication of Z at this position

in the column expression. Here, we employ the signless product in the multiplication. For

example, X
Z| ZY X means

X
Z| ZY X =

X X
Z Z

Y Y
X X

Z

= XXX Z X . (67)
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We note that the expression with
Z| is not unique (e.g., Z X ZY = ZY X

Z| = Z
Z| XY ).

We further introduce two symbols “
←+” and “

→+”, which mean that commutators act at

the rightmost and leftmost sites, respectively. Examples are XY
←+ X = [XY i , Xi+2] and

Z
→+ YYY Z = [Zi , Yi+1Yi+2Yi+3Zi+4]. Then, the latter two commutators in (64) (see also

Eq. (65)) are expressed as

ZY X
Z| ←+ Z , Z

→+ Z| XY Z .

We finally introduce symbols which represents alternating X and Y defined as

L2n := Y X · · · Y X︸ ︷︷ ︸
n copies of Y X

, (68)

L2n+1 := X Y X · · · Y X︸ ︷︷ ︸
n copies of Y X

, (69)

R2n := XY · · · XY︸ ︷︷ ︸
n copies of XY

, (70)

R2n+1 := XY · · · XY︸ ︷︷ ︸
n copies of XY

X . (71)

Correspondingly, whenwe consider the sign σ of a stringwith these symbols, we promise that
L and R mean Y , X , Y , X , . . . and X , Y , X , . . ., respectively. For example, σ(L4, Z , Y , R3)

means σ(Y , X , Y , X , Z , Y , X , Y , X).

3.4 Commutators Generating k-Support Operators

In general, as seen in the previous subsection in Eq. (64), a single k-support operator in [Q, H ]
is generated by four commutators; two are of a k-support operator in Q and a magnetic field
(1-support operator) in H , and the other two are of a k − 1-support operator in Q and the
exchange interaction (2-support operator) in H . Concretely, the following four commutators

AB · · · Z ↑
Z
XY XY · · · XY Z · · ·CD, (72)

AB · · · ZY XY X · · · Y X ↑
Z
Z · · ·CD, (73)

AB · · · Z Z| XY XY · · · XY Z · · ·C ←+ D, (74)

A
→+ B · · · Z Z| XY XY · · · XY Z · · ·CD (75)

generate the same operator. Note that · · · XY Z · · · might be · · · Y X Z · · · and vice versa,
which depends on the parity of the length. We also note that the sequence Z · · ·CD in the
right and the sequence AB · · · Z in the left are sometimes absent.

In some cases, a k-support operator in [Q, H ] is generated only by three commutators. This
happens when the two leftmost or rightmost operators of the generated k-support operator
are XX , YY , or Z Z . An example is Z X XXX , which is generated only by the following
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three commutators:

Z Z
Y Y

Z Z
X X

Z

,

Z Z
Y Y

Z Z
Y Y

Z

,

Y Y
Z Z

X X
Z

Z Z

. (76)

For brevity of explanation, below we shall treat only the case with odd k. Extension to
even k is straightforward. To prove that one of the remaining coefficients is zero, we consider
the following sequence of operators for k ≥ 5

↑
Z
Y Z Rk−3 X ↑

Z
Z Rk−3

Z| Y Z Rk−4 ←+ Y

Z ↑
Z
Y Z Rk−4 Z X ↑

Z
Z Rk−4 Z

Z| Y Z Rk−5 ←+ X Z
→+ Z| Y Z Rk−4

L1Z ↑
Z
Y Z Rk−5 L1Z X ↑

Z
Z Rk−5 L1Z

Z| Y Z Rk−6 ←+ Y X
→+ Z

Z| Y Z Rk−5

L2Z ↑
Z
Y Z Rk−6 L2Z X ↑

Z
Z Rk−6 L2Z

Z| Y Z Rk−7 ←+ X Y
→+ L1Z

Z| Y Z Rk−6

.

.

.
.
.
.

.

.

.
.
.
.

Ln Z ↑
Z
Y Z Rk−n−4 Ln Z X ↑

Z
Z Rk−n−4 Ln Z

Z| Y Z Rk−n−5 ←+ X Y
→+ Ln−1Z

Z| Y Z Rk−n−4

Ln+1Z ↑
Z
Y Z Rk−n−5 Ln+1Z X ↑

Z
Z Rk−n−5 Ln+1Z

Z| Y Z Rk−n−6 ←+ Y X
→+ Ln Z

Z| Y Z Rk−n−5

.

.

.
.
.
.

.

.

.
.
.
.

Lk−6Z ↑
Z
Y Z R2 Lk−6Z X ↑

Z
Z R2 Lk−6Z

Z| Y Z R1 ←+ Y X
→+ Lk−7Z

Z| Y Z R2

Lk−5Z ↑
Z
Y Z R1 Lk−5Z X ↑

Z
Z R1 Lk−5Z

Z| Y Z
←+ X Y

→+ Lk−6Z
Z| Y Z R1

Lk−4Z ↑
Z
Y Z Lk−4Z X ↑

Z
Z Lk−4Z

Z| Y ←+ Z X
→+ Lk−5Z

Z| Y Z

Lk−3Z ↑
Z
Y Lk−3Z X ↑

Z
Y

→+ Lk−4Z
Z| Y

(77)
where operators in the same row generate the same k-support operator, and n in the middle of
rows is even. Note that the case of k = 3 has already been treated in the previous subsection.

We shall write down obtained relations on coefficients from rows with n and n+1, which
induce the following relation:

h(−qLn ZY Z Rk−n−4 + qLn Z X Z Rk−n−4) − J Xq
Ln Z

Z|Y Z Rk−n−5
+ JY q

Ln−1Z
Z|Y Z Rk−n−4

= 0,

(78)

h(−qLn+1ZY Z Rk−n−5 + qLn+1Z X Z Rk−n−5) + JY q
Ln+1Z

Z|Y Z Rk−n−6
− J Xq

Ln Z
Z|Y Z Rk−n−5

= 0.

(79)

Our tentative goal is to erase all of the coefficients of k − 1-support operator and derive a
relation on cXYZh, by multiplying a proper number and summing up the relations obtained
by these rows. Using the relation

qLn ZY Z Rk−n−4 = JY

J X
qLn Z X Z Rk−n−4 , (80)
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which follows from Eq. (31), the resulting relation after the summation reads

h

(
J X

JY
− 1

)
kckXYZhσ(X , Z , Rk−3)J X Z Rk−3 = 0, (81)

where ckXYZh is a constant introduced in Eq. (31). This relation implies the desired result.

Although the above proof can be confirmed by direct computation, it is worth clarifying the
structure to determine the signs of coefficients in the above relations, which guarantees that
we finally get a nontrivial relation on ckXYZh. In fact, an improper sequence induces a trivial
relation 0 = 0, and we can get no information on ckXYZh, the constant introduced in Eq. (31)
(see also the end of this subsection, where we present an example of an improper sequence).
We examine theminus sign ofq

Ln Z
Z|Y Z Rk−n−5

and the plus sign ofq
Ln−1Z

Z|Y Z Rk−n−4
inEq. (78)

as examples. The former sign −1 comes from that of the commutator s(Ln Z
Z|Y Z Rk−n−5

←+
X) = −1. An important fact is that the former sign is equal to

s(Ln Z
Z|Y Z Rk−n−5 ←+ X) = s(Ln ZY Z Rk−n−5 ←+ X) = σ(Ln, Z , Y , Z , Rk−n−4)

σ (Ln, Z , Y , Z , Rk−n−5)
, (82)

where the argument of the numerator is the generated operator by the commutator in the

argument of the middle term: Ln Z
Z|Y Z Rk−n−5

←+ X . The first equality of Eq. (82) states that
the following two commutators, which is the case with n = 0 and k = 7, have the same sign:

Z Z
Y Y

Z Z
X X

Y Y
Z

X X

and

Z Z
Y Y

Z Z
X X

Y Y

X X

, (83)

since the single Z at this position does not affect the sign of the commutator. Similarly, the

sign of commutator Y
→+ Ln−1Z

Z|Y Z Rk−n−4 is calculated as

s(Y
→+ Ln−1Z

Z|Y Z Rk−n−4) = s(Y
→+ Ln−1ZY Z Rk−n−4) = − σ(Ln, Z , Y , Z , Rk−n−4)

σ (Ln−1, Z , Y , Z , Rk−n−4)
,

(84)
where the minus sign on the right-hand side comes from the minus sign in Eq. (35).

Keeping Eq. (80) inmind, the relation on coefficients induced by the rowwith n in Eq. (77)
(which is equal to Eq. (78)) is calculated as

h

(
JY

J X
− 1

)
σ(Ln, Z , Y , Z , Rk−n−4)J Ln ZY Z Rk−n−4 · ckXYZh

+ J X σ(Ln, Z , Y , Z , Rk−n−4)

σ (Ln, Z , Y , Z , Rk−n−5)
q
Ln Z

Z|Y Z Rk−n−5

− JY
σ(Ln, Z , Y , Z , Rk−n−4)

σ (Ln−1, Z , Y , Z , Rk−n−4)
q
Ln−1Z

Z|Y Z Rk−n−4
= 0, (85)
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or equivalently

h

(
JY

J X
− 1

)
· ckXYZh + J X

J Ln ZY Z Rk−n−4

q
Ln Z

Z|Y Z Rk−n−5

σ(Ln, Z , Y , Z , Rk−n−5)

− JY

J Ln ZY Z Rk−n−4

q
Ln−1Z

Z|Y Z Rk−n−4

σ(Ln−1, Z , Y , Z , Rk−n−4)
= 0. (86)

In a similar manner to above, the relation on coefficients induced by the row with n + 1 in
Eq. (77) (which is equal to Eq. (79)) is calculated as

h

(
JY

J X
− 1

)
· ckXYZh + JY

J Ln+1ZY Z Rk−n−5

q
Ln+1Z

Z|Y Z Rk−n−6

σ(Ln+1, Z , Y , Z , Rk−n−6)

− J X

J Ln+1ZY Z Rk−n−5

q
Ln Z

Z|Y Z Rk−n−5

σ(Ln, Z , Y , Z , Rk−n−5)
= 0. (87)

Since J Ln ZY Z Rk−n−4 = J Ln+1ZY Z Rk−n−5
, by summing the above relations (without multiply-

ing any number) all the coefficients of k − 1-support operators cancel and the coefficient of
ckXYZh is kept finite, which leads to a relation in the form of ckXYZh × (finite number) = 0.

For a better understanding, we here present an example of an improper sequence that
conveys a trivial relation 0 = 0. An example with k = 4 is

↑
Z
Y Z X X ↑

Z
Z X

Z|Y Z
←+ X

↑
Z
XY Z Y X ↑

Z
Z Y

Z|Y ←+ Z Y
→+ Z|Y Z

↑
Z
XY X Y XY ↑

Z
Y
Z|Y ←+ X Y

→+ Z|Y X

↑
Z
Y X Z XY ↑

Z
Z

Z|Y X
←+ Z

(88)

which produces four relations

hqY Z X + hqXZ X + J XqZ|Y Z
= 0, (89)

−hqXY Z + hqY X Z + J Zq
Y
Z|Y

+ JY qZ|Y Z
= 0, (90)

−hqXY Z + hqY XY − J Xq
Y
Z|Y

+ JY qZ|Y X
= 0, (91)

hqY X Z − hqXY Z − J ZqZ|Y X
= 0. (92)

Erasing qZ|Y Z
, q

Y
Z|Y
, and qZ|Y X

, we find a trivial relation 0 = 0 and cannot extract any

information on c4XYZh.
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4 HeisenbergModel with Next-Nearest-Neighbor Interaction

4.1 Commutators generating k+ 2-support operators

The proof idea is again that presented in Sect. 2.2. Namely, by supposing the conservation
of a k-support operator Q, we examine the commutation relation in detail and show that
qAk = 0 for all Ak .

In the case of the NNN-XYZmodel, a commutator of a k-support operator and the Hamil-
tonian can generate at most k + 2-support operators. Therefore, we first consider the case
that the commutator generates k + 2-support operators.

A k + 2-support operator in [Q, H ] is generated only by a commutator such that the
next-nearest-neighbor interaction term (X I X , Y IY , and Z I Z ) acts on the left end or right
end of a k-support operator. The following two types of commutators serve as examples:

A B · · · C
X I X

A B · · · D I X
,

E · · · F G
Y I Y
Y I H · · · F G

. (93)

To explain our result, we introduce several symbols in addition to Sect. 2.3. We first
introduce extended-doubling-products by using a tilde symbol as X̃ = Xi Xi+2 = X I X ,
Ỹ = Y IY , and Z̃ = Z I Z . Similarly to the doubling-product operator, we introduce an
extended-doubling-product operator which is an operator expressed as, e.g., X̃ Ỹ X̃ Z̃ with
divesting its phase factor. Here, we promise that a neighboring extended-doubling-product
has its support with a two-site shift. The aforementioned extended-doubling-product operator
X̃ Ỹ X̃ Z̃ , for example, reads

X̃ Ỹ X̃ Z̃=|(Xi Xi+2) · (Yi+2Yi+4) · (Xi+4Xi+6) · (Zi+6Zi+8)| =
X I X

Y I Y
X I X

Z I Z

= X I Z I Z IY I Z . (94)

Here, the double horizontal line represents the column expression introduced in Sect. 2.3,
where we take products in the vertical direction under the rule of the signless products.

Now we employ a similar argument to Sect. 3.1, leading to a constraint similar to the
doubling-product operator in the XYZ + h model, where the extended-doubling-product
operator plays the role of the doubling-product operator in Sect. 3.1. Precisely, only k-
support extended-doubling-product operators may have a nonzero coefficient in Q, and other
k-support operators have zero coefficients. We shall explain the latter point briefly. Consider
operator X I Z I Z ZY I X IY in the case of k = 11. Then, this operator can be expressed as

X I Z I Z ZY I X IY =

X I X
Y I Y

X Z X
Z I Z

Y I Y

, (95)
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where a “defect” X ZX is inserted. This defect lies in the following series of pairs

X I X
Y I Y

X Z X
Z I Z

Y I Y

↔

Y I Y
X Z X

Z I Z
Y I Y

Z I Z

↔

X Z X
Z I Z

Y I Y
Z I Z

Y I Y

.

(96)

However, the last operator XZY I X I X I X IY cannot form a pair because the two leftmost
operators are X Z · · · , not in the form of X I · · · :

X Z Y I X I X I X I Y
Z I Z

X Z Y I X I X I X I X I X
,

? ? ? ? ? ? ? ? ? ? ?
X Z ?
X Z Y I X I X I X I X I X

. (97)

This fact implies
qXZY I X I X I X IY = 0, (98)

and hence the initial operator X I Z I Z ZY I X IY also has zero coefficient:

qX I Z I Z ZY I X IY = 0. (99)

In general, if two leftmost operators are not one of X I · · · ,Y I · · · , or Z I · · · , or two rightmost
operators are not one of · · · I X , · · · IY , or · · · I Z , then this operator cannot form a pair. Thus,
arguments similar to Sect. 3.1 (proof of Lemma 1) confirm that if a k-support operator is
not an extended-doubling-product operator, then by removing extended-doubling-products
from left and adding extended-doubling-products to right repeatedly, we arrive at an operator
which cannot form a pair, resulting a zero coefficient.

Lemma 2 Let Q be a k-support conserved quantity expanded as (3). Then, its coefficients of
a k-support operator A ∈ Pk should be expressed as

qA = ckNNN · σ(B1, B2, . . . , B(k−1)/2)

(k−1)/2∏

i=1

J Bi

2 (100)

with a common constant ckNNN if A is an extended-doubling-product operator written as

A = ∏(k−1)/2
i=1 B̃i , and zero otherwise.

Clearly, a k-support conserved quantity with even k vanishes.

4.2 Commutators Generating k+ 1-Support Operators

We next consider the case that a commutator generates k + 1-support operators.
We notice that only the following two commutators generate a k + 1-support operator

X I Z I · · · IY X :

X I X
Y I Y

. . .

Z I Z

X X

,

Y I Y
. . .

Z I Z
X X

X I X

. (101)
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Using symbols introduced in Sects. 2.3 and 3.3, the above two commutators are expressed
as

X̃ Ỹ · · · Z̃ ←+ X , X̃
→+ Ỹ · · · Z̃ X , (102)

which implies the following relation of coefficients:

J X
1 qX̃Ỹ ···Z̃ − J X

2 qỸ ···Z̃ X = 0. (103)

This relation connects the coefficient of a k-support operator and that of a k − 1-support
operator.

We can connect two coefficients of k − 1-support operators, e.g., qỸ X̃ ···Z̃ X and qX̃ ···Z̃ XỸ ,
by considering the following two commutators:

Y I Y
X I X

. . .

Z I Z
X X

Y I Y

,

X I X
. . .

Z I Z
X X

Y I Y

Y I Y

, (104)

which implies
JY2 qỸ X̃ ···Z̃ X + JY2 qX̃ ···Z̃ XỸ = 0. (105)

This observation suggests that the coefficient of a k − 1-support operator written as the
product of (k−3)/2 extended-doubling-products and one doubling-product, e.g., X̃ Ỹ X̃ Z X̃ Z̃ ,
is connected to the coefficients of k-support operators. For example, X̃ Ỹ X̃ Z X̃ Z̃ forms a pair
as

X̃ Ỹ X̃ Z X̃ Z̃ ↔ Ỹ X̃ Ỹ X̃ Z X̃ ↔ X̃ Ỹ X̃ Ỹ X̃ Z ↔ Ỹ X̃ Ỹ X̃ Ỹ X̃ , (106)

where the first three operators are k − 1-support and the last one is k-support.

An important fact is that a k − 1-support operator except for the above form has a zero
coefficient. We first demonstrate that a k + 1-support operator is generated by at most two
commutators. At first glance, a k+1-support operator can be generated by four commutators:

B̃
→+ (k − 1-support operator), (107)

B
→+ (k-support operator), (108)

(k − 1-support operator)
←+ B̃, (109)

(k-support operator)
←+ B, (110)

whose column expressions are

? ? ? ? ? ?
B I B

,
? ? ? ? ? ? ?

B B
,

? ? ? ? ? ?
B I B

,
? ? ? ? ? ? ?

B B
. (111)

Here, we excluded the possibility of commutators between B̃ and k-support operator such
that B̃ nontrivially acts on the second left (or right) site of the k-support operator, since these
column expressions are

? ? ? ? ? ? ?
B I B

,
? ? ? ? ? ? ?

B I B
, (112)
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but Lemma 2 tells that any k-support operator with a nonzero coefficient has an identity
operator at the second left site and the second right site, implying that these commutators
vanish.

From Eq. (111), we see that only two of these four commutators generate a given k + 1-
operator. To see this, we focus on the operators at the second left and second right sites. If the
operator at the second left site is an identity operator I , the second commutator in Eq. (111)
never generates this operator, and if the operator at the second left site is a Pauli operator X ,
Y or Z , the first commutator in Eq. (111) never generates this operator. A similar argument
holds for the second right site. In summary, only two commutators in Eq. (111) generate a
single k + 1-support operator.

Wenowdemonstrate howa k−1-support operatorwhich is not a product ofmany extended-
doubling-products and single doubling-product is shown to have zero coefficient. Consider
the case of k = 11 and X I Z I ZYY IY Z as an example. The operator X I Z I ZYY IY Z can
be expressed in the column expression as

X I Z I ZYY IY Z =

X I X
Y I Y

X X
Z Z

X I X
Z Z

. (113)

Note that there are one XX and two Z Z ’s. These operators appear in the following series of
pairs

X I X
Y I Y

X X
Z Z

X I X
Z Z

↔

Y I Y
X X

Z Z
X I X

Z Z
X I X

↔

X X
Z Z

X I X
Z Z

X I X
Y I Y

↔

Z Z
X I X

Z Z
X I X

Y I Y
X I X

, (114)

where the first three are k−1-support operators while the last one is a k-support operator. The
last operator, ZY IYY I Z I Z I X , is not an extended-doubling-product operator and thus has
zero coefficient, qZY IYY I Z I Z I X , which implies that the first operator also has zero coefficient,
qX I Z I ZYY IY Z = 0.

Following similar arguments to above, we find the following result:

Lemma 3 Let Q be a k-support conserved quantity expanded as (3). Then, its coefficients of
a k − 1-support operator A ∈ Pk−1 should be expressed as

qA = ckNNN · σ(B1, B2, . . . , B(k−1)/2)J Bm

1

(k−1)/2∏

i=1,i �=m

J Bi

2 (115)
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with a common constant ckNNN to Eq. (100) if A is an operator written as A =
B̃1 B̃2 · · · B̃m−1Bm B̃m+1 · · · B̃(k−1)/2, and qA = 0 otherwise.

4.3 Commutators Generating k-Support Operators

We finally consider the case that a commutator generates a k-support operator. Similarly to
Sect. 3.4, we introduce symbols ↑

zz
and ↑

zz
, representing commutation relations with Z Z at

this position. We express, for example, these commutators

Y I Y
Z I Z

Z Z
,

Y I Y
Z I Z

Z Z
(116)

as
Ỹ ↑

zz
Z̃ , Ỹ ↑

zz
Z̃ (117)

respectively. We also introduce
zz| and

zz| , representing multiplication of Z Z at this position.
We express, for example, these commutators

Y I Y
Z Z

Z I Z
,

Y I Y
Z Z

Z I Z
(118)

as

Ỹ
zz| ←+ Z̃ , Ỹ

zz| ←+ Z̃ (119)

respectively. Remark that the relative position of the vertical bar or the vertical arrow and

symbol Z Z represents which Z in the doubling-product Z Z acts nontrivially. The symbol
zz|

(resp.
zz| ) represents that the right (resp. left) Z in Z Z acts. We also note that although both

Ỹ
zz| and Ỹ Z represent the same operator Y I X Z (i.e., Ỹ

zz| = Ỹ Z = Y I X Z ), we promise

the following rule: Ỹ Z
←+ Ỹ means that Ỹ acts on the right end of Z and generates 6-local

operator Y I X X IY , while Ỹ
zz| ←+ Z̃ means that Z̃ acts on the right end of Ỹ and generates

5-local operator Y I Z ZY . Two commutators Ỹ
zz| ←+ Ỹ and Ỹ Z

←+ Ỹ are represented as

Ỹ
zz| ←+ Ỹ =

Y I Y
Z Z

Y I Y
, Ỹ Z

←+ Ỹ =
Y I Y

Z Z

Y I Y
. (120)

We further introduce symbols which represent alternating X̃ and Ỹ defined as

L̃2n := Ỹ X̃ · · · Ỹ X̃︸ ︷︷ ︸
n copies of Ỹ X̃

, (121)

L̃2n+1 := X̃ Ỹ X̃ · · · Ỹ X̃︸ ︷︷ ︸
n copies of Ỹ X̃

, (122)

R̃2n := X̃ Ỹ · · · X̃ Ỹ︸ ︷︷ ︸
n copies of X̃ Ỹ

, (123)
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R̃2n+1 := X̃ Ỹ · · · X̃ Ỹ︸ ︷︷ ︸
n copies of X̃ Ỹ

X̃ . (124)

Similarly to the previous section (Sect. 3.3), when we consider the sign σ , we promise that
L̃ and R̃ mean Y , X , Y , X . . . and X , Y , X , . . ., respectively.

Nowwe construct a sequence of commutators, with which we can demonstrate ckNNN = 0.
For the brevity of explanation, we only treat the case of k ≡ 3 mod 4 . The extension to the
case of k ≡ 1 mod 4 is straightforward. We express k = 4r + 3 and consider the following
sequence:

L̃2r ↑
zz

Z̃ L̃2r
zz| ←+ Z̃ Ỹ

→+ L̃2r−1
zz| Z̃

L̃2r−1 ↑
zz

Z̃ R̃1 L̃2r−1
zz| Z̃ ←+ X̃ X̃

→+ L̃2r−2
zz| Z̃ R̃1

L̃2r−2 ↑
zz

Z̃ R̃2 L̃2r−2
zz| Z̃ R̃1

←+ Ỹ Ỹ
→+ L̃2r−3

zz| Z̃ R̃2

...
...

...

L̃2r−n ↑
zz

Z̃ R̃n L̃2r−n
zz| Z̃ R̃n−1

←+ Ỹ Ỹ
→+ L̃2r−n−1

zz| Z̃ R̃n

L̃2r−n−1 ↑
zz

Z̃ R̃n+1 L̃2r−n−1
zz| Z̃ R̃n

←+ X̃ X̃
→+ L̃2r−n−2

zz| Z̃ R̃n+1

...
...

...

L̃2 ↑
zz

Z̃ R̃2r−2 L̃2
zz| Z̃ R̃2r−3

←+ Ỹ Ỹ
→+ L̃1

zz| Z̃ R̃2r−2

L̃1 ↑
zz

Z̃ R̃2r−1 L̃1
zz| Z̃ R̃2r−2

←+ X̃

(125)

where n is even. The leftmost column has commutators between a k-body operator and 2-
body operator Z Z (in the Hamiltonian), the second left column has a commutator (in the first
row) between a k − 1-body operator and a 3-body operator Z̃ in the Hamiltonian, and the
two right columns show commutators between a k − 2-body operator and a 3-body operator
(X̃ or Ỹ ) in the Hamiltonian.

We put two remarks: first, each operator corresponding to each row is generated only by a
single commutator between a k-body operator and 2-body operator ↑

zz
, because generating the

operators by ↑
zz
, the corresponding k-support operator is not an extended-doubling-product

operator. Second, the last law generating Y IY ZY · · · has only two elements, because we

cannot obtain this operator by a commutator in the form of Ỹ
→+ (k − 2-support operator).

Now we examine their signs. First, all the commutators in the leftmost column has the
plus sign, which follows from

s(L̃m ↑
zz

Z̃ R̃m′
) = s([Y , Z ]) = +1. (126)

Next, to compute the signs of commutators in the second right column we notice

s(L̃2r−n
zz| Z̃ R̃n−1 ←+ Ỹ ) = s(L̃2r−n Z̃ R̃n−1 ←+ Ỹ ), (127)
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which holds for the same reason as the first equality of Eq. (82). An example of this fact can
be seen by using the column expression as

s

⎛

⎜⎜⎜⎜⎜⎜⎝

Y I Y
X I X

Z I Z
X I X

Z Z

Y I Y

⎞

⎟⎟⎟⎟⎟⎟⎠
= s

⎛

⎜⎜⎜⎜⎝

Y I Y
X I X

Z I Z
X I X

Y I Y

⎞

⎟⎟⎟⎟⎠
(128)

Using the same technique as Eq. (34), the right-hand side of Eq. (127) is computed as

s(L̃2r−n Z̃ R̃n−1 ←+ Ỹ ) = σ(L̃2r−n, Z , R̃n)

σ (L̃2r−n, Z , R̃n−1)
. (129)

Similarly, we compute the signs of commutators in the rightmost column as

s(Ỹ
→+ L̃2r−n−1

zz| Z̃ R̃n) = s(Ỹ
→+ L̃2r−n−1 Z̃ R̃n) = − σ(L̃2r−n, Z , R̃n)

σ (L̃2r−n−1, Z , R̃n)
, (130)

where the minus sign comes from the same reason as the minus sign in Eq. (35):

s

⎛

⎜⎜⎜⎜⎝

X I X
Z I Z

X I X
Y I Y

Y I Y

⎞

⎟⎟⎟⎟⎠
= −σ(Y , X , Z , X , Y )

σ (X , Z , X , Y )
. (131)

Hence, by employing the abbreviation J
∏

i B̃
i := ∏

i J
Bi

2 , the relation obtained from the
n + 1-th row (except n = 0) reads

J Z
1 σ(L̃2r−n, Z , R̃n)J L̃2r−n Z̃ R̃n · ckNNN + JY2

σ(L̃2r−n, Z , R̃n)

σ (L̃2r−n, Z , R̃n−1)
q
L̃2r−n

zz| Z̃ R̃n−1

− JY2
σ(L̃2r−n, Z , R̃n)

σ (L̃2r−n−1, Z , R̃n)
q
L̃2r−n−1

zz| Z̃ R̃n
= 0,

(132)

which is equivalent to

J Z1 · ckNNN + JY2
J L̃2r−n Z̃ R̃n

q
L̃2r−n

zz| Z̃ R̃n−1

σ(L̃2r−n, Z , R̃n−1)
− JY2

J L̃2r−n Z̃ R̃n

q
L̃2r−n−1

zz| Z̃ R̃n

σ(L̃2r−n−1, Z , R̃n)
= 0. (133)

In a similar manner to above, the relation on coefficients obtained from the n + 2-th row
(except n = 2r − 2) reads

J Z
1 ·ckNNN+ J X

2

J L̃2r−n−1 Z̃ R̃n+1

q
L̃2r−n−1

zz| Z̃ R̃n

σ(L̃2r−n−1, Z , R̃n)
− J X

2

J L̃2r−n−1 Z̃ R̃n+1

q
L̃2r−n−2

zz| Z̃ R̃n+1

σ(L̃2r−n−2, Z , R̃n+1)
= 0.

(134)
In addition, the last row implies

J Z
1 · ckNNN + J X

2

J L̃2r−1 Z̃ R̃

q
L̃2r−1

zz| Z̃

σ(L̃2r−1, Z)
= 0. (135)
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Noticing that for even n′ and odd n′′

J X
2

JY2
J L̃2r−n′

Z̃ R̃n′ = J L̃2r−n′′
Z̃ R̃n′′

(136)

is satisfied, we find that by summing these relations [Eqs. (133) and (134)] from n = 0 to
n = 2r − 1 all of coefficients of k − 2-support operators cancel and only the coefficients on
k-support and k − 1-support operators remain.

We shall finally derive an explicit relation on ckNNN. To this end, we clarify the relation

on the k − 1-support operator (i.e., the top row). Noticing that the sign of L̃2r
zz| and L̃2r

zz| Z̃
are given by σ(L̃2r , Z) and σ(L̃2r ), we compute this relation as

J Z
1 σ(L̃2r , Z)J L̃2r Z̃ · ckNNN +J Z

2 s(L̃2r
zz| ←+ Z̃)ckNNN · σ(L̃2r , Z)J L̃2r

zz|

−JY2
σ(L̃2r , Z)

σ (L̃2r−1, Z)
q
L̃2r−1

zz| Z̃
= 0, (137)

where we defined J L̃2r
zz| := (JY2 J X

2 )r J Z
1 and ckNNN is a constant introduced in Eq. (100).

The quantity s(L̃2r
zz| ←+ Z̃)σ (L̃2r , Z) in the second term is computed as

s(L̃2r
zz| ←+ Z̃)σ (L̃2r , Z) = s([Y , Z ])σ (L̃2r , Z) = σ(L̃2r , Z). (138)

Inserting this, the sum of the relations [Eqs. (133) and (134)] from n = 0 to n = 2r −1 leads
to

(2r + 1)J Z
1 ckNNN = 0, (139)

which implies that all the coefficients of k-support operators in Q is zero. This completes the
proof.

4.4 Extension to SystemsWithout Translation Invariance

By a careful examination of the above derivation, we find that all the Z Z term, both commu-

tators (↑
zz
and ↑

zz
) and multiplications (

zz| and
zz| ), in the sequence (125) acts on the same two

sites. This means that even if the nearest-neighbor interaction terms are position-dependent,
i.e., the Hamiltonian is given by

H =
L∑

i=1

[J X
1,i Xi Xi+1+JY1,i YiYi+1+J Z

1,i Zi Zi+1]+
L∑

i=1

[J X
2 Xi Xi+1+JY2 YiYi+1+J Z

2 Zi Zi+1]
(140)

with position-dependent coefficients J X
1,i , J

Y
1,i , and J Z

1,i , our proof still works, and the absence

of local conserved quantity can be shown as long as one of J X
1,i , J

Y
1,i , and J Z

1,i is nonzero at
some i .

Since Lemma 2 is shown by using only the next-nearest-neighbor interaction terms, the
same statement as Lemma 2 holds for theHamiltonian (140). On the other hand, by expanding
Q by Q = ∑k

l=1
∑

Al∈Pl

∑L
i=1 qAl ,i A

l
i , Eq. (115) in Lemma 3 should be replaced by

qAk−1, j = ckNNN · σ(B1, B2, . . . , B(k−1)/2)J Bm

1, j+2(m−1)

(k−1)/2∏

i=1,i �=m

J Bi

2 . (141)
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In our final step, the key relation (132) is replaced by

J Z
1,i∗σ(L̃2r−n, Z , R̃n)J L̃2r−n Z̃ R̃n · ckNNN + JY2

σ(L̃2r−n, Z , R̃n)

σ (L̃2r−n, Z , R̃n−1)
q
L̃2r−n

zz| Z̃ R̃n−1,i∗

− JY2
σ(L̃2r−n, Z , R̃n)

σ (L̃2r−n−1, Z , R̃n)
q
L̃2r−n−1

zz| Z̃ R̃n ,i∗
= 0,

(142)

where i∗ is a fixed site independent of n. The coefficients q
L̃2r−n

zz| Z̃ R̃n−1,i∗
depend on the

position, which is determined by the second subscript i∗ referring to the position of Z Z .
Following the same argument, we obtain counterpart relations to Eqs. (133) and (134) as

J Z
1,i∗ · ckNNN + JY2

J L̃2r−n Z̃ R̃n

q
L̃2r−n

zz| Z̃ R̃n−1,i∗

σ(L̃2r−n, Z , R̃n−1)
− JY2

J L̃2r−n ,Z ,R̃n

q
L̃2r−n−1

zz| Z̃ R̃n ,i∗

σ(L̃2r−n−1, Z , R̃n)
= 0, (143)

J Z
1,i∗ · ckNNN + J X

2

J L̃2r−n−1 Z̃ R̃n+1

q
L̃2r−n−1

zz| Z̃ R̃n ,i∗

σ(L̃2r−n−1, Z , R̃n)
− J X

2

J L̃2r−n−1 Z̃ R̃n+1

q
L̃2r−n−2

zz| Z̃ R̃n+1,i∗

σ(L̃2r−n−2, Z , R̃n+1)
= 0,

(144)

where the coefficient of the first term J Z
1 is replaced by J Z

1,i∗ , and others are the same.
Moreover, the counterpart of (137) reads

J Z
1,i∗σ(L̃2r , Z)J L̃2r Z̃ · ckNNN + J Z

2 s(L̃2r
zz| ←+ Z̃)ckNNN · σ(L̃2r , Z)J L̃2r

zz| ,i∗

−JY2
σ(L̃2r , Z)

σ (L̃2r−1, Z)
q
L̃2r−1

zz| Z̃ ,i∗
= 0. (145)

Combining them and following the same argument as above, we obtain

2r J Z
1,i∗c

k
NNN = 0. (146)

Since i∗ is arbitrary, this means that ckNNN = 0 if J Z
i �= 0 at some i .

Owing to this extension, a quantum spin chain model proposed by Shastry and
Sutherland [34] is covered.1 The Shastry–Sutherland model is the XYZ chain with next-
nearest-neighbor interaction, whose next-nearest-neighbor interaction is shift-invariant while
its nearest-neighbor interaction is invariant by two-site shift. Our argument demonstrates that
the Shastry–Sutherland model has no nontrivial local conserved quantity.

5 Discussion

We have rigorously shown that the anisotropic Heisenberg chain (XYZ chain) with next-
nearest-neighbor interaction has no local conserved quantity. The Hamiltonian we treat
includes important models as a special case, the Majumdar–Ghosh model, the Shastry–
Sutherland model, and other zigzag spin chains, which are prominent examples of
frustration-free systems. Our computation on the signs of commutators and coefficients is
systematic, and with this detailed analysis, we clarify the reason why the proposed sequences
in Eqs. (77) and (125) work to exclude the possibility of a nontrivial local conserved quantity.

These key sequences of commutators follow the structure that additional terms (Zmagnetic
field in the XYZ + h-model and Z Z interaction term in the NNN-XYZ model) settle at the

1 We note that this model is different from the famous two-dimensional model, which is frequently called
the Shastry–Sutherland model.
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right end at first, and they move to the left end at last. As far as we seek, this structure is
necessary to obtain a nontrivial relation for the coefficient c in the expansion (3) (cXYZh and
cNNN). Otherwise, a sequence has the additional term at the right end at both the first and last
of the sequence, where the coefficient of c vanishes and we obtain a trivial relation 0 = 0.
With noticing that the presented proof technique is also useful to determining local conserved
quantities in some integrable systems [35–38], we expect that the distinction of integrability
and non-integrability reduces to whether a good sequence exists or not, which will shed new
light on the integrability.

As presented, our proofmethod is valid for systems not onlywith nearest-neighbor interac-
tion but also with next-nearest-neighbor interaction, which suggests that our method applies
to systems with longer interactions. In particular, if the longest interaction is the Heisenberg
type, then following a similar argument to Sects. 3.1 and 4.1, a possible form of k-support
operators with nonzero coefficient is limited to extended-doubling-product-type operators by
replacing X̃ = X I X , Ỹ = Y IY , and Z̃ = Z I Z by X I I · · · I X , Y I I · · · IY , and Z I I · · · I Z ,
respectively. Although further analyses depend on the model in consideration, we strongly
expect that many complex models can be proven to be indeed non-integrable by this method.
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Appendix

A Translation Invariance of Local Conserved Quantity

In the main part, we restrict a possible form of a local conserved quantity to the shift-invariant
form (3). In this “Appendix”, we show that this does not lose the generality, i.e., all possible
local conserved quantities are shit invariant. The approach shown in this “Appendix” is
inspired by [24] and is simpler and more transparent than that presented in [23].

The most general form of k-support local conserved quantity is expressed as

Q =
k∑

l=1

∑

Al

L∑

i=1

qAl ,i A
l
i , (147)
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where the coefficient qAl ,i is position dependent. We suppose that k is the minimum number
such that a nontrivial k-support local conserved quantity exists. Our goal is to confirm qAl ,i =
qAl ,i+1 for all A

l and all i .
This result is in fact readily shown in Sect. 3.1 by examining the argument carefully. We

demonstrate it by taking a 4-support conserved quantity Q and Al = XY Z as an example.
As shown in Sect. 3.1, XY Z and Y Z X form a pair. Recalling the structure written in the
column expression (32), we find that two coefficients qXY Z ,i and qY Z X ,i+1 form a pair. In
this manner, we find pairs

qXY Z ,i ↔ qY Z X ,i+1 ↔ qZXY ,i+2 ↔ qXY X ,i+3 ↔ qY XY ,i+4. (148)

On the other hand, qY XY ,i+4 also forms pairs as

qY XY ,i+4 ↔ qZY X ,i+3 ↔ qY ZY ,i+2 ↔ qXY Z ,i+1. (149)

It is easy to confirm that the sign and additional coefficients J A of qXY Z ,i and qXY Z ,i+1 are
the same, which implies the desired result

qXY Z ,i = qXY Z ,i+1. (150)

In general, for A1 · · · Ak−1, by denoting two Pauli operators not equal to Ak−1 by B and C ,
we have relations

q
A1···Ak−1,i

↔ q
A2···Ak−1B,i+1

↔ q
A3···Ak−1BC,i+2

↔ · · · ↔ qBCBC ···,i+k ↔ qCBC ···,i+k+1
(151)

and

qCBC ···,i+k+1 ↔ q
Ak−1CBC ···,i+k

↔ q
Ak−2Ak−1CBC ···,i+k−1

↔ · · · ↔ q
A2···Ak−1C,i+2

↔ q
A1···Ak−1,i+1

. (152)

These relations imply the desired result

q
A1···Ak−1,i

= q
A1···Ak−1,i+1

. (153)

In the case of the NNN-XYZ model, the above argument shows that a k-support operator
A on site i and site i + 2 have the same coefficient. To show that those on site i and
site i + 1 are the same, we need to employ both cases where k + 2-operators and k + 1-
operators are generated. Let us consider qX̃Ỹ Z̃ ,i as an example. The above argument shows
that qX̃Ỹ Z̃ ,i = qX̃Ỹ Z̃ ,i+2m and qX̃Ỹ Z̃ ,i+1 = qX̃Ỹ Z̃ ,i+2m+1 for any integer m. By considering
the case generating k + 1-operators, we find a sequence of pairs

qX̃Ỹ Z̃ ,i ↔ qỸ Z̃ X ,i+2 ↔ qZ̃ XỸ ,i+4 ↔ qXỸ Z̃ ,i+6 ↔ qỸ Z̃ Ỹ ,i+7. (154)

In addition, we find a pair
qỸ Z̃ Ỹ ,i+7 ↔ qX̃Ỹ Z̃ ,i+5, (155)

which implies the desired result

qX̃Ỹ Z̃ ,i = qX̃Ỹ Z̃ ,i+5 = qX̃Ỹ Z̃ ,i+1. (156)

The generalization for general Ã1 Ã2 · · · Ãk/2−1 is straightforward.
We finally exclude the possibility that a k-support conserved quantity Q has shift-

invariant k-support operators but non-shift-invariant m-support operators with m < k. We
prove it by contradiction. Suppose that k is the minimum number such that a nontrivial
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k-support conserved quantity Q exists. Consider Q′ = Q − T QT−1 with one-site shift
operator T . By construction, Q′ is conserved, and since Q has shift-invariant k-support
operators, Q′ is a less-than-k-support conserved quantity. In addition, by expanding Q′ as
Q′ = ∑k−1

l=1
∑

Al∈Pl

∑L
i=1 q

′
Al ,i

Al
i , we easily see from the construction that

∑L
i=1 q

′
Al ,i

= 0

for any Al . This directly implies that Q′ is not a trivial local conserved quantity (the Hamil-
tonian H and the Z magnetic field in the case with symmetry), and hence Q′ is a nontrivial
less-than-k-support conserved quantity, which is a contradiction.
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