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Abstract
The generalizedmean-field orthoplicial model is amean-fieldmodel on a space of continuous
spins on R

n that are constrained to a scaled (n − 1)-dimensional �1-sphere, equivalently a
scaled (n−1)-dimensional orthoplex, and interact through a general interaction function. The
finite-volume Gibbs states of this model correspond to singular probability measures. In this
paper, we use probabilistic methods to rigorously classify the infinite-volume Gibbs states of
thismodel, andwe show that they are convex combinations of product states. The predominant
methods utilize the theory of large deviations, relative entropy, and equivalence of ensembles,
and the key technical tools utilize exact integral representations of certain partition functions
and locally uniform estimates of expectations of certain local observables.

Keywords Infinite-volume Gibbs states · Equivalence of ensembles · Equilibrium statistical
mechanics · Mean-field models · Curie–Weiss models

1 Introduction

The purpose of this paper is to present rigorous probabilistic methods to compute and classify
the large n-limits of integrals of the form

μ
g
n[ f ◦ πI ] := 1

Qn(g)

∫
Rn

dφ e
ng

(
1
n

∑n
i=1 φi

)
δ

(
n∑

i=1

|φi | − n

)
( f ◦ πI )(φ), (1.0.1)

where g : R → R is a “sufficiently regular” function which will be referred to as an
interaction function, dφ is the Lesbesgue measure on R

n , δ(·) is formally a delta function,
f ∈ Cb(R

I ), where Cb(R
I ) is the space of continuous bounded functions on a finite index

set I ⊂ [n] := {1, 2, ..., n}, πI : R
n → R

I is the canonical coordinate projection, and
Qn(g) is a normalization constant, which will be referred to as the partition function, which
make μ

g
n into a probability measure. The main result in this paper is given in Theorem 3.3.6,

and it constitutes a full characterization of the infinite-volume Gibbs states corresponding
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to the models given by the probability measures in Eq. (1.0.1) given some regularity of the
interaction function g. The main result states the infinite-volume Gibbs states of this model
are given by convex combinations of particular exponential product states, and the coefficients
of the convex combination are explicitly determined by an associated free energy function.
Explicit examples of this type of result are given in the associated examples appearing after
Theorems 3.2.4 and 3.2.6.
As a guide for the further reading of our introduction, we present an informal version of this
main result.

Theorem For sufficiently regular interaction functions g, it follows that

lim
n→∞

1

n
ln Qn(g) = sup

m∈[−1,1]
ψg(m),

where ψg : [−1, 1] → R is given by

ψg(m) := g(m) + 1 + ln
(
1 +

√
1 − m2

)
,

and, if we denote the elements of the finite collection M∗ of global maximizing points of ψg

by the collection (m∗), then it follows that there exists a collection (cm∗) of positive weights
summing to unity such that

lim
n→∞ μ

g
n =

∑
m∗

cm∗ηm
∗
,

where ηm
∗
are probability measures corresponding to factorizable product states onRN with

single-site marginal densities given by

x �→ e−βx−μ|x |

q(β, μ)
,

where (β, μ) ∈ R×(0,∞) are coefficients satisfying |β| < μ and q(β, μ) are normalization
constants making the marginals into probability measures.
The dependence on the collection (m∗) of global maximizing points of the weights cm∗ and
of the coefficients (β, μ) of each ηm

∗
can be explicitly determined.

The rest of this introduction is dedicated to the explanation and motivation of the various
objects appearing in this informal statement of the main result. For the actual statement of the
main result, one should note that the notation is changed to be more specific and suggestive.
We will refer to the probability measure μ

g
n as a finite-volume Gibbs state and the infinite-

volume limit, i.e. the large n-limit, when it exists, will be referred to as the infinite-volume
Gibbs state. We refer to Sect. 2 for a complete definition and discussion of the notion of
infinite-volume Gibbs state in this context.
At a heuristic level, to make such finite-volume Gibbs states rigorous, we use the fact that the
constraint function inside the delta function, when restricted to an orthant of Rn , precisely
defines a uniform measure over a scaled (n − 1)-dimensional simplex. This method is used
in Sect. 4.1. Since the (n−1)-dimensional �1-sphere corresponds to the (n−1)-dimensional
orthoplex, we refer to this model as the generalized mean-field orthoplicial model. This
naming convention is similar to the convention used for the mean-field spherical model, see
[1], but the constraint changes from the �2-sphere to the orthoplex.
Mean-field models of equilibrium statistical mechanics have been studied extensively as toy
models of spins on various types of spaces, and the most famous model belonging to this
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class is the Curie–Weiss model, see [2–4]. The classical spin- 12 -Curie–Weiss model is a
relatively simple exactly solvable model with interesting statistical mechanical phenomena
such as phase transitions, anomalous scaling, infinite-volume Gibbs states, etc. In addition,
themodel can be generalized in a variety ofwayswhile retaining the essential simplicity of the
models. Such generalizations are for instance the modifications of the interaction function,
see [5], additions of external random fields, see [6], and modifications to the ambient space,
see [2]. In this direction, there are also modifications to the entire measure of the ambient spin
space, where one changes the product structure to a constrained singular measure such as
the uniform measure on a scaled sphere, see [1]. The model here also falls into this category,
since the ambient space of spins is assumed to be constrained to scaled spheres in the �1
norm.
The primarymotivation for investigating this particular model is that it is a non-trivial exactly
solvable model corresponding in a sense to a canonical ensemble probability measure of a
thermodynamic systemwith two constraints, such that the classical ferromagnetic mean-field
models are included via a suitable choice of the interaction function. Similar systems have
been investigated in [7–14], and there is a wealth of different methodologies that have been
used depending on the different models, but it is typical that these models do not utilize a
general interaction function if any interaction functional at all. For this particular model,
as opposed to the mean-field spherical model in [1, 11], we must employ different more
abstract methods to investigate the infinite-volume states, and it is our belief that these more
abstract methods can be of use to study other similar problems. In fact, the general solution
of this problem does not follow the more standard approach used in [2] which uses the
Hubbard–Stratonovich transform, also referred to as Gaussian linearization. We comment on
this point in Sect. 2. When comparing this model to the Berlin–Kac model [14], one should
note that label permutation invariant models like the models of this paper, have no underlying
geometry of the index set. However, since the limiting states of the model are shown to be
convex combinations of product states, unless the convex combination is actually trivial i.e.
there is just one product state, the limiting state is in general not factorizable.
To our knowledge, the orthoplicialmodel and themethods presented to solve the various prob-
lems associated with the orthoplicial model are novel in the literature, and known methods,
such as in [2], are not necessarily applicable. A particular approach, which is quite natural,
is to try to swap the delta function for an appropriately parametrized exponential function,
and solve rigorously the problem of interchanging such functions. This approach, however,
fails, see Sect. 2. Instead, the general method introduced in this paper, presented heuristically
in Sect. 2, is to go from a singly delta constrained probability measure to one which is dou-
bly constrained. This particular doubly constrained probability measures is more tractable,
and one can characterize both its limiting probability measure, and the uniform paramet-
ric convergence it has in the large n-limit. The limiting measure of the doubly constrained
measure has a product structure, and, subject to further analysis, we find the general result
that for a wide variety of suitable interaction functions, the limiting states of the model are
convex combinations of product states. The suitable swapping between constrained and non-
constrained measures is one aspect of the equivalence of ensembles, see [15]. In fact, the
approach we mentioned in the beginning of this paragraph, which is also shown to fail, is
related to the fact that if we instead study this model as a thermodynamic system with two
conserved quantities, namely the Hamiltonian associated to the interaction function, chosen
to be quadratic here, and the particle number function corresponding to the �1 norm, then the
calculation given in Eq. (2.0.15) shows that the grand canonical ensemble of this model fails
to capture the full set of possible microstate values. We can only attain the trivial vanishing
energy density with expectations in the grand canonical ensemble. By the result of this paper,
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we know that the corresponding canonical ensemble has limiting states corresponding to
non-trivial energy densities, and thus the grand canonical ensemble is insufficient to describe
all the infinite-volume Gibbs states of this system. This is one form of non-equivalence of
ensembles considered in [15]. This point is also important in the sense that it is one of the
practical reasons for studying the canonical versions of these models as opposed to the grand
canonical versions, and why it is valuable to develop different techniques to studying such
models. In this vein, the Berlin–Kac model [14] was one of the first models of this type, and it
too exhibits a “trivial” infinite-volume Gibbs state of the grand canonical version of that cor-
responding model, since it does not capture the phase transition of the standard Berlin–Kac
model.
Let us now remark on the main methods and concepts used in this paper in more detail. The
first step involves writing the finite-volume Gibbs state as an integral mixture of probability
measures such that the mixture acts on two variables which parametrize a doubly constrained
measure which we will call a microcanonical probability measure. This step is carried out
in Sects. 3 and 4.1. The general strategy is then to utilize a type of generalized dominated
convergence theoremwhere both the integratingmeasure and the functions we are integrating
are varying, see Lemma 3.1.1.
Using relative entropy methods, we are able to show that the difference in expectations of
local observables of microcanonical probability measure and the completely unconstrained
probability measures, referred to as the grand-canonical probability measure, depend explic-
itly on their corresponding statistical mechanical entropies, see Lemma 3.1.2. Using large
deviations methods, we are able to prove a broadly applicable theorem which allows one to
prove locally uniform convergence of the finite-volume microcanonical entropies using the
concavity of the microcanonical entropies along with convergence of the grand-canonical
entropy, see Theorem 3.1.3. Note that we are using a non-standard terminology by referring
to the normalized logarithm of a partition function as an entropy irrespective of the ensemble
the partition function comes from. We should emphasize that Theorem 3.1.3 formalizes, at
least at this level of regularity, the notion that one can rigorously deduce many properties of
the limiting microcanonical entropy from the grand canonical entropy, which is typically far
more tractable mathematically.
For the orthoplicial model, one can easily verify some of the conditions of Theorem 3.1.3 that
are required, since the corresponding grand-canonical probability measure is a product state.
Of somemethodological interest is the fact that we use the notion of Lorentzian polynomials,
see [16], to prove that the microcanonical entropies are log-concave functions. The end result
is that by combining together, Lemmas 3.1.2, 3.1.5, and 3.1.6, we obtain the locally uniform
convergence of the difference of expectations of local observables for the microcanonical
and grand-canonical probability measure in the form of Corollary 3.1.7.
As for the mixture probability measure, we begin by once again applying the general theorem
Theorem 3.1.3, to deduce the entropy of the corresponding canonical model, see Lemma
3.2.1, which is directly related to our model with a linear interaction function. Using tilting,
we are then able to show that the mixture probability measures satisfies a large deviations
principle, see Corollary 3.2.2. Using large deviations techniques found in Sect. 4.3, we
are able to already classify the limiting states of our model for a variety of relevant non-
trivial interaction functions, see Example 3.2.5 for the quadratic mean-field interaction with
a non-vanishing magnetic field, see Example 3.2.7, for the quadratic mean-field interaction
without an external magnetic field, and see Theorems 3.2.4 and 3.2.6 for the rigorous results
concerning these two examples.
In order to fully classify the limiting states of themodel formore general interaction functions,
we need an additional result concerning the microcanonial partition function which comes
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in the form of an exact generating function representation, see Lemma 3.3.1. The generating
function thatweobtain is amodifiedBessel functionof thefirst kind, andweutilize a particular
integral representation of it. This allows one to fully characterize the weak convergence of the
mixture probability measure by relating it to to Laplace-type integrals in three variables for
which we can exactly deduce their asymptotics, see Lemma 3.3.4. The exact result employs
the notions of type, and maximal type, given in [2], adapted to this particular model. The
primary pair of results concerning this final result are Theorems 3.3.5 and 3.3.6, which can be
summarized by stating that given sufficient regularity of the interaction function g, which are
intimately related to properties of the limiting entropy, one is able to show that the limiting
states are convex combinations of products states.
In the literature, the closest works are [1, 11], in which similar results, with entirely different
methods, are produced for the so-called mean-field spherical model. Another similar work
which considers a Berlin–Kac-type, see [14], model with a spherical constraint is given
in [10]. From the pure mathematical perspective, non-interacting continuous models with
multiple constraints have been considered in [7, 8]. These works both consider the particular
phenomenon of condensation, and their approach could be described as probabilistic ones.
For discrete two-constraint models, and formalism for the equivalence of ensembles for
such models, see [12]. In terms of methods, in [17], there is an approach to proving a type
of uniform convergence between constrained and non-constrained probability measures by
adapting a uniform local central limit theorem.A similar approach based on uniformestimates
is used in [18] to prove ensemble equivalence of some observables for microcanonical and
canonical ensembles. For a random-field model constrained to the sphere, a similar uniform
convergence result between constrained andnon-constrainedprobabilitymeasures is obtained
in [19]. Finally, we should also remark that this paper does not make use of the method of
steepest descent, see [14], nor do we rely on characteristic functions in any particular way
to complete any of the proofs. In Sect. 2, we use Gaussian linearization, also called the
Hubbard–Stratonivich transform, to form a counter-example, but we will otherwise not use
this standard tool.

1.1 Reading Guide

This paper is primarily organized so that a majority of the concepts and methods without
proofs can be gathered by reading the introduction contained in Sect. 1 and the heuristics
contained in Sect. 2. These sections do not contain any proofs, but they do contain some
definitions and outline the basic approach to the problems in this paper.
The statements of the results, some important intermediate results, short or simple proofs, and
relevant expository computations are done in Sect. 3. The more involved proofs or methods
are contained in Sect. 4. Note that Sect. 4 also contains an entire subsection devoted to some
results in theory of large deviations, see Sect. 4.3, and the basic concepts and properties of
relative entropy are given in Sect. 4.2.

2 Heuristics

The functions f used in Eq. (1.0.1) will be referred to as local functions and their associated
finite index sets I will be referred to as local index sets. Such local functions f are naturally
functions on R

n for large enough n by using the coordinate projection πI : R
n → R

I ,
and representing them as a composition f ◦ πI . If one is able to resolve the large-n limits
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of integrals of the form given in Eq. (1.0.1), then one is able to specify, in the limit, the
“expectations” of a large class of local observables. In doing so, subject to other regularity
conditions on this limiting state, one is able to produce a genuine probability measure onRN.
From now on, we will omit the coordinate projection πI , and simple write the expectation
with respect to a local function f without the composition, unless it becomes pertinent for a
specified reason. We will use the following definition of weak convergence and limit points
of probability measures.

Definition 2.0.1 A sequence of probability measures G := {μn}n∈N, such that each μn is a
probability measure on Rn , is said to converge weakly to a probability measure μ∞ onRN if

lim
n→∞ μn[ f ] = μ∞[ f ]

for any f ∈ Cb(R
I ).

The set of limit points G∞ of G is given by

G∞ :=
{
μ ∈ P(

R
N
) : ∃{nk}k∈N, lim

k→∞ μnk = μ

}
,

where the limit is understood in the sense of the weak limit given here.

There are simple extensions, see [19] for an extension by “tensoring on 0” to the remaining
N\[n] components, that make the probability measure μn in this definition into probability
measures on RN, and using these extensions the definitions above are equivalent to the stan-
dard definitions of weak convergence of probability measure on Polish spaces, and the notion
of limit points is to be understood as limit points with respect to the Lévy–Prokhorov metric.
In notation, we would redefine the measures μ′

n := μn ⊗ δ
N\{1,2,...,n}
0 , where δ

N\{1,2,...,n}
0

is the Dirac measure on the 0 vector of the space R
N\{1,2,...,n}. It is now clear that if n is

large enough, then for any local observable f , we have μn[ f ] = μ′
n[ f ]. We see then that

this type of redefinition simply extends the probability measures on R
n to R

N, but since we
are predominantly interested in large n-limits, we might as well work only on the sequence
of probability measures {μn}n∈N since their values coincide for expectations of fixed local
observables for large enough n. For our purposes, understanding that we are predominantly
interested in studying the limit of expectations of local observables is sufficient for the con-
tents of this paper.
Using this notation,we are then interested in studying and classifying the structure and content
of the sets Gg , corresponding to the sequence of probability measures {μg

n}n∈N specified in
their functional form in Eq. (1.0.1), which will be called the collection of finite-volumeGibbs
states, and Gg∞, which will be called the collection of infinite-volume Gibbs states, and their
dependence on the interaction function g.
The prototypical interaction function g of this paper is based on the Curie–Weiss Hamiltonian
H J
CW,n : Rn → R given by

H J
CW,n(φ) := − J

2n

n∑
i, j=1

φiφ j = n

⎛
⎝− J

2

(
1

n

n∑
i=1

φi

)2
⎞
⎠ ,

where J > 0 is a coupling constant, with the associated interaction function gβ,J : R → R

given by

gβ,J (m) := β J

2
m2,
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where β > 0. With this interaction function, the probability measure in Eq. (1.0.1) takes the
form

μβ,J
n [ f ] := 1

Qn(β, J )

∫
Rn

dφ e
β J
2n

∑n
i, j=1 φiφ j δ

(
n∑

i=1

|φi | − n

)
f (φ),

and can be seen to contain two competing weights in the integrand: the interaction function
gives larger weight to fields φ in which the components are of the same sign and as large as
possible, this type of behaviour is why we refer to this interaction as ferromagnetic, while
the delta function terms constrains the size aspect of the interaction. It is this competition
which produces the non-trivial nature of the limiting state.
From this recipe of going from theHamiltonian to the interaction function g, we can produce a
number of “generalized” interactions such as k-body interactions corresponding to interaction
functions of polynomial-type

g(m) :=
k∑
j=1

α jm
2 j ,

where α j are some real constants, even convex smooth interactions intended to model non-
polynomial ferromagnetic interaction, and countless others which might be of interest.
The problemdescribed here iswell understood formodelswhere the delta function is replaced
by a product of density functions, see [2]. Let us now remark on the connection between these
types of generalized Curie–Weiss models, and the generalizedmean-field orthoplicial model.
Formally, using delta functions, we have

∫
Rn

dφ e
ng

(
1
n

∑n
i=1 φi

)
δ

(
n∑

i=1

|φi | − n

)
f (φ) (2.0.1)

= n
∫ 1

−1
dm eng(m)

∫
Rn

dφ δ

(
n∑

i=1

φi − mn

)
δ

(
n∑

i=1

|φi | − n

)
f (φ)

= n
∫ 1

−1
dm eng(m)Zn(mn, n)νn(m, 1)[ f ],

where

νn(m, ρ)[ f ] := 1

Zn(mn, ρn)

∫
Rn

dφ δ

(
n∑

i=1

φi − mn

)
δ

(
n∑

i=1

|φi | − ρn

)
f (φ), (2.0.2)

where ρ > 0, |m| ≤ ρ, and Zn(mn, ρn) is a normalization constant which makes νn(m, ρ)

into a probability measure. The values of (m, ρ) for which the probability measure νn(m, ρ)

exists in some formal sense are given bypairs satisfyingρ > 0, and |m| ≤ ρ. These statements
can be heuristically guessed “geometrically” by considering the intersection of hyperplanes
with the �1-spheres. For reasons which will become clear later, we will consider the interior
of this set of existence, given and denoted by A := {(m, ρ) : ρ > 0, |m| < ρ}. Returning to
Eq. (1.0.1), we see that

μ
g
n[ f ] = n

Qn(g)

∫ 1

−1
dm eng(m)Zn(m, 1)νn(m, 1)[ f ]. (2.0.3)

In this form, the finite-volume Gibbs state is written as an integral mixture of another prob-
ability measure.
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Although the original problem constrained the integrals to the �1 ball of radius n, we have
suggestivelymodified the notation so as to include the other possible values of the radius. This
suggestive notation is due to the principle or phenomenon of the equivalence of ensembles,
see [15]. We will refer to the probability measure νn(m, ρ) given formally in Eq. (2.0.2)
as the microcanonical probability measure. This probability measure is constrained by two
functions Mn, Nn : Rn → R given by

Mn(φ) :=
n∑

i=1

φi , Nn(φ) :=
n∑

i=1

|φi |. (2.0.4)

We will refer to these functions as macrostates and the individual functions will be referred
to as the magnetization and particle number respectively. In this paper, we will often refer
to either ensembles or probability measures when discussing a particular thermodynamic
model. Integrals with delta functions of the macrostates are referred to as constrained, and
whenever we replace a delta function by some non-singular “function” of a macrostate, we
are moving toward a less constrained state. With this perspective in mind, we will focus
on the connection between the microcanonical probability measure and the grand canonical
probability measure η(β, μ) on R

N given by its action on f ∈ Cb(R
I ) given by

η(β, μ)[ f ◦ πI ] := 1

q(β, μ)|I |

∫
RI

dφ e−β
∑

i∈I φi−μ
∑

i∈I |φi | f (φ), (2.0.5)

whereμ > 0, |β| < μ, and q(β, μ)|I | is a normalization constant making the finite marginals
into probability measures. One can compute, by direct integration, that

q(β, μ) := 1

μ + β
+ 1

μ − β
. (2.0.6)

Note that, strictly speaking, the grand canonical probability measure should refer to the
probability measure obtained from η(β, μ) by considering its marginal distribution on the
index set [n].
The equivalence of ensembles principle states that, subject to someyet to be verifiedproperties
of the microcanonical and grand canonical partition functions, there are a number of ways
in which these two probability measures are the same. For our purposes, we will utilize
ideas stemming from the ensemble equivalence principle corresponding in some sense to
thermodynamic, macrostate, and measure level equivalence of these probability measures.
For a more complete view on the principle of the equivalence of ensembles, see [15].
To that end, we will need the finite- and infinite-volume specific microcanonical entropies
sn, s : A → R given respectively by

sn(m, ρ) := 1

n
ln Zn(mn, ρn), s(m, ρ) := lim

n→∞ sn(m, ρ). (2.0.7)

In addition, for the grand canonical ensemble we will need the finite- and infinite-volume
specific entropies fn, f : A → R given respectively by

fn(β, μ) := 1

n
ln q(β, μ)n, f (β, μ) := lim

n→∞ fn(β, μ). (2.0.8)

Note the sign conventions used here. We will omit the specific part in their naming, and refer
simply to entropies. For this particular model, as for all product state models, we trivially
have fn(β, μ) = f (β, μ) = ln q(β, μ).
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Using the entropies, we can rewrite Eq. (2.0.3) as

μ
g
n[ f ] = n

Qn(g)

∫ 1

−1
dm en(g(m)+sn(m,1))νn(m, 1)[ f ]. (2.0.9)

The first type of equivalence property that we wish to utilize is the following pair of relations

sup
(m,ρ)∈A

{s(m, ρ) − βm − μρ} = f (β, μ), inf
(β,μ)∈A{ f (β, μ) + βm + μρ} = s(m, ρ).

(2.0.10)

This relation is practically equivalent to that of two functions being Legendre conjugates, see
[20]. Since we already have a closed form for f (β, μ), we may extract the form of s(m, ρ)

if this relation holds.
The second equivalence property is the parameter matching scheme given by

η(β, μ)

[
Mn

n

]
= m, η(β, μ)

[
Nn

n

]
= ρ. (2.0.11)

If for every pair (m, ρ) ∈ A there exists a corresponding pair (β, μ) ∈ A satisfying the above
relations and vice versa, then these corresponding pairs of values are the values for which we
would expect the probability measures to be the same. We will use the notations m(β, μ),
ρ(β, μ), β(m, ρ), and μ(m, ρ) for this bijection. This bijection is intimately connected to
the first equivalence property through the Legendre conjugates.
The final form of equivalence is then the rough statement that in the large n-limit, we have

ν∞(m, ρ)[ f ] := lim
n→∞ νn(m, ρ)[ f ] = η(β(m, ρ), μ(m, ρ))[ f ] (2.0.12)

for local functions f ∈ Cb(R
I ).

If we now return to Eq. (2.0.3), the heuristic behaviour of the model in the large n-limit is
roughly speaking that

μ
g
n[ f ] ≈

(∫ 1

−1
dm en(g(m)+s(m,1))

)−1 ∫ 1

−1
dm en(g(m)+s(m,1))ν∞(β(m, 1), μ(m, 1))[ f ],

(2.0.13)

and using the Laplace method, see [21], one would expect that

(∫ 1

−1
dm en(g(m)+s(m,1))

)−1 ∫ 1

−1
dm en(g(m)+s(m,1))ν∞(m, 1)[ f ]

≈
∫
M∗(ψg)

α(dm) ν∞(m, 1)[ f ], (2.0.14)

where α is a probability measure on [−1, 1] and M∗(ψg) ⊂ (−1, 1) is the set of global
maximizing points of the mapping [−1, 1] � m �→ ψg(m) := g(m) + s(m, 1). This is to
be expected since integrands of the form above have an exponential rate concentration to the
global maximum points of the given function.
The connection between this model and the generalized Curie–Weiss model is now evident.
The limiting states of both models are given by mixtures of product states. However, for this
model, one cannot realize these limiting states without the �1 constraint. To see this, let us
consider the following integral

Wn(β, μ) :=
∫
Rn

dφ e
β J
2n

∑n
i, j=1 φiφ j−μ

∑n
i=1 |φi |,
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whereμ > 0 andβ ≤ 0. Thiswould be the less constrained grand canonical partition function
for which one would hope that an equivalence principle holds. The partition function here is
not finite if β > 0. For the allowed values of β, using the Fourier transform of the Gaussian,
we have

Wn(β, μ) = 1√
2π

∫ ∞

−∞
dz e− 1

2 z
2
(∫ ∞

−∞
dφ ei

√
(−β)J

n zφ−μ|φ|
)n

=
√

n

2π

∫ ∞

−∞
dz e− 1

2 nz
2
(

2μ

μ2 + (−β)J z2

)n

= (2μ)n
√

n

2π

∫ ∞

−∞
dz e

−n
(
1
2 z

2+ln(μ2+(−β)J z2)
)
.

Since the function z �→ 1
2 z

2 + ln(μ2 + (−β)J z2) is trivially minimized when z = 0, by the
Laplace method, it follows that

lim
n→∞

1

n
lnWn(β, μ) = ln(2μ) − μ2. (2.0.15)

Now, if we include the mixture measure form of this integral, it follows that

1

Wn(β, μ)

∫
Rn

dφ e
β J
2n

∑n
i=1 φiφ j−μ

∑n
i=1 |φi | f (φ)

=
(∫ ∞

−∞
dz e

−n
(
1
2 z

2+ln(μ2+(−β)J z2)
))−1 ∫ ∞

−∞
dz e

−n
(
1
2 z

2+ln(μ2+(−β)J z2)
)

× η(i
√

(−β)J z, μ)[ f ],

where f ∈ Cb(R
I ) is a local function, from which we have

lim
n→∞

1

Wn(β, μ)

∫
Rn

dφ e
β J
2n

∑n
i=1 φiφ j−μ

∑n
i=1 |φi | f (φ) = η(0, μ)[ f ].

As can be seen, the limiting state is trivial in the sense that it is a pure state, i.e. not a convex
combination of any other probability measures, and it does not depend on β ≤ 0. It is this
property why it is desirable to study the �1 constrained model, since the replacement of the
product measure, for this particular model, with a delta function reproduces the non-trivial
limiting states.
The heuristic is then that the limiting states of the model are mixtures of product states of
the form given in Eq. (2.0.5), where the mixture probability measure is determined by the
properties of the interaction function g. This is precisely what we will prove rigorously.
Before presenting the main results and proofs, let us remark on the what exactly is not rigor-
ous, incorrect, or too formal in the above exposition. The delta functions appearing in Eqs.
(1.0.1) and (2.0.2) are completely formal objects, and we will rigorously define the micro-
canonical probability measure on which we can actually perform non-formal computations.
In particular, the formal calculation presented in Eq. (2.0.1) is strictly speaking incorrect.
For this particular model, it is important to take into consideration the “boundary values”
of the set A. That is to say, the admissible pairs which satisfy ρ > 0 and |m| = ρ produce
partition functions which can not be neglected if one wants to verify the formal calculation
in Eq. (2.0.1). In addition, the form of equivalence of ensembles we have specified here are
vague and unverified. We will verify these forms of equivalence explicitly, and they will be
presented as lemmas.
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3 Main Results

In this section, we present the main results, short or simple proofs, and expository computa-
tions concerning the main results.

3.1 Locally Uniform Convergence of Observables and Entropy of theMicrocanonical
Ensemble

We begin by rigorously defining the microcanonical probability measure νn(m, ρ) from
Eq. (2.0.2) for (m, ρ) ∈ A, and the so-called “boundary values” corresponding to ρ > 0
and |m| = ρ. This is done by identifying the microcanonical probability measure as a
convex combination of products of uniform measures on simplexes. The uniform measures
on simplexes are rigorously definable via the so-called flag coordinates, and these uniform
measures are computationally tractable. Due to the large number of properties that need
to be shown for the microcanonical probability measures, we dedicate an entire section,
see Sect. 4.1, to the rigorous definition and methods of use of this particular probability
measure. The key definitions are for the microcanonical probability measures νn(m, ρ) and
the microcanonical partition functions Zn(M, N ), now defined in Definition 4.1.3.
In this work, wewill often refer to Polish spaces and probabilitymeasures on them.Whenever
we do so without an explicit reference to a σ -algebra, we implicitly mean with respect to
the Borel σ -algebra associated with the topology of the Polish space. The basic principle by
which we will identify the infinite-volume Gibbs states is presented in the following lemma.

Lemma 3.1.1 Let X be a Polish space. If {μn}n∈N is a sequence of probability measures on
X converging weakly to a probability measure μ on X, K ⊂ X is a compact continuity set
of μ such that supp(μ) ⊂ K, and { fn}n∈N is a sequence of uniformly bounded functions on
X converging uniformly on K to a function f , then it follows that

lim
n→∞

∫
X

μn(dx) fn(x) =
∫
K

μ(dx) f (x).

The proof, see Sect. 4.2, is an application of conditioning to K and applying various weak
convergence properties.
With reference to Eqs. (1.0.1) and (2.0.3), using the definition and methods of Sect. 4.1, we
can write the finite-volume Gibbs states in the following form

μ
g
n =

∫
R

κ
g
n (dm) νn(m, 1),

where κ
g
n are probability measures on R supported by [−1, 1] with actions on f ∈ Cb(R)

given by

κ
g
n [ f ]

:= 1

Qn(g)

(∫ 1

−1
dm neng(m)Zn(mn, n) f (m) + neng(1)Zn(n, n) f (1) + neng(−1)Zn(−n, n) f (−1)

)
,

where the partition function then takes the following form

Qn(g) :=
∫ 1

−1
dm neng(m)Zn(mn, n) + neng(1)Zn(n, n) + neng(−1)Zn(−n, n). (3.1.1)
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In light of Lemma 3.1.1, we have two goals. The first goal is to show that the collection
of mixture probability measures {κg

n }n∈N converges weakly to some limiting probability
measure, and that there exists a compact continuity set of this limiting probability measures
which contains the support of the limiting probability measure. The second goal is to show
that for a fixed f ∈ Cb(R

I ) the collection of functions {νn(m, 1)[ f ]}n∈N understood as a
collection of functions on the variablem ∈ [−1, 1] is uniformly bounded, which is immediate
by the boundedness of f , and uniformly convergent on the required compact continuity set.
In the heuristic sketch in the introduction, we did not pay any particular attention to the
modes of convergence of the limiting objects. For this particular model, we are able to obtain
locally uniform convergence by relating the rate of convergence of local functions to the rate
and mode of convergence of the finite-volume entropies. This connection is described in the
following fundamental inequality.

Lemma 3.1.2 For any finite index set I ⊂ [n] and any pairs of values (m, ρ) ∈ A and
(β, μ) ∈ A, we have

sup
f ∈Cb(R

I ), || f ||∞≤1
|νn(m, ρ)[ f ] − η(β, μ)[ f ]|

≤
√

|I |(n − 2)

2(n − 2 − |I |)
(

βm + μρ + f (β, μ) − n

n − 2
sn(m, ρ)

)
.

The proof of this result is an application of Pinsker’s inequality for relative entropy, followed
by the subadditivity property of relative entropy coupled with the permutation invariance of
the microcanonical probability measure. For this model, we can exactly compute the relative
entropy of the (n−2):th marginal of the microcanonical probability measure from which we
obtain the entropy terms in the above inequality. For the full proof, see Sect. 4.2.
If we were only interested in showing that the microcanonical probability measure converges
to the grand canonical probability measure, it can be accomplished by studying the pointwise
convergence of the entropies. However, since we want to prove locally uniform convergence,
we need some additional regularity. The additional regularity that we will prove is that the
sequence of finite-volume microcanonical entropies are pointwise uniformly bounded, and
that the microcanonical partition functions are log-concave functions on A. By a classical
result in convex analysis, see [20, Section 10], once the pointwise limit of the finite-volume
microcanonical entropies is deduced, the convergence is immediately elevated to locally
uniform convergence.
In some models, the grand canonical entropy is more computationally tractable than the
microcanonical entropy. This is the case here as well and we will prove a general result which
utilizes the aforementioned regularity properties of the microcanonical partition functions
coupled with some additional regularity properties of the grand canonical entropy to prove a
result, which might also be of general interest in other models.

Theorem 3.1.3 Let {Zn}n∈N be a sequence of log-concave functions Zn : nC → (0,∞),
where C ⊂ R

m is a non-empty open convex set and nC := {nc : c ∈ C}, such that

sup
n∈N

∣∣∣∣1n ln Zn(nx)

∣∣∣∣ < ∞

for any x ∈ C, and there exists a non-empty open convex set C′ ⊂ R
m such that∫

nC
dX e−〈t,X〉Zn(X) < ∞
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for all t ∈ C′ and all n ∈ N, where 〈·, ·〉 is the Euclidean inner product.
If the function f : Rm → R ∪ {±∞} given by the mapping

f (t) := lim
n→∞

1

n
ln

∫
nC

dX e−〈t,X〉Zn(X)

exists and is a proper convex lower semi-continuous function of Legendre type which satisfies
∇[− f ]C′ = C then it follows that

lim
n→∞ sup

x∈K

∣∣∣∣1n ln Zn(nx) − inf
t∈Rm

{〈t, x〉 + f (t)}
∣∣∣∣ = 0,

for any compact set K ⊂ C.
The proof of this result, see Sect. 4.3, requires definitions and notions from large deviations
theory. We have dedicated an entire section, see Sect. 4.3, to the relevant definitions, and
results which can be deduced after establishing a large deviations principle. The proof itself
uses a relative compactness argument concerning locally uniformly convergent subsequences,
and a characterization of the limits of said subsequences using a large deviations principle.
To apply this method to this model, we proceed by providing the sufficient regularity of the
finite-volume microcanonical entropies.

Lemma 3.1.4 The collection of finite-volume microcanonical entropies {sn}n∈N is pointwise
uniformly bounded and concave on A.

Theproof, see Sect. 4.4, of log-concavity proceeds by identifying themicrocanonical partition
functions Zn as a composition of a bivariate Lorentzian polynomial of degree n − 2 and a
linear map. To prove the uniform pointwise boundedness, we use the positivity of the relative
entropy between the (n − 2):th marginal of the microcanonical probability measure and the
grand-canonical probability measure.
In light of Theorem 3.1.3, it remains to consider the mapping f : R2 → R given by

f (β, μ) := lim
n→∞

1

n
ln

∫
A
dMdN e−βM−μN Zn(M, N ),

where, in accordance with Eq. (4.1.3), we have

Zn(M, N ) = 1

2

n−1∑
k=1

(
n

k

)( N+M
2

)k−1

(k − 1)!
( N−M

2

)n−k−1

(n − k − 1)!
for (M, N ) ∈ A.
It is immediate that if (β, μ) /∈ A, then f (β, μ) = ∞. As for (β, μ) ∈ A, we can directly
compute that∫

A
dMdN e−βM−μN Zn(M, N ) =

∫ ∞

0
dX

∫ ∞

0
dY e−(μ+β)X−(μ−β)Y

n−1∑
k=1

(
n

k

)
Xk−1

(k − 1)!
Yn−k−1

(n − k − 1)!

=
n−1∑
k=1

(
n

k

)(
1

μ + β

)k (
1

μ − β

)n−k

=
(

1

μ + β
+ 1

μ − β

)n

−
(

1

μ + β

)n

−
(

1

μ − β

)n

.
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Computing the limit, it follows that

f (β, μ) = ln

(
1

μ + β
+ 1

μ − β

)
= ln q(β, μ).

In summary, we have

f (β, μ) =
{
ln

(
1

μ+β
+ 1

μ−β

)
, (β, μ) ∈ A

∞, (β, μ) /∈ A
.

We have included this calculation here to emphasize the fact that this calculation is relatively
straightforward.
We present the relevant regularity conditions of the map f : R2 → R in the following result.

Lemma 3.1.5 The mapping f : R2 → R is a proper convex lower semi-continuous function
of Legendre type.
In addition, it follows that (−∇[ f ])A = A, and

inf
(β,μ)∈R2

{βm + μρ + f (β, μ)} = β(m, ρ)m + μ(m, ρ)ρ + f (β(m, ρ), μ(m, ρ))

= 1 + ln

⎛
⎝

(√
ρ + m

2
+

√
ρ − m

2

)2
⎞
⎠ ,

where (β, μ) := (−∇[ f ])−1 : A → A is given by

β(m, ρ) := − ρ

m

1√
ρ2 − m2

+ 1

m
, μ(m, ρ) := 1√

ρ2 − m2
.

For the proof, which is completely computational, see Sect. 4.4.
Combining together the regularity of the finite-volume entropies from Lemma 3.1.4, and the
computations and verifications concerning the function f given in Lemma 3.1.5, we have
the following result.

Lemma 3.1.6 It follows that

lim
n→∞ sup

(m,ρ)∈K⊂A
|sn(m, ρ) − s(m, ρ)| = 0,

for any compact set K ⊂ A, where

s(m, ρ) := 1 + ln

⎛
⎝

(√
ρ + m

2
+

√
ρ − m

2

)2
⎞
⎠ ,

for any (m, ρ) ∈ A.

Combining together Lemmas 3.1.2, 3.1.5, and 3.1.6, we have the following result concerning
the mode of convergence of local observables of the microcanonical probability measures.

Corollary 3.1.7 For any finite index set I ⊂ [n], it follows that
lim
n→∞ sup

(m,ρ)∈K⊂A
sup

f ∈Cb(R
I ), || f ||∞≤1

|νn(m, ρ)[ f ] − η(β(m, ρ), μ(m, ρ))[ f ]| = 0.

Having established the compact-open convergence of the microcanonical probability mea-
sures, we move on to the weak convergence of the mixture probability measures.
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3.2 Limiting Entropy and Convergence of Mixture Probability Measures

By the heuristics given, it is evident that the mixture probability measures {κn(g)}n∈N should
converge, at an exponential rate, to the global maximizing points of some tilting function.
This idea can be realized by proving that the mixture probability measures satisfy a large
deviations principle. Since the full models have a general interaction function g, we will first
prove a large deviations principle for linear g, and then use tilting to obtain the full large
deviations principle. The following result considers the large deviations principle for a linear
g.

Lemma 3.2.1 Let β ∈ R, gβ(m) := −βm, Qn(β) := Qn(gβ), and κ
β
n := κ

gβ

n .
Then, it follows that

lim
n→∞

1

n
ln Qn(β) = sup

m∈[−1,1]
{s(m, 1) − βm}.

Moreover, {κβ
n }∞n=1 satisfies a large deviations principle with rate function I β : R → [0,∞]

given by

[ − 1, 1] � m �→ I β(m) := sup
m∈[−1,1]

{s(m, 1) − βm} − (s(m, 1) − βm),

and I β(m) = ∞ for m /∈ [−1, 1].
The proof, see Sect. 4.4, follows the same strategy as for the microcanonical entropy. Here,
the log-concavity is proved by an application of the Prekopa–Leindler theorem, and pointwise
uniform boundedness is a direct calculation.
Since the previous result yields a large deviations principle for the mixture probability mea-
sures {κ0

n }n∈N, corresponding to the choice of g being identically 0, as direct corollary of
tilting, see [22], we have the following large deviations principle for the full mixture proba-
bility measures.

Corollary 3.2.2 For any g ∈ Cb([−1, 1]), it follows that

lim
n→∞

1

n
ln Qn(g) = sup

m∈[−1,1]
{g(m) + s(m, 1)}.

Moreover, {κg
n }∞n=1 satisfies a large deviations principle with rate function I g : R → [0,∞]

given by

[ − 1, 1] � m �→ I g(m) := sup
m∈[−1,1]

{g(m) + s(m, 1)} − (g(m) + s(m, 1)),

and I g(m) = ∞ for m /∈ [−1, 1].
Whenever a sequence of probability measures satisfies a large deviations principle with some
rate function, it is accompanied by a measure concentration result to the kernel of the rate
function, see Sect. 4.3. In this vein, consider the function ψg : [−1, 1] → R given by

ψg(m) := g(m) + s(m, 1).

It is clear that if I g(m∗) = 0, then the point m∗ corresponds to a global maximum point
of ψg by definition, and vice versa. Denote the set of global maximizing points of ψg by
M∗(ψg), and, by the previous observation, we have (I g)−1 {0} = M∗(ψg).
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We may now begin the classification of the infinite-volume Gibbs states. As a first partial
result, by combining together Lemma 3.1.1, Corollary 3.1.7, and Theorem 4.3.8, we have
the following result.

Lemma 3.2.3 Let g ∈ Cb([−1, 1]), and suppose that M∗(ψg) ⊂ (−1, 1). Then, it follows
that

Gg∞ ⊂
{∫ 1

−1
κ(dm) η(β(m, 1), μ(β, 1)) : κ ∈ M1([−1, 1]), supp(κ) ⊂ M∗(ψg)

}
.

The proof, see Sect. 4.4, is a direct combination of the given results.
As a corollary, if we can deduce that there is exactly one global maximizing point of ψg

contained in the interval (−1, 1), then there is a unique infinite-volume Gibbs state. This
follows since the Dirac measure on a single point is the only probability measure supported
on a single point.

Theorem 3.2.4 Let g ∈ C1([−1, 1]), and suppose that ψg has a unique global maximizing
point m∗ ∈ (−1, 1).
Then, it follows that

lim
n→∞ μ

g
n = η(β(m∗, 1), μ(m∗, 1)).

There are two prototypical functions g that fall into this category. One we have already seen
which is gβ(m) = −βm for β ∈ R. Since s is strictly concave it is easy to check that there is
a unique global maximizing point ofψ(gβ). The other example is related to the Curie–Weiss
Hamiltonian with an external field.

Example 3.2.5 Consider g(m) := β J
2 m2+βhm, where J > 0, β > 0, and h �= 0. Let us first

remark that ψg must attain its maximum on [−1, 1]. Suppose first that h > 0. For any point
m∗ < 0 of ψg , this point cannot be a global maximum point since ψg(−m∗) > ψg(m∗). It
follows that if there exists a global maximizing point, then it must be of the same sign as h.
Let us continue now with the case where h > 0, and note that the other case is analogous.
By direct computation, we have

∂[ψg](m) = 0 ⇐⇒ β Jm + βh − m√
1 − m2

1

1 + √
1 − m2

= 0.

One can further compute that

∂3[ψg](m) =
2m5 + 4m3 − 9m

(√
1 − m2 + 1

)
(√

1 − m2 + 1
)3

(1 − m2)
5
3

,

and

2m4 + 4m2

9
(√

1 − m2 + 1
) <

2 + 4

9
= 6

9
< 1 �⇒ 2m5 + 4m3 − 9m

(√
1 − m2 + 1

)
< 0

for 0 < m ≤ 1. It follows that ∂[ψg](m) < 0 on (0, 1] and ∂[ψg] is thus strictly concave.
In addition, we have ∂[ψg](0) = βh > 0, and limm→1− ∂[ψg](m) = −∞. Using these
properties, it follows that there must exist a unique pointm∗ ∈ (0, 1) such that ∂[ψg](m∗) =
0. In addition, by strict concavity of ∂[ψg], it follows that ψg is monotonically increasing
on (0,m∗) and monotonically decreasing on (m∗, 1) which implies that thism∗ is the unique
global maximum point and it is contained on (0, 1). A similar argument shows that if h < 0,
then there is a unique global maximum point contained in (−1, 0).
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For the second type of interaction, we consider even functions g ∈ Cb([−1, 1]) such that g
has precisely two global maximizing points m+ ∈ (0, 1), and m− = −m+ ∈ (−1, 0). For
such even functions, by spin-flip symmetry, or by changing variables m �→ −m, it follows
that

κ
g
n (B(m+, δ))

κ
g
n (B(m+, δ)) + κ

g
n (B(m−, δ))

= 1

2
= κ

g
n (B(m−, δ))

κ
g
n (B(m+, δ)) + κ

g
n (B(m−, δ))

,

for small enough δ > 0. In particular, by Corollary 4.3.10, it follows that

lim
n→∞ κ

g
n = 1

2
δm+ + 1

2
δm−

weakly. By combining this simple result with Lemma 3.1.1, and Corollary 3.1.7, we have
the following result.

Theorem 3.2.6 Let g ∈ Cb([−1, 1]) be an even function such that M∗(ψg) = {m+,m−},
where m+ > 0, and m− = −m+.
Then, it follows that

lim
n→∞ μ

g
n = 1

2
η(β(m+, 1), μ(m+, 1)) + 1

2
η(β(m−, 1), μ(m−, 1)).

The prototypical example here is the Curie–Weiss Hamiltonian without an external field.

Example 3.2.7 Consider g(m) := β J
2 m2 where β > 0, and J > 0. We have

∂[ψg](m) = m

(
β J − 1√

1 − m2

1

1 + √
1 − m2

)
,

∂2[ψg](m) = β J − 1√
1 − m2

1

1 + √
1 − m2

− m2(2
√
1 − m2 + 1)

(
√
1 − m2 + 1)2(1 − m2)

3
2

.

From the form of the first derivative, we see that ψg cannot obtain a maximum at either end
of the interval [−1, 1] andmust thus be attained at a critical point in the open interval (−1, 1).
There are now two options for the critical point, the first is that m = 0, from which we have

∂[ψg](0) = 0, ∂2[ψg](0) = β J − 1

2
.

Due to the sign of the second derivative, this fails to be even a local maximumwhen β J > 1
2 ,

and whatever other critical point must be the global maximizing point if we are in this
parameter range. The other case is that

β J = 1√
1 − m±2

1

1 +
√
1 − m±2

⇐⇒
√
1 − m±2 = 1

2

(√
4

β J
+ 1 − 1

)
,

when β J > 1
2 . For other values of β J , there is no solution to this equation and we must

conclude that the other critical point corresponds to the global maximizing point. We can
conclude that when β J ∈ R, then m∗ = 0 is always a critical point, but it cannot be even a
local maximizing point when β J > 1

2 , hence in this regime we must conclude that the pair
of solutions m± given above are the only viable critical points, but since they are the only
critical points, and the function must attain its maximum at a critical point, we may conclude
that m± also correspond to global maximizing points of the function. When β J < 1

2 , the
m∗ = 0 critical point is the only critical point, and we can again conclude that this must then
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be the global maximizing point. If β J = 1
2 , we can check that both m± = 0, and thus we

again have a single critical point which must be a global maximizing point.

The interactions described here are ones which can be dealt with without any further study of
the structure of the function ψg . When there are no symmetries or unique global maximum
points, one has to resort to other methods to resolve the limits. We will now present such
methods for dealing with sufficiently smooth interaction functions that have multiple global
maximizing points.

3.3 Exact Integral Representations of theWeights and Full Classification of the
Infinite-Volume Gibbs States

We will need a preliminary result concerning the microcanonical partition function in order
to have better control of the mixture probability measures. We have the following generating
function based representation of the microcanonical partition function.

Lemma 3.3.1 Let (m, ρ) ∈ A.
Then, it follows that

Zn(mn, ρn) = 22n−1nn−2n!
(2n)!√ρ2 − m2n2

(
2n

2

)
e−(n−1)

π2

∫ π

0
dθ1

∫ π

0
dθ2 cos θ1 cos θ2e

(n−1)s(m,ρ,θ1,θ2),

where s : A × [0, 2π) × [0, 2π) is given by

s(m, ρ, θ1, θ2) := 1 + ln

⎛
⎝

(√
ρ + m

2
cos θ1 +

√
ρ − m

2
cos θ2

)2
⎞
⎠ .

The proof of this representation, see Sect. 4.5, follows by using the convolution structure of
themicrocanonical partition function and identifying the generating function to be the product
of modified Bessel functions of the second kind. The proof is concluded by differentiation
of these Bessel functions.
In the previous result, we introduced the overloaded s function by adding an angular depen-
dence. We will differentiate between these functions by always specifying, in one form or
another, the number of arguments the function takes.
In the following, we will specialize to functions g that are infinitely continuously differen-
tiable, and obtain there finitely many global maximum points in the interval (−1, 1). In light
of Corollary 4.3.10, our goal is to study quantities of the form

κ
g
n (B(m∗, δ))∑

m∗∈M∗(ψg) κ
g
n (B(m∗, δ))

=
∫ m∗+δ

m∗−δ
dm en(g(m)+sn(m,1))

∑
m∗∈M∗(ψg)

∫ m∗+δ

m∗−δ
dm en(g(m)+sn(m,1))

.

Using Lemma 3.3.1, it follows that

(2n)!n2π2

22n−1nn−2n!(2n2
)
e−(n−1)

∫ m+δ

m∗−δ

dm en(g(m)+sn(m,1)) (3.3.1)

=
∫ m+δ

m∗−δ

dm
∫ π

0
dθ1

∫ π

0
dθ2

cos θ1 cos θ2eg(m)

√
1 − m2

e(n−1)(g(m)+s(m,1,θ1,θ2))

=
∫ m+δ

m∗−δ

dm
∫ π

0
dθ1

∫ π

0
dθ2

cos θ1 cos θ2eg(m)

√
1 − m2

e(n−1)(ψg(m,θ1,θ2)),
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where we have introduced the overloaded function ψg : (−1, 1) × [0, 2π) × [0, 2π) given
by

ψg(m, θ1, θ2) := g(m) + 1 + ln

⎛
⎝

(√
1 + m

2
cos θ1 +

√
1 − m

2
cos θ2

)2
⎞
⎠ .

We see that the integral in Eq. (3.3.1) takes the form of a Laplace-type integral in three
variables, and we expect that the local structure around the global maximum points of the
overloaded function ψg determines the exponential asymptotics of such integrals precisely.
To that end, we present the following result which contains the relevant information concern-
ing the structure and local asymptotics of the overloaded ψg function.

Lemma 3.3.2 Suppose that ψg has a local maximizing point m∗ contained in the interval
(m∗ − δ,m∗ + δ), and there exists k ∈ N such that ∂2k[ψg](m∗) < 0 and ∂ j [ψg](m∗) = 0
for all 1 ≤ j ≤ 2k − 1.
Then, it follows that

ψg(m∗ + m, θ1, θ2) = ψg(m∗) + 1

2
∂22 [ψg](m∗, 0, 0)θ21 + 1

2
∂23 [ψg](m∗, 0, 0)θ22

+ 1

(2k)!∂
2k[ψg](m∗)m2k +

∑
|α|=3, α1 /∈{2,3}

Rα(m, θ1, θ2)(m, θ1, θ2)
α

+ R(2k+1,0,0)(m, θ1, θ2)m
2k+1,

where

Rα(m, θ1, θ2) = |α|
α!

∫ 1

0
dt (1 − t)|α|−1∂α[ψg]((m∗, 0, 0) + t(m, θ1, θ2)).

In addition,

lim
n→∞ n

(
ψg

(
m∗ + m

n
1
2k

,
θ1

n
1
2

,
θ2

n
1
2

)
− ψg(m∗)

)

= 1

2
∂22 [ψg](m∗, 0, 0)θ21 + 1

2
∂23 [ψg](m∗, 0, 0)θ22 + 1

(2k)!∂
2k[ψg](m∗)m2k .

The proof of this result, see Sect. 4.5, follows by developing the Taylor polynomial of the
overloaded ψg function around the point (m∗, 0, 0), and using the fact that odd derivatives
of cosines vanish when evaluated at 0. The second statement simply follows by taking the
limit.
From the previous result, we see that it is pertinent to introduce the following classification,
which is directly adapted from [2], of the global maxima of ψg .

Definition 3.3.3 Aglobalmaximumpointm∗ ∈ (−1, 1) ofψg is said to be of type k(m∗) ∈ N

if ∂2k[ψg](m∗) < 0 and ∂ j [ψg](m∗) = 0 for all 1 ≤ j ≤ 2k − 1.
For a finite collection of global maximum pointsM∗(ψg) ⊂ (−1, 1) ofψg , themaximal type
k∞(ψg) is given by k∞(ψg) = maxm∗∈M∗(ψg) k(m∗). The collection of global maximum
points of maximal type M∗∞(ψg) is given by M∗∞(ψg) := {m∗ ∈ (−1, 1) : k(m∗) =
k∞(ψg)}.
Combining together Lemmas 3.3.1 and 3.3.2, and the form given in Eq. (3.3.1), we have the
following asymptotic result.
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Lemma 3.3.4 Suppose that ψg has a single unique maximizing point m∗ ∈ (m∗ − δ,m∗ + δ)

of type k ∈ N.
Then, it follows that

lim
n→∞

n
1
2k +1 ∫ m∗+δ

m∗−δ
dm en(g(m)+sn(m,1))

enψg(m∗)
(2n)!n2π2

22n−1nn−2n!(2n2
)
e−(n−1)

= eg(m
∗)

eψg(m∗)
√
1 − m∗2

∫
R3

dθ1dθ2dm e
1
2 ∂22 [ψg](m∗,0,0)θ21+ 1

2 ∂23 [ψg](m∗,0,0)θ22+ 1
(2k)! ∂2k [ψg](m∗)m2k

.

The proof of this result, see Sect. 4.5, is a standard application of the multivariate Laplace
method.
From the previous result, denote Wn(g,m∗, δ) to be the quantity given by

Wg
n (m∗, δ) := n

1
2k +1 ∫ m∗+δ

m∗−δ
dm en(g(m)+sn(m,1))

enψg(m∗)
(2n)!n2π2

22n−1nn−2n!(2n2
)
e−(n−1)

,

and its limit W (g,m∗) given by

Wg(m∗) := lim
n→∞ Wg

n (m∗, δ) = eg(m
∗)

eψg(m∗)
√
1 − m∗2∫

R3
dθ1dθ2dm e

1
2 ∂22 [ψg](m∗,0,0)θ21+ 1

2 ∂23 [ψg](m∗,0,0)θ22+ 1
(2k)! ∂2k [ψg](m∗)m2k

.

To resolve the weak convergence of the mixture measure, using both Lemma 3.3.4 and
Corollary 4.3.10, we compute

κ
g
n
(
B(m′ − δ,m′ + δ)

)
∑

m∗∈M∗(ψg) κ
g
n
(
B(m∗ − δ,m + δ)

) = n
−
(

1
2k(m′) − 1

2k∞
)
Wg

n (m′, δ)
∑

m∗∈M∗(ψg) n
−
(

1
2k(m∗)

− 1
2k∞

)
Wg

n (m∗, δ)
,

from which it follows that

lim
n→∞

κ
g
n
(
B(m′ − δ,m′ + δ)

)
∑

m∗∈M∗(ψg) κ
g
n
(
B(m∗ − δ,m + δ)

) =
{

Wg(m′)∑
m∗∈M∞(ψg ) W

g(m∗) , k(m′) = k∞(ψg)

0, k(m′) < k∞(ψg)

Following this computation, we have the following result.

Theorem 3.3.5 Let g ∈ Cb([−1, 1]) be an infinitely continuously differentiable function such
that ψg has finitely many global maximizing points M∗(ψg) ⊂ (−1, 1) of finite type.
Then, it follows that

lim
n→∞ κ

g
n =

⎛
⎝ ∑

m∗∈M∞(ψg)

Wg(m∗)

⎞
⎠

−1 ∑
m∗∈M∗∞(ψg)

Wg(m∗)δm∗ .

To finish, we can directly compute the following

∂22 [ψg](m∗, 0, 0) = −
2
√

1+m∗
2√

1+m∗
2 +

√
1−m∗

2

, −∂23 [ψg](m∗, 0, 0) = −
2
√

1−m∗
2√

1+m∗
2 +

√
1−m∗

2

,
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this implies that the integral containing these terms does not depend on g, other than
through the value of the global maximizing point. In addition, it is immediate that the factor
eψg(m∗)−g(m∗) does not depend on g either. Furthermore, we immediately have

∫ ∞

−∞
dm e

1
(2k)! ∂2k [ψg](m∗)m2k = 1

|∂2k[ψg](m∗)| 1
2k

∫ ∞

−∞
dm e− m2k

(2k)! .

We can thus combine all factors not depending functionally on g into a single function
Ck : (−1, 1) → (0,∞) given by

Ck(m∗) := eg(m
∗)

eψg(m∗)
√
1 − m∗2

∫
R3

dθ1dθ2dm e
1
2 ∂22 [ψg](m∗,0,0)θ21+ 1

2 ∂23 [ψg](m∗,0,0)θ22− m2k
(2k)! ,

so that

Wg(m∗) = Ck(m∗)
|∂2k[ψg](m∗)| 1

2k

.

Using Corollary 3.1.7, Theorem 3.3.5, Lemma 3.1.1, and the form of the weights Wg(m∗)
given above, we have the final result.

Theorem 3.3.6 Let g ∈ Cb([−1, 1]) be an infinitely continuously differentiable function such
that ψg has finitely many global maximizing points M∗(ψg) ⊂ (−1, 1) of finite type, and let
k∞ := k∞(ψg).
Then, it follows that

lim
n→∞ μ

g
n =

⎛
⎝ ∑

m∗∈M∗∞(ψg)

Ck∞(m∗)
|∂2k∞[ψg](m∗)|

⎞
⎠

−1

∑
m∗∈M∗∞(ψg)

Ck∞(m∗)
|∂2k∞[ψg](m∗)|η(β(m∗, 1), μ(m∗, 1)).

This concludes the presentation of the main results of this paper.

4 Intermediate Results and Proofs

This section contains proof of some of the results in Sect. 3, and some collections of inter-
mediate results and theory that are required.

4.1 Microcanonical Probability Measures

To motivate the rigorous definition of the microcanonical ensemble and its associated prob-
ability measure, consider the following formal calculation
∫
Rn

dφ δ(Mn(φ) − mn)δ(Nn(φ) − ρn) f (φ)

=
∑

σ∈{−1,1}n

∫
[0,∞)n

dφ δ

⎛
⎝ ∑

i∈σ−1{+1}
φi −

∑
i∈σ−1{−1}

φi − mn

⎞
⎠ δ
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⎛
⎝ ∑

i∈σ−1{+1}
φi +

∑
i∈σ−1{−1}

φi − ρn

⎞
⎠ f (σφ)

=
∑

σ∈{−1,1}n
1

2

∫
[0,∞)n

dφ δ

⎛
⎝ ∑

i∈σ−1{+1}
φi − ρ + m

2
n

⎞
⎠ δ

⎛
⎝ ∑

i∈σ−1{−1}
φi − ρ − m

2
n

⎞
⎠ f (σφ),

where the pair (m, ρ) ∈ A, f : Rn → R is a sufficiently regular function, and σφ notation
for a multiplication map defined by (σφ)i := σiφi . Note that the integral in the sum is a
product of two integrals since the index sets σ−1{+1} and σ−1{−1} are trivially disjoint.
Note that the primary formal rule we have made use of is the following one

δ(T x − y) = 1

| det(T )|δ
(
x − T−1y

)

for an invertible linear map T : Rk → R
k , and elements x, y ∈ R

k .
To make this formal calculation rigorous, we need to define integrals over scaled simplexes
in arbitrary dimensions. To do this, we introduce the so-called flag coordinates φ′ : Rk → R

k

given by

φ′
i (φ) :=

i∑
j=1

φi .

Note that φ′([0,∞)k) = {φ ∈ [0,∞)k : φ1 ≤ φ2 ≤ ... ≤ φk}, det(φ′) = 1, and the inverse
function of φ′ is given by

φ′−1
i (φ′) = φ′

i − φ′
i−1,

where we take the convention that φ′
0 := 0.

The connection between the flag coordinates and the integrals over simplexes can be seen
from the following formal calculation

∫
[0,∞)k

dφ δ

(
k∑

i=1

φi − r

)
f (φ)

=
∫

[0,∞)k
dφ δ(φk − r)1(φ1 ≤ φ2 ≤ ... ≤ φk) f (φ1, φ2 − φ1, ..., φk − φk−1)

=
∫

[0,∞)k−1
dφ 1(φ1 ≤ φ2 ≤ ... ≤ φk−1 ≤ r) f (φ1, φ2 − φ1, ..., r − φk−1),

where r > 0, and f : Rn → R is a sufficiently regular function.
From this formal calculation, we produce the following definition.

Definition 4.1.1 For a finite index set I and r > 0, the measure SI (r) on [0,∞)I corre-
sponding to the integral over an (|I | − 1)-dimensional r -scaled simplex on the index set I is
given by its action on f ∈ Cb([0,∞)I ) given by
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SI (r)[ f ] :=
∫

[0,∞)k−1
dφ 1(φi1 ≤ φi2 ≤ ... ≤ φi|I |−1 ≤ r) f (φi1 , φi2 − φi1 ..., r − φi|I |−1),

where {ik}|I |k=1 is some enumeration of I .

For future use, whenever it is clear that we are either referring to the measure or the normal-
ization constant, we will use the following notation

SI (r) := SI (r)[1] = r |I |−1

(|I | − 1)! ,

where the right-hand side follows by direct computation. Using dominated convergence, it is
also clear that the mapping r �→ SI (r)[ f ] is continuous if f ∈ Cb([0,∞)I ) is continuous.
To show that Definition 4.1.1 is independent of the enumeration of I given above, we will
use a Lebesgue-absolutely continuous approximation of SI (r). Let g : [0,∞) → R be a
measurable function such that ∫ ∞

0
dr |g(r)|r |I |−1 < ∞.

It follows that
∫

[0,∞)I
dφ g

(∑
i∈I

φi

)
f (φ) =

∫ ∞

0
dr g(r)SI (r)[ f ],

where f ∈ Cb([0,∞)I ). Now, consider the family {gε}ε>0 given by

gε(r) := 1(|r | < ε)

2ε
. (4.1.1)

Fix r > 0. Since f ∈ Cb([0,∞)I ), as stated before, one can verify that SI (·)[ f ] ∈
C([0,∞)). It follows that

SI (r)[ f ] = lim
ε→0+

∫ ∞

0
dr ′ gε(r

′ − r)SI (r
′)[ f ] = lim

ε→0+

∫
[0,∞)I

dφ gε

(∑
i∈I

φi − r

)
f (φ).

We see that the left-hand side of the above equality will inherit properties from the right-hand
side limiting term. In particular, the measure given by its action on f ∈ Cb([0,∞)I ) given
by

f �→
∫

[0,∞)I
dφ gε

(∑
i∈I

φi

)
f (φ)

is independent of any enumeration of I , and it is label permutation invariant. It follows that
the measure SI (r) is independent of the given enumeration in the definition, and it is label
permutation invariant.
We can now define the microcanonical probability measure using Definition 4.1.1.

Definition 4.1.2 The measure Zn(M, N ) is given by its action on f ∈ Cb(R
n) given by

Zn(M, N )[ f ] :=

⎧⎪⎨
⎪⎩

1
2

∑
σ∈{−1,1}n(

Sσ−1{+1}
( N+M

2

) ⊗ Sσ−1{−1}
( N−M

2

)) [ f ◦ σ ], (M, N ) ∈ A,

Sn(N )[ f ], (M, N ) ∈ ∂A \ {0},
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where⊗(·) is the tensor product of twomeasures, f ◦σ is the composition of themultiplication
map σ with f , and we take the necessary convention that(

Sσ−1{+1}
(
N + M

2

)
⊗ Sσ−1{−1}

(
N − M

2

))
[ f ◦ σ ] = 0

if σ = {1, 1, ..., 1} or σ = {−1,−1, ...,−1} whenever (M, N ) ∈ A.

This last convention implies that we do not include the “first” and “last” in the sum, but we
have left them in to save space on notation.
To conclude this section, wewill, finally, give the definition of themicrocanonical probability
measure.

Definition 4.1.3 For (m, ρ) ∈ A\{0}, the probabilitymeasure νn(m, ρ) onRn corresponding
to the microcanonical probability measure is defined by its action on f ∈ Cb(R

n) given by

νn(m, ρ)[ f ] := Zn(mn, ρn)[ f ]
Zn(mn, ρn)

, (4.1.2)

and the microcanonical partition function, acting as the normalization constant Zn(mn, ρn)

is given by

Zn(mn, ρn) := Zn(mn, ρn)[1] =
⎧⎨
⎩

1
2

∑n−1
k=1

(n
k

) (
ρn+mn

2

)k−1

(k−1)!

(
ρn−mn

2

)n−k−1

(n−k−1)! , (m, ρ) ∈ A,

(ρn)n−1

(n−1)! , (m, ρ) ∈ ∂A \ {0},
(4.1.3)

which can be verified by direct computation.

To make the microcanonical probability measure computationally tractable, we will utilize a
similar Lebesgue-absolutely continuous approximation as for the integrals over the simplex.
However, as opposed to the approximation for the integrals over the simplexes, one must be
more careful here. Using the family of functions {gε}ε>0 from Eq. (4.1.1), observe that∫

[0,∞)σ
−1{+1}×[0,∞)σ

−1{−1}
dφ

× gε

⎛
⎝ ∑

i∈σ−1{+1}
φi − ρn + mn

2

⎞
⎠ gε

⎛
⎝ ∑

i∈σ−1{−1}
φi − ρn − mn

2

⎞
⎠ f (σφ)

=
∫

[0,∞)σ
−1{+1}×(−∞,0]σ−1{−1}

dφ

× gε

(
n∑

i=1

|φi | + φi

2
− ρn + mn

2

)
gε

(
n∑

i=1

|φi | − φi

2
− ρn − mn

2

)
f (φ),

where (m, ρ) ∈ A, and σ does not consist of all 1’s or all −1’s. Now, if we consider instead
the right-hand side first, then it makes sense even when σ consists of all 1’s or −1’s. In that
instance, the argument of one of the gε will not integrate over any φ-variables, and for small
enough ε > 0 the indicator function vanishes. Summing over the σ , in this case, it then
follows that
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Zn(mn, ρn)[ f ] (4.1.4)

= lim
ε→0+

1

2

∫
Rn

dφ gε

(
n∑

i=1

|φi | + φi

2
− ρn + mn

2

)
gε

(
n∑

i=1

|φi | − φi

2
− ρn − mn

2

)
f (φ).

Returning now to the microcanonical probability measure, we see that its inherits the various
properties of the measure with action on f ∈ Cb(R

n) given by

f �→
∫
Rn

dφ gε

(
n∑

i=1

|φi | + φi

2
− ρn + mn

2

)
gε

(
n∑

i=1

|φi | − φi

2
− ρn − mn

2

)
f (φ).

In particular, it is label permutation invariant. Furthermore, this approximation will be used
for some calculations related to the microcanonical probability measure.

4.2 Relative Entropy and Local Observables

We begin with the proof of a type of generalized dominated convergence theorem.

Proof of Lemma 3.1.1 The condition that K is a continuity set of μ implies that

lim
n→∞ μn(K ) = μ(K ),

and the condition that supp(μ) ⊂ K implies that μ(K ) = 1.
Next, we have the following two simple inequalities∣∣∣∣

∫
X

μn(dx) fn(x) −
∫
K

μn(dx) fn(x)

∣∣∣∣ ≤ μn(X \ K ) sup
n∈N

sup
x∈X

| fn(x)|,

and ∣∣∣∣
∫
K

μn(dx) fn(x) −
∫
K

μn(dx) f (x)

∣∣∣∣ ≤ μn(K ) sup
x∈K

| fn(x) − f (x)|.

Since K is a continuity set of μ, using the continuity set definition of weak convergence, it
follows that μn conditioned to K converges weakly to μ conditioned to K . Transitioning to
the continuous bounded form of weak convergence, it follows that

lim
n→∞

1

μn(K )

∫
K

μn(dx) f (x) = 1

μ(K )

∫
K

μ(dx) f (x) =
∫
K

μ(dx) f (x).

For completeness, we have the following final inequality∣∣∣∣
∫
K

μn(dx) f (x) −
∫
X

μ(dx) f (x)

∣∣∣∣ ≤ μn(X \ K )

μn(K )

∣∣∣∣
∫
X

μn(dx) f (x)

∣∣∣∣ .
Combining together all three inequalities, the result follows. ��
We will need the relative entropy between two absolutely continuous probability measures.

Definition 4.2.1 Let X be a Polish space, and let μ and ν be probability measures on X . If μ

is absolutely continuous with respect to ν, the relative entropy H(μ||ν) is given by

H(μ||ν) :=
∫
X
dμ ln

dμ

dν
.

If μ is not absolutely continuous with respect to ν, we set H(μ||ν) = ∞.
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We will need the following properties of relative entropy.

Theorem 4.2.2 Let X be a Polish space, and let μ and ν be probability measures on X such
that μ is absolutely continuous with respect to ν.

• For any μ and ν satisfying the assumptions

H(μ||ν) ≥ 0.

• For any μ and ν satisfying the assumptions

sup
f ∈Mb(X), || f ||∞≤1

|μ[ f ] − ν[ f ]| ≤
√

H(μ||ν)

2
,

where Mb(X) is the space of measurable bounded functions on X.
• If X = Yn, where Y is another Polish space, and ν = ⊗n

k=1λ, where λ is a probability
measure on Y , it follows that

HI (μ||ν) + HJ (μ||ν) ≤ HI∪J (μ||ν) + HI∩J (μ||ν),

where I , J ⊂ {1, 2, ..., n}, and HI (μ||ν) is denotes the relative entropy of the I :th
marginal distributions of μ and ν.

The first and third properties are discussed and given proofs in [23]. The second property
is sometimes referred to as Pinsker’s inequality and references to proofs and other details
concerning this inequality can be found in [24].
We can now give a proof of the fundamental inequality connecting the constrained and
non-constrained ensemble probability measures.

Proof of Lemma 3.1.2 Using Eq. (4.1.4), we can compute the integral over only the first 2
variables leaving the other n − 2 variables fixed. We compute
∫
R2

dφ gε

(
n∑

i=1

|φi | + φi

2
− ρn + mn

2

)
gε

(
n∑

i=1

|φi | − φi

2
− ρn − mn

2

)

= gε

(
n∑

i=3

|φi | − φi

2
− ρn − mn

2

)∫
[0,∞)2

dφ gε

(
φ1 + φ2 −

(
ρn + mn

2
−

n∑
i=3

|φi | + φi

2

))

+ 2
∫

[0,∞)2
dφ gε

(
φ1 −

(
ρn + mn

2
−

n∑
i=3

|φi | + φi

2

))
gε

(
φ2 −

(
ρn − mn

2
−

n∑
i=3

|φi | − φi

2

))

+ gε

(
n∑

i=3

|φi | + φi

2
− ρn + mn

2

)∫
[0,∞)2

dφ gε

(
φ1 + φ2 −

(
ρn − mn

2
−

n∑
i=3

|φi | − φi

2

))
.

Taking the limit, it follows that

lim
ε→0+

∫
R2

dφ gε

(
n∑

i=1

|φi | + φi

2
− ρn + mn

2

)
gε

(
n∑

i=1

|φi | − φi

2
− ρn − mn

2

)

= 21

(
ρn + mn

2
−

n∑
i=3

|φi | + φi

2
≥ 0

)
1

(
ρn − mn

2
−

n∑
i=3

|φi | − φi

2
≥ 0

)
.

Accounting for the normalization, the (n − 2):th marginal of the microcanonical probability
measure is given by

νn(m, ρ)(dφn−2) =
1
(

ρn+mn
2 − ∑n

i=3
|φi |+φi

2 ≥ 0
)
1
(

ρn−mn
2 − ∑n

i=3
|φi |−φi

2 ≥ 0
)

Zn(mn, ρn)
dφn−2,
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where dφn−2 is the (n − 2)-dimensional Lebesgue measure. Note the factor of 2 vanishes
due to the presence of a factor of 1

2 in the partition function. It follows that

dνn(m, ρ)

dηn(β, μ)
(φn−2) = Qn−2(β, μ)

e−β
∑n

i=3 φi−μ
∑n

i=3 |φi |

×
1

(
ρn+mn

2 − ∑n
i=3

|φi |+φi
2 ≥ 0

)
1

(
ρn−mn

2 − ∑n
i=3

|φi |−φi
2 ≥ 0

)

Zn(mn, ρn)
dφn−2.

The relative entropy is then directly computed to be

Hn−2(νn(m, ρ)||ηn(β, μ)) = βνn(m, ρ)
[
Mn−2

] + μνn(m, ρ)
[
Nn−2

] + ln Qn−2(β, μ)

− ln Zn(mn, ρn).

Using label permutation invariance, one can directly compute that

νn(m, ρ)
[
Mn−2

] = (n − 2)m, νn(m, ρ)
[
Nn−2

] = (n − 2)ρ, ln Qn−2(β, μ) = (n − 2) f (β, μ).

In summary, we have

1

n − 2
Hn−2(νn(m, ρ)||ηn(β, μ)) = βm + μρ + f (β, μ) − n

n − 2
sn(m, ρ).

To continue, by Theorem 4.2.2, it follows that

sup
f ∈Cb(R

I ), || f ||∞≤1
|νn(m, ρ)[ f ] − ηn(β, μ)[ f ]| ≤

√
HI (νn(m, ρ)||ηn(β, μ))

2
.

By label permutation invariance, it follows that

HI (νn(m, ρ)||ηn(β, μ)) = H[|I |](νn(m, ρ)||ηn(β, μ)).

Since I is finite, it follows that there exists k ∈ N such that (k − 1)|I | ≤ n − 2 < k|I |. Since
ηn(β, μ) is a product measure, using Theorem 4.2.2, it follows that

HI (νn(m, ρ)||ηn(β, μ)) = 1

k − 1

k−1∑
j=1

H[|I |]+( j−1)|I |(νn(m, ρ)||ηn(β, μ))

≤ Hn−2(νn(m, ρ)||ηn(β, μ))

k − 1

≤ |I |Hn−2(νn(m, ρ)||ηn(β, μ))

n − 2 − |I | .

Combining these inequalities together, it follows that

sup
f ∈Cb(R

I ), || f ||∞≤1
|νn(m, ρ)[ f ] − ηn(β, μ)[ f ]|

≤
√

|I |(n − 2)

2(n − 2 − |I |)
(

βm + μρ + f (β, μ) − n

n − 2
sn(m, ρ)

)
,

as desired. ��
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4.3 Large Deviations andWeak Convergence

We begin with the standard key definitions of large deviations theory. Note that these defi-
nitions are either the same or slightly modified versions of the same results and definitions
found in [22]. In addition, the result concerning convexity are either provided in [22], or we
refer to [20] for more detailed analysis of convex objects.
In the following {Pn}∞n=1 is a sequence of probability measures on a Polish space X .

Definition 4.3.1 A function I : X → [0,∞] is called a rate function if it satisfies the
following properties

• I (x) < ∞ for all x ∈ X .
• I is lower semi-continuous.
• I has compact level sets.

In the following, we use the notation I (A) := inf x∈A I (x).

Definition 4.3.2 A sequence of probability measure {Pn}∞n=1 is said to satisfy a large devia-
tions principle with rate function I if it satisfies the following properties

• For all closed sets C ⊂ X , we have

lim sup
n→∞

1

n
ln Pn(C) ≤ −I (C).

• For all open sets O ⊂ X , we have

lim inf
n→∞

1

n
ln Pn(O) ≥ −I (O).

Now, we specialize to probability distributions on R
d . In the following, let {mn}∞n=1 be a

sequence of random variables on R
d , and we set Pn(A) := P(mn ∈ A). The moment

generating functions ϕn : Rd → (0,∞] are given by ϕn(t) := Ee〈t,mn〉. In the following, we
assume the existence of a function � : Rd → [−∞,∞] given by

�(t) := lim
n→∞

1

n
ln ϕn(nt),

and that this function satisfies 0 ∈ int(D(�)) where D(�) := {t ∈ R
d : �(t) < ∞}. For

such a function, it follows that� is convex and�(t) > −∞ for all t ∈ R
d . A convex function

� : Rd → [−∞,∞] is called proper if �(t) > −∞ for all t ∈ R
d , and there exists at least

one point t0 ∈ R such that �(t0) < ∞. It is clear that when � is the limit of the scaled
logarithmic moment generating functions, then it is a proper convex function.
We will need the Legendre transform of �.

Definition 4.3.3 The Legendre transform �∗ : Rd → [−∞,∞] of a � : Rd → [−∞,∞]
is given by

�∗(x) := sup
t∈Rd

{〈x, t〉 − �(t)}.

For � given by the limit of the scaled logarithm, it follows that �∗ is a convex rate function.
In particular, we see that the range of �∗ must be contained in [0,∞).
To specify the form of the Gärtner-Ellis theorem, that we wish to utilize, we need the concept
of essential smoothness.
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Definition 4.3.4 A proper convex function� : Rd → (−∞,∞] is called essentially smooth
if it satisfies the following properties

• int(D(�)) �= ∅.
• � is differentiable on int(D(�)).
• Either D(�) = R

d or, for any t∗ ∈ ∂D(�), it follows that limt→t∗ ||∇[�](t)|| = ∞.

We can now give the essentially smooth form of the Gärtner-Ellis theorem.

Theorem 4.3.5 Let � : R
d → (0,∞] be an essentially smooth lower semi-continuous

function.
It follows that {Pn}∞n=1 satisfies a large deviations principle with rate function �∗.

It is typical to introduce the notion of strict convexity of a function, but we will instead
directly introduce the notion of a Legendre-type function.

Definition 4.3.6 A proper convex lower semi-continuous function � : Rd → (−∞,∞] is
said to be of Legendre-type if it is both essentially smooth and strictly concave on int(D(�)).

The primary feature of Legendre-type functions that we will use is that the gradient of such
a function � is a bijection between int(D(�)) and int(D(�∗)).
We can now prove the following general theorem.

Theorem 4.3.7 Let {Zn}∞n=1 be a sequence of functions Zn : nA → (0,∞), where A ⊂ R
d

is a non-empty open convex set such that each Zn is log-concave, and

sup
n∈N

∣∣∣∣1n ln Zn(xn)

∣∣∣∣ < ∞

for each x ∈ A. Denote by sn : A → (−∞,∞) the function given by

sn(x) := 1

n
ln Zn(xn).

In addition, suppose that the function f : Rd → [−∞,∞] given by

f (t) := lim
n→∞

1

n
ln Qn(t),

exists, where Qn : Rd → (0,∞] are given by

Qn(t) :=
∫
nA

dX e−〈t,X〉Zn(X),

and there exists a non-empty open convex set B ⊂ R
d such that D(Qn) = int(D( f )) = B.

If f is a proper convex lower semi-continuous function of Legendre type such that−∇[ f ]B =
A then the function s : A → R given by the limit

s(x) := lim
n→∞

1

n
ln Zn(xn),

exists, and satisfies

s(x) := inf
t∈Rd

{〈t, x〉 + f (t)}, lim
n→∞ sup

K⊂A
|sn(x) − s(x)| = 0

for any compact set K ⊂ A.
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Proof For the first step, let t0 ∈ B be any base point, andwe define the sequence of probability
measures {Pn}∞n=1 on R

d by setting

Pn(A) := 1

Qn(t0)

∫
n(A∩A)

dX e−〈t0,X〉Zn(X),

where A ⊂ R
d is Borel measurable.

The moment generating function ϕn : Rd → (0,∞] of the random variable mn on R
d with

distribution given by Pn is given by

ϕn(t) := Qn
(
t0 − t

n

)
Qn(t0)

.

The limit of the scaled logarithm moment generating function � : Rd → [−∞,∞] is given
by

�(t) := lim
n→∞

1

n
ln ϕn(nt) = f (t0 − t) − f (t0).

Since � inherits its properties from f , it follows that � exists, is a proper convex lower
semi-continuous function of Legendre-type, and satisfies 0 = t0 − t0 ∈ int(D(�)) = t0 −
int(D( f )) = t0 − B. It follows that {Pn}n∈N satisfies a large deviations principle with rate
function�∗. Since� is of Legendre-type, it follows that int(D(�∗)) = ∇[�](int(D(�))) =
−∇[ f ]B = A.
Let y ∈ int(D(�∗)) = A. Since �∗ is convex, it follows that it is continuous on A and thus
the compact balls B(y, δ) for small enough δ > 0 are continuity sets from which it follows
that

lim
n→∞

1

n
ln Pn

(
B(y, δ)

) = −�∗(B(y, δ)
)
.

For the second step, since each sn is concave and the collection {sn}n∈N is pointwise uniformly
bounded, it follows that the collection {sn}n∈N is relatively compact in the compact-open
topology of continuous functions. Let {snk }∞k=1 be any locally uniformly convergent subse-
quence with limiting function s′. Since B(y, δ) is a compact set, it follows that

lim
k→∞

1

nk
ln

∫
nk B(y,δ)

dX e−〈t0,X〉Znk (X) = lim
k→∞

1

nk
ln

∫
B(y,δ)

dx nke
nk

(
snk (x)−〈y0,x〉

)

= sup
x∈B(y,δ)

{s′(x) − 〈t0, x〉}.

Then we have

lim
k→∞

1

nk
ln Pnk

(
B(y, δ)

) = sup
x∈B(y,δ)

{s′(x) − 〈t0, x〉} − f (t0).

By combining this result with the large deviations principle, we deduce that

sup
x∈B(y,δ)

{s′(x) − 〈t0, x〉} − f (t0) = −�∗(B(y, δ)
)
.

Now, since both functions inside the supremum and infimum respectively are continuous,
letting δ → 0+, we obtain

s′(y) − 〈β0, y〉 − f (t0) = −�∗(y) ⇐⇒ s′(y) = inf
t∈Rd

{〈y, t〉 + f (t)}.
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Since s′ was the locally uniform limit of an arbitrary convergent subsequence {snk }∞k=1, the
above result implies that this holds for any such s′, and thus the limit of any convergent
subsequence is the same from which it follows that

lim
n→∞ sn(x) = inf

t∈Rd
{〈t, x〉 + f (t)},

for x ∈ int(D(�∗)) = A, and since the sn are concave and pointwise uniformly bounded,
this convergence is automatically locally uniform. ��
Let us also give a quick proof of the following weak convergence result concerning large
deviations principles.

Theorem 4.3.8 Let {Pn}∞n=1 be a sequence of probability measures on X satisfying a large
deviations principle with rate function I .
It follows that

L
({Pn}∞n=1

) ⊂ {
P ∈ P(X) : supp(P) ⊂ I−1{0}},

where P(X) is the space of Borel probability measures on X.

Proof Let us first show that I−1{0} is non-empty and closed. Since I has compact level sets,
it follows that I−1[0, c] are compact for c > 0, but possibly empty. If they are not empty, then
I−1{0} = ⋂∞

n=1 I
−1

[
0, 1

n

]
, and it follows directly that I−1{0} is non-empty and compact.

However, if I−1[0, c] is empty for some c > 0, observe that

0 = lim
n→∞ I

(
I−1[0, n]) = lim

n→∞ inf
x∈I−1[0,n]

I (x) = lim
n→∞ inf

x∈I−1(c,n]
I (x) > c > 0,

which is a contradiction, and thus I−1[0, c] are non-empty for every c > 0, and subsequently
c = 0. Note that the first line of the above proof by contradiction follows from the fact that
{Pn}∞n=1 satisfies a large deviations principle.
Let y /∈ I−1{0} be such that B(y, δ) is disjoint from I−1{0} for small enough δ > 0. Note
that

lim sup
n→∞

1

n
ln Pn

(
B(y, δ)

) ≤ −I
(
B(y, δ)

)
< 0.

The last strict inequality follows since by lower semi-continuity I attains its minimum on
any non-empty compact set, and I is strictly positive on the set B(y, δ). It follows that

Pn(B(y, δ)) ≤ Pn
(
B(y, δ)

) ≤ en supk≥n
1
n ln Pn

(
B(y,δ)

)
,

so that

lim
n→∞ Pn(B(y, δ)) = 0.

Since the sequence of probability measures satisfies a large deviations principle, it is expo-
nentially tight which implies that it is uniformly tight in the weak sense. Let {Pnk }∞k=1 be
any weakly convergent subsequence with limiting probability measure P . Let B(y, δ) be as
before, by weak convergence, it follows that

P(B(y, δ)) ≤ lim inf
k→∞ Pnk (B(y, δ)) = 0.

Since y /∈ I−1{0} is arbitrary, it follows that(
I−1{0})c ⊂ (supp(P))c ⇐⇒ supp(P) ⊂ I−1{0}. ��
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For the purposes of this paper, the most important corollary is the case where I−1{0} consists
of a single point.

Corollary 4.3.9 Let {Pn}∞n=1 be a sequence of probability measures on X satisfying a large
deviations principle with rate function I such that I (x∗) = 0 for exactly one x∗ ∈ X.
It follows that

lim
n→∞ Pn = δx∗

weakly.

The proof of this statement is an application of the previous theorem in combination with
Prokhorov’s theorem.
Another important corollary is the following result concerning the casewhere I−1{0} consists
of finitely many points.

Corollary 4.3.10 Let {Pn}∞n=1 be a sequence of probability measures on X satisfying a large
deviations principle with rate function I such that the set M∗ := I−1{0} is finite.
It follows that

∫
X
Pn(dx) f (x) =

∑
x∗∈M∗

Pn
(
B(x∗, δ)

)
Pn(Aδ)

f (x∗) + o(1)

for any 0 < δ < minx∗,y∗∈M∗ d(x∗, y∗).

Proof Let δ < minx∗,y∗∈M∗ d(x∗, y∗). We decompose X as follows

X = Aδ ∪ Ac
δ,

where

Aδ :=
⋃

x∗∈M∗
B(x∗, δ).

Using this decomposition, we have

Pn = Pn(Aδ)
∑

x∗∈M∗

Pn
(
B(x∗, δ)

)
Pn(Aδ)

Pn |B(x∗,δ) + Pn(A
c
δ)Pn |Ac

δ
.

Using the large deviations principle, it follows that

lim
n→∞ Pn(Aδ) = 1,

and, by using the previous corollary, it follows that

lim
n→∞ Pn |B(x∗,δ) = δx∗

weakly, where x∗ ∈ M∗. Using these limits together, we obtain

lim
n→∞

∣∣∣∣∣
∫
X
Pn(dx) f (x) −

∑
x∗∈M∗

Pn
(
B(x∗, δ)

)
Pn(Aδ)

f (x∗)
∣∣∣∣∣ = 0.

��
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4.4 Infinite-Volume Entropies and States

Next, we prove the regularity and boundedness of the finite-volume entropies.

Proof of Lemma 3.1.4 From Eq. (4.1.3), we see that the microcanonical partition function
is a homogeneous bivariate polynomial of degree n − 2. Let us introduce the change of
coordinates z : A → (0,∞)2 given by

z(M, N ) := (x(M, N ), y(M, N )) =
(
N + M

2
,
N − M

2

)
.

It follows that Zn(M, N ) = 1
2 Pn(z(M, N )), where Pn : (0,∞)2 → (0,∞) is given by

Pn(x, y) :=
n−1∑
k=1

(
n

k

)
xk

(k − 1)!
yn−k−1

(n − k − 1)! .

Using the properties of the binomial coefficient, we can manipulate Pn into the following
form

Pn(x, y) = n(n − 1)
n−2∑
k=0

(
n − 2

k

)
xk

(k + 1)!
yn−2−k

(n − 1 − k)! .

Let us denote the coefficients of the above manipulated polynomial by {ck}n−2
k=0. For k ∈ N,

using the simple relation

(k + 1)!(k − 1)! > k!,
it follows that

c2k(n−2
k

)2 >
ck+1(n−2
k+1

) ck−1(n−2
k−1

)

for 0 < k < n − 2. Using [16, Example 2.3], this implies that the sequence of coefficients
{ck}n−2

k=0 is ultra log-concave, which yields that Pn is Lorentzian, which shows that Pn is log-
concave, see [16, Theorem 2.30] and the definition of completely log-concave polynomials
due to [25]. Since Zn is the composition of an invertible linear map, simple scaling by a
factor of 2, and a log-concave polynomial it follows that Zn is log-concave.
For boundedness, by Theorem 4.2.2, we have Hn−2(νn(m, ρ)||ηn(β, μ)) ≥ 0, from which
it follows that

sn(m, ρ) ≤ n

n − 2
sn(m, ρ) ≤ f (β, μ) + βm + μρ,

which shows that the family of entropies is pointwise bounded above. As for a lower bound,
it is enough to use the following trivial lower bound

Zn(mn, ρn) ≥ 1

2

n!
(n − 1)!

(
ρn+mn

2

)n−2

(n − 2)! ,

from which we obtain

1

n
ln Zn(mn, ρn) ≥ 1

n
ln

1

2
+ n − 2

n
ln

ρ + m

2
+ 1

n
ln

nn−1

(n − 2)! .
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It follows that

lim inf
n→∞

1

n
ln Zn(mn, ρn) ≥ ln

ρ + m

2
+ 1,

as desired. ��
We continue by consider the properties of the limiting entropy f (β, μ).

Proof of Lemma 3.1.6 First, we observe that

f (β, μ) = ln
∫ ∞

−∞
dφ e−βφ−μ|φ|.

From this form, it is apparent that f is strictly convex onA and thus is a proper convex function
on R

2. For lower semi-continuity, if (β, μ) ∈ R
2\A, then f is lower semi-continuous for

trivial reasons, in addition, since f is continuous on A, it is also necessarily lower semi-
continuous there. For the points in (β, μ) ∈ ∂A, it is clear that these points are of the form
(±μ′, μ′) for μ′ ≥ 0. It is easy to check that lim(β,μ)→(±μ′,μ) f (β, μ) = ∞, since f (β, μ)

is either equal to infinity, or it is increasing without bound for points inside A approaching
(±μ′, μ′).
As for the other properties, the non-empty interior of the domain of finiteness of f is given
by A. The mapping f is differentiable in A. For steepness, which is the third property of
being essentially smooth, observe that

||∇[ f ](β, μ)|| = 1
1

μ+β
+ 1

μ−β

√
2

(μ + β)4
+ 2

(μ − β)4
.

Since all norms on R
2 are equivalent, it follows that there exists a constant C > 0 such that

(
1

(μ + β)4
+ 1

(μ − β)4

) 1
4 ≥ C

(
1

μ + β
+ 1

μ − β

)
.

Using this estimate, it follows that

||∇[ f ](β, μ)|| ≥ √
2C

(
1

μ + β
+ 1

μ − β

)
.

From this estimate it is now clear that if (β, μ) → (±μ′, μ′) for μ′ ≥ 0 for points inside A,
then clearly lim(β,μ)→(±μ′,μ′) ||∇[ f ](β, μ)|| = ∞, which shows steepness.
In summary, we find that f is a proper convex lower semi-continuous function of Legendre
type.
For the next few computational steps, it is useful to introduce the change of variables g :
R
2 → R

2 given by (β, μ) �→ g(β, μ) = (μ + β,μ − β) so that for (β, μ) ∈ A, we have

f (β, μ) = ln

(
1

g1(β, μ)
+ 1

g2(β, μ)

)
.

We can now equivalently consider the function f ′ : (0,∞)2 → R given by

f ′(g1, g2) = ln

(
1

g1
+ 1

g2

)
,

so that f ◦ g−1 = f ′. For the function f ′ it is easy to verify that

−∇[ f ′](g1, g2) =
(

g2
g1(g2 + g1)

,
g1

g2(g2 + g1)

)
,
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and the inverse map can be computed from

(0,∞)2 � (a, b) = −∇[ f ′](g1, g2)
⇐⇒ (g1, g2) =

(
1√

a(
√
a + √

b)
,

1√
b(

√
a + √

b)

)
= (−∇[ f ′])−1(a, b).

This shows that (−∇[ f ′])(0,∞)2 = (0,∞)2. Finally, for (a, b) ∈ (0,∞)2, one can observe
that

inf
(g1,g2)∈(0,∞)2

{ag1 + bg2 + f ′(g1, g2)} = (−∇[ f ′])−1
1 (a, b)a + (−∇[ f ′])−1

2 (a, b)b

+ ( f ◦ (−∇[ f ′]) (a, b)

= 1 + ln
((√

a + √
b
)2)

.

To return to the function f , we have

(−∇[ f ])A = (D[g])T ((−∇[ f ′])g(A)) = (D[g])T ((−∇[ f ′])(0,∞)2)

= (D[g])T (0,∞)2 = A,

where D[g] is the derivative of the map g. We can also compute the following

inf
(β,μ)∈R2

{βm + μρ + f (β, μ)} = inf
(β,μ)∈A{βm + μρ + f (β, μ)}

= inf
(g1,g2)∈g(A)=(0,∞)2

{
g−1
1 (g1, g2)m

+ g−1
2 (g1, g2)ρ + ( f ◦ g−1)(g1, g2)

}

= inf
(g1,g2)∈(0,∞)2

{
g1 − g2

2
m + g1 + g2

2
ρ + f ′(g1, g2)

}

= inf
(g1,g2)∈(0,∞)2

{
ρ + m

2
g1 + ρ − m

2
g2 + f ′(g1, g2)

}

= 1 + ln

⎛
⎝

(√
ρ + m

2
+

√
ρ − m

2

)2
⎞
⎠ .

To finish, note that we can simply compute the gradient

−∇[ f ](β, μ) =
(

− 2β

μ2 − β2 ,
μ2 + β2

μ(μ2 − β2)

)
,

but its inverse map is simpler to solve from the composite function f ′. Doing so, we obtain

A � (m, ρ) = −∇[ f ](β, μ) ⇐⇒ (β, μ) =
(

− ρ

m

1√
ρ2 − m2

+ 1

m
,

1√
ρ2 − m2

)

= (−∇[ f ])−1(m, ρ).

Compiling together all of these results, we find that f is a proper convex lower semi-
continuous function of Legendre type which satisfies (−∇[ f ])A = A, and, for (m, ρ) ∈ A,
we have

inf
(β,μ)∈R2

{βm + μρ + f (β, μ)} = inf
(β,μ)∈A{βm + μρ + f (β, μ)}
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= β(m, ρ)m + μ(m, ρ)ρ + f (β(m, ρ), μ(m, ρ))

= 1 + ln

⎛
⎝

(√
ρ + m

2
+

√
ρ − m

2

)2
⎞
⎠ ,

where

(β(m, ρ), μ(m, ρ)) = (−∇[ f ])−1(m, ρ) =
(

− ρ

m

1√
ρ2 − m2

+ 1

m
,

1√
ρ2 − m2

)
.

��
We begin with the proof of the half-constrained ensemble limiting entropy.

Proof of Lemma 3.2.1 Fix β ∈ R, and consider the mapping Qn(gβ, ·) : (0,∞) → R given
by

Qn(g
β, ρ) :=

∫
Rn

dφ e−βMn(φ)δ(Nn(φ) − ρn),

which, like Eq. (3.1.1), is to be understood as

Qn(g
β, ρ) = e−βρn Zn(ρn, ρn) + eβρn Zn(−ρn, ρn) +

∫ ρ

−ρ

dm ne−βmn Zn(mn, ρn).

By direct computation, using Eq. (4.1.3), it follows that

lim
n→∞

1

n
ln

(
e−βρn Zn(ρn, ρn)

) = −βρ + ln ρ + 1, lim
n→∞

1

n
ln

(
eβρn Zn(−ρn, ρn)

)

= βρ + ln ρ + 1.

As for the mapping

ρ �→
∫ ρ

−ρ

dm ne−βmn Zn(mn, ρn) =
∫
R

dm n1(|m| < ρ)e−βmn Zn(mn, ρn),

it is enough to notice that the individual mappings in the integrand

R
2 � (m, ρ) �→ (

1(|m| < ρ), e−βmn, Zn(mn, ρn)
)

are log-concave functions. To be more precise, the indicator function is the indicator of a
convex set and is thus log-concave, the exponential function is trivially log-concave by direct
computation, and, finally, the microcanonical partition function, which is to be understood
as the microcanonical partition function on A extended beyond this set by setting its value
to 0, is log-concave by Lemma 3.1.4. It follows that that the mapping

ρ �→
∫ ρ

−ρ

dm ne−βmn Zn(mn, ρn)

is log-concave by the Prékopa–Leindler inequality or Prékopa’s theorem, see [26, Section
9], since it is the marginal of a log-concave function.
For pointwise uniform boundedness, we begin by observing that

e−|β|ρn
∫ ρ

−ρ

dm nZn(mn, ρn) ≤
∫ ρ

−ρ

dm ne−βmn Zn(mn, ρn) ≤ e|β|ρn
∫ ρ

−ρ

dm nZn(mn, ρn)
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and ∫ ρ

−ρ

dm nZn(mn, ρn) = ρn−1nn−1
∫ 1

−1
dm Zn(m, 1).

We will use the beta function B(z1, z2) given by

B(z1, z2) :=
∫ 1

0
dt t z1−1(1 − t)z2−1

for Re(z1),Re(z2) > 0. By a change of variables, one can see that

B(z1, z2) = 1

2

∫ 1

−1
dt

(
1 + t

2

)z1−1 (
1 − t

2

)z2−1

.

For integer values, we have the following identity

B(m, n) = (m − 1)!(n − 1)!
(m + n − 1)!

from which it follows that
∫ 1

−1
dm Zn(m, 1) =

n−1∑
k=1

(
n

k

)
B(k, n − k)

(k − 1)!(n − k − 1)! = 1

(n − 1)!
n−1∑
k=1

(
n

k

)
= 2n − 2

(n − 1)! .

In summary, we have

e−|β|ρnρn−1nn−1 2n − 2

(n − 1)! ≤
∫ ρ

−ρ

dm ne−βmn Zn(mn, ρn) ≤ e|β|ρnρn−1nn−1 2n − 2

(n − 1)! .

Computing the limits, it follows that

−∞ < lim inf
n→∞

1

n
ln

∫ ρ

−ρ

dm ne−βmn Zn(mn, ρn) ≤ lim sup
n→∞

1

n
ln

∫ ρ

−ρ

dm ne−βmn Zn(mn, ρn) < ∞,

from which the uniform pointwise boundedness follows.
For μ > |β|, we can directly compute that

∫ ∞

0
dρ ne−μρn

∫ ρ

−ρ

dm ne−βmn Zn(mn, ρn) =
(

1

μ + β
+ 1

μ − β

)n

−
(

1

μ + β

)n

−
(

1

μ − β

)n

.

For any other value of μ, it is clear that the above integral is infinite. It follows that the limit
and subsequent mapping given by

μ �→ lim
n→∞

1

n
ln

∫ ∞

0
dρne−μρn

∫ ρ

−ρ

dm ne−βmn Zn(mn, ρn) = f (β, μ),

exists and has a domain of finiteness given by the half-infinite interval (|β|,∞). By using the
properties of the full map (β, μ) �→ f (β, μ), already verified and computed in Lemma 3.1.5,
one can verify that the mapping μ �→ f (β, μ) for fixed β is a proper convex lower semi-
continuous function of Legendre type that satisfies −D[ f (β, ·)] = (0,∞). By Theorem
3.1.3, for any ρ > 0, it follows that

lim
n→∞

1

n
ln

∫ ρ

−ρ

dm ne−βmn Zn(mn, ρn) = inf
μ>|β|{μρ + f (β, μ)}.

To continue, by Lemma 3.1.5, we have

f (β, μ) = inf
(m,ρ)∈A{βm + μρ − s(m, ρ)} = inf

ρ>0

{
μρ + inf|m|<ρ

{βm − s(m, ρ)}
}

,
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so that

inf
μ>|β|{μρ + f (β, μ)} = − inf|m|<ρ

{βm − s(m, ρ)} = sup
|m|<1

{s(m, ρ) − βm}.

For the rate function, the scaled logarithmicmoment generating function� : R → [−∞,∞]
of a sequence of random variables with distributions given by

{
κ

β
n

}
n∈N is given by

�(t) := lim
n→∞

1

n
ln

Qn(β − t)

Qn(β)
= sup

|m|<1
{s(m, 1) − (β − t)m} − sup

|m|<1
{s(m, 1) − βm}

= sup
|m|<1

{tm − (−(s(m, 1) − βm))} − sup
|m|<1

{s(m, 1) − βm}.

We can identify the first term on the last line as the convex conjugate of the restriction of a
proper convex lower semi-continuous function ofLegendre typewith an interior of the domain
of finiteness given by (−1, 1). From the form of the function s(m, 1), for m ∈ (−1, 1), we
immediately see that

lim
m→±1∓ s(m, 1) = 1.

Defining s(±1, 1) = 1 yields a continuous extension of s(m, 1) from (−1, 1) to [−1, 1], and
we will consider it so from now on. The extended mapping given by

R � m �→
{
s(m, 1), m ∈ [−1, 1],
−∞, m /∈ [−1, 1],

is upper semi-continuous, and we will consider this the redefinition of s(m, 1) to be under-
stood now as not necessarily finite function on R. Compiling all of this together, it follows
that themappingR � m �→ −(s(m, 1)−βm) defines a proper convex lower semi-continuous
function of Legendre type, and thus the convex conjugate is involutive from which it follows
that

�∗(m) = sup
|m|<1

{s(m, 1) − βm} − (s(m, 1) − βm),

which is the rate function of {κβ
n }n∈N. ��

We finish by giving the proof of the limit point result.

Proof of Lemma 3.2.3 UsingTheorem4.3.8, let {κg
nk }k∈N be aweakly convergent subsequence

with a limit κ . Since M∗(ψg) is a compact subset of (−1, 1), it follows that there exists a :=
minM∗(ψg) and b := maxM∗(ψg). There exists δ > 0 such that supp(κ) ⊂ M∗(ψg) ⊂
[a− δ, b+ δ] ⊂ (−1, 1). Since supp(κ) ⊂ [a− δ, b+ δ], we deduce that κ([a− δ, b+ δ]) =
1, and, since ∂[a − δ, b + δ] ∩ supp(μ) ⊂ {a − δ, b + δ} ∩ M∗(ψg) = ∅, we see that
κ(∂[a − δ, b + δ]) = 0. It follows that [a − δ, b + δ] ⊂ (−1, 1) is a continuity set of κ , and
we can apply Lemma 3.1.1 along this subsequence with Corollary 3.1.7 to obtain the result.

��

4.5 Asymptotics of theWeights

We first establish the Laplace-type representation of the microcanonical partition function.
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Proof of Lemma 3.3.1 The microcanonical partition function can be written as

Zn(mn, ρn) = 2nn−2n!
(ρ2 − m2)n2

n−1∑
k=1

(
ρ+m
2

)k
(k − 1)!k!

(
ρ−m
2

)n−k

(n − k − 1)!(n − k)! ,

which one can recognize as the convolution of two sequences with some factors in front. We
consider the generating function G : C → C given by

G(z) :=
∞∑
n=2

(ρ2 − m2)n2

2nn−2n! Zn(mn, ρn)

(
z2

4

)n

=

⎛
⎜⎜⎜⎜⎝

∞∑
n=2

(
1
4

(√
ρ+m
2 z

)2
)n

n!(n − 1)!

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

∞∑
n=2

(
1
4

(√
ρ−m
2 z

)2
)n

n!(n − 1)!

⎞
⎟⎟⎟⎟⎠ .

One can verify that the convolution yields a Cauchy product, and that the power series on the
right define entire functions with absolutely convergent power series. We have the standard
relation between the derivatives of G and its power series coefficients

G(2n)(0)

(2n)! = (ρ2 − m2)n2

2nn−2n!4n Zn(mn, ρn) ⇐⇒ Zn(mn, ρn) = 22n+1nn−2n!
(ρ2 − m2)n2

G(2n)(0)

(2n)! .

Next, using the modified Bessel function of the first kind Iν(z) given by

Iν(z) :=
(
1

2
z

)ν ∞∑
n=0

(
z2
4

)n
n!�(ν + n + 1)

,

where ν ∈ Z, and we have

G(z) = 1

4

√
ρ2 − m2

4
z2 I−1

(√
ρ + m

2
z

)
I−1

(√
ρ − m

2
z

)
.

Using the integral representation, see [27, Chapter 9], given by

Iν(z) := 1

π

∫ π

0
dθ cos(νθ)ez cos θ ,

we see that

G(z) = 1

4

√
ρ2 − m2

4
z2

1

π2

∫ π

0
dθ1

∫ π

0
dθ2 cos θ1 cos θ2e

z

(√
ρ+m
2 cos θ1+

√
ρ−m
2 cos θ2

)
.

Taking derivatives, using the general Leibniz rule, we obtain

G(2n)(0) = 1

2

√
ρ2 − m2

4

(
2n

2

)
1

π2

∫ π

0
dθ1

∫ π

0
dθ2

× cos θ1 cos θ2

(√
ρ + m

2
cos θ1 +

√
ρ − m

2
cos θ2

)2n−2

,
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from which it follows that

Zn(mn, ρn) = 22n−1nn−2n!
(2n)!√ρ2 − m2n2

(
2n

2

)
1

π2

∫ π

0
dθ1

∫ π

0
dθ2

× cos θ1 cos θ2

(√
ρ + m

2
cos θ1 +

√
ρ − m

2
cos θ2

)2n−2

.

By using the given from of the overloaded s function and simplifying, we obtain the desired
representation. ��
We present the proof of the local asymptotics of the overloaded ψg function.

Proof By computing the critical points of the overloaded ψg function, we see that there is
precisely one critical point in the given set in the assumptions, and it is given by (m∗, 0, 0).
For this particular critical point, it is easy to see that any odd partial derivative with respect
to either θ1 or θ2 is vanishing.
By developing ψg to second order in (θ1, θ2), and (2k):th order in m, it follows that

ψg(m∗ + m, θ1, θ2) = ψg(m∗) + 1

2
∂22 [ψg](m∗, 0, 0)θ21 + 1

2
∂23 [ψg](m∗, 0, 0)θ22

+ 1

(2k)!∂
2k[ψg](m∗)m2k +

∑
|α|=3, α1 /∈{2,3}

Rα(m, θ1, θ2)(m, θ1, θ2)
α

+ R(2k+1,0,0)(m, θ1, θ2)m
2k+1,

where

Rα(m, θ1, θ2) = |α|
α!

∫ 1

0
dt (1 − t)|α|−1∂α[ψg]((m∗, 0, 0) + t(m, θ1, θ2)).

��
We can now prove the full Laplace method for the mixture measures.

Proof Let us first remark that in the following proof, we will frequently use the statement for
small enough δ > 0 something holds. In the context of this proof, we repeat this to imply that
there is a series of finite choice of δ > 0 small enough such that all the conditions required
will hold. In reality this proof should be worked through “backwards” so that the choice of
δ > 0 is clear.
We begin by noting that

(2n)!n2π2

22n−1nn−2n!(2n2
)
e−(n−1)

∫ m+δ

m∗−δ

dm en(g(m)+sn(m,1))

=
∫ m+δ

m∗−δ

dm
∫ π

0
dθ1

∫ π

0
dθ2

cos θ1 cos θ2eg(m)

√
1 − m2

e(n−1)(ψg(m,θ1,θ2))

and by using the symmetries of the trigonometric functions, it follows that
∫ m∗+δ

m∗−δ

dm
∫ π

0
dθ1

∫ π

0
dθ2

eg(m) cos θ1 cos θ2√
1 − m2

e(n−1)ψg(m,θ1,θ2)

=
∫ m∗+δ

m∗−δ

dm
∫ π

2

− π
2

dθ1

∫ π
2

− π
2

dθ2
eg(m) cos θ1 cos θ2√

1 − m2
e(n−1)ψg(m,θ1,θ2)
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−
∫ m∗+δ

m∗−δ

dm
∫ π

2

0
dθ1

∫ π
2

0
dθ2

eg(m) sin θ1 cos θ2√
1 − m2

e(n−1)ψg(m,θ1+ π
2 ,θ2)

−
∫ m∗+δ

m∗−δ

dm
∫ π

2

0
dθ1

∫ π
2

0
dθ2

eg(m) cos θ1 sin θ2√
1 − m2

e(n−1)ψg(m,θ1,θ2+ π
2 ).

Wewant to show that the first integral on the second line of this manipulation is exponentially
dominant. To save space, denote the integrals as follows

I1(n) :=
∫ m∗+δ

m∗−δ

dm
∫ π

2

− π
2

dθ1

∫ π
2

− π
2

dθ2
eg(m) cos θ1 cos θ2√

1 − m2
e(n−1)ψg(m,θ1,θ2) ,

I2(n) :=
∫ m∗+δ

m∗−δ

dm
∫ π

2

0
dθ1

∫ π
2

0
dθ2

eg(m) sin θ1 cos θ2√
1 − m2

e(n−1)ψg(m,θ1+ π
2 ,θ2) ,

I3(n) :=
∫ m∗+δ

m∗−δ

dm
∫ π

2

0
dθ1

∫ π
2

0
dθ2

eg(m) cos θ1 sin θ2√
1 − m2

e(n−1)ψg(m,θ1,θ2+ π
2 ) .

For the terms I2 and I3, observe that∣∣∣∣∣
√
1 + m

2
sin α −

√
1 − m

2
cosβ

∣∣∣∣∣ ≤ max

{√
1 + m

2
,

√
1 − m

2

}
<

√
1 + m

2
+

√
1 − m

2

for any α, β ∈ [0, π
2 ] and m ∈ (m∗ − δ,m∗ + δ). Using this property, one can check that

M2(δ) := max
(m,θ1,θ2)∈(m∗−δ,m∗+δ)×[0, π

2 ]×[0, π
2 ]

ψg
(
m, θ1 + π

2
, θ2

)

≤ max
m∈(m∗−δ,m∗+δ)

⎧⎨
⎩g(m) + 1 + ln

⎛
⎝

(
max

{√
1 + m

2
,

√
1 − m

2

})2
⎞
⎠

⎫⎬
⎭ .

By continuity of the function inside the maximum, one can check that

lim
δ′→0+ M2(δ

′) < M1(δ) := max
(m,θ1,θ2)∈(m∗−δ,m∗+δ)×[− π

2 , π
2 ]×[− π

2 , π
2 ]

ψg (m, θ1, θ2) = ψg(m∗),

from which it follows that for small enough δ > 0, we have M2(δ) < M1(δ). One can verify
in the same way that

M3(δ) := max
(m,θ1,θ2)∈(m∗−δ,m∗+δ)×[0, π

2 ]×[0, π
2 ]

ψg
(
m, θ1, θ2 + π

2

)
< M1(δ)

for small enough δ > 0. For such δ, it follows that

lim
n→∞

1

n
ln I2/3(n) = M2/3(δ) < M1(δ) = lim

n→∞
1

n
ln I1(n),

which shows that I1(n) exponentially dominates I2/3(n).
To continue, we have

n
1
2k +1(I1(n) − I2(n) − I3(n))

enM1
= n

1
2k +1 I1(n)

enM1
− n

1
2k +1e

n
(
1
n ln I2(n)−M1

)

− n
1
2k +1e

n
(
1
n ln I3(n)−M1

)
.

It is now clear that in the limit the terms on the right of the I1(n) term vanish since they are
exponentially small. As for the limit of the integral I1(n), it is solved by a routine application
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of Laplace’s method using the asymptotics developed in Lemma 3.3.2. First, however, we
must split the integral I1(n) with respect to the angular variables. Denote

f (m, θ1, θ2) := eg(m) cos θ1 cos θ2√
1 − m2

.

Since ψg attains it unique maximum at (m∗, 0, 0), it follows that

lim
n→∞

1

n
ln

∫ m∗+δ

m∗−δ

dm
∫

([−δ,δ]×[−δ,δ])c
dθ1dθ2 f (m, θ1, θ2)e

(n−1)ψg(m,θ1,θ2)

= sup
m∈[m∗−δ,m∗+δ]×([−δ,δ]×[−δ,δ])c

ψg(m, θ1, θ2) < M1.

If we denote

I1,δ(n) :=
∫ m∗+δ

m∗−δ

dm
∫ δ

−δ

dθ1

∫ δ

−δ

dθ2 f (m, θ1, θ2)e
(n−1)ψg(m,θ1,θ2),

we have

n
1
2k +1 I1(n)

enM1
= n

1
2k +1 I1,δ(n)

enM1
+ n

1
2k +1e

n
(
1
n ln(I1(n)−I1,δ(n))−M1

)
.

Again, since the right hand side contains exponentially decreasing terms, the asymptotics
will be determined by the first term on the right. Finally, by changing variables, observe that

n
1
2k +1 I1,δ(n)

e(n−1)M1

=
∫ δn

1
2k

−δn
1
2k

dm
∫ π

2 n
1
2

− π
2 n

1
2
dθ1

∫ π
2 n

1
2

− π
2 n

1
2
dθ2 f

(
m∗ + m

n
1
2k

,
θ1

n
1
2

,
θ2

n
1
2

)
e
(n−1)

(
ψg

(
m∗+ m

n
1
2k

,
θ1

n
1
2

,
θ2

n
1
2

)
−ψg(m∗)

)

.

If one looks at the remainder term displayed in Lemma 3.3.2, one finds that∣∣∣∣∣∣
∑

|α|=3, α1 /∈{2,3}
Rα(m, θ1, θ2)(m, θ1, θ2)

α

∣∣∣∣∣∣
≤ max

(m,θ1,θ2)∈[−δ,δ]3, |α|=3, α1 /∈{2,3}|
|Rα(m, θ1, θ2)|

∑
|α|=3, α1 /∈{2,3}

|(m, θ1, θ2)
α|

≤ max
(m,θ1,θ2)∈[−δ,δ]3, |α|=3, α1 /∈{2,3}|

|Rα(m, θ1, θ2)|
(
A|θ1|3 + Bθ21 |θ2|

+ C |θ1|θ22 + D|θ2|3 + E |m||θ1||θ2|
)

≤
(

δF max
(m,θ1,θ2)∈[−δ,δ]3, |α|=3, α1 /∈{2,3}|

|Rα(m, θ1, θ2)|
)

(θ21 + θ22 ),

and
∣∣∣R(2k+1,0,0)(m, θ1, θ2)m

2k+1
∣∣∣ ≤

(
δ max

(m,θ1,θ2)∈[−δ,δ]3
|R(2k+1,0,0)(m, θ1, θ2)|

)
m2k,

where A, B,C, D, E, F > 0 are all positive constants. For δ satisfying

δF max
(m,θ1,θ2)∈[−δ,δ]3, |α|=3, α1 /∈{2,3}|

|Rα(m, θ1, θ2)|
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< max

{
−1

2
∂22 [ψg](m∗, 0, 0)m,−1

2
∂23 [ψg](m∗, 0, 0)

}
,

and

δ max
(m,θ1,θ2)∈[−δ,δ]3

|R(2k+1,0,0)(m, θ1, θ2)| ≤ − 1

(2k)!∂
2k[ψg](m∗).

Ultimately, for δ > 0 chosen small enough so as to satisfy the finite number of conditions
given previously, using the error bounds above, by dominated convergence, it follows that

lim
n→∞

∫ δn
1
2k

−δn
1
2k

dm
∫ π

2 n
1
2

− π
2 n

1
2
dθ1

∫ π
2 n

1
2

− π
2 n

1
2
dθ2 f

(
m∗ + m

n
1
2k

,
θ1

n
1
2

,
θ2

n
1
2

)
e
(n−1)

(
ψg

(
m∗+ m

n
1
2k

,
θ1

n
1
2

,
θ2

n
1
2

)
−ψg(m∗)

)

= f (m∗, 0, 0)
∫
R3

dθ1dθ2dm e
1
2 ∂22 [ψg ](m∗,0,0)θ21 + 1

2 ∂23 [ψg ](m∗,0,0)θ22 + 1
(2k)! ∂2k [ψg ](m∗)m2k

.

Combining all of these results together, it follows that

lim
n→∞

n
1
2k +1 ∫ m+δ

m∗−δ
dm en(g(m)+sn(m,1))

enψg(m∗)
(2n)!n2π2

22n−1nn−2n!(2n2
)
e−(n−1)

= eg(m
∗)

eψg(m∗)
√
1 − m∗2

∫
R3

dθ1dθ2dm e
1
2 ∂22 [ψg](m∗,0,0)θ21+ 1

2 ∂23 [ψg](m∗,0,0)θ22+ 1
(2k)! ∂2k [ψg](m∗)m2k

.
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